In Episode 1 of the UP Squared Chronicles, I used my DediProg SF100 to flash a debug image equipped with source and symbols onto the UP Squared board. This week, I describe the build process.
In Running Intel CScripts on Skylake servers, I gave a brief introduction to the Intel Customer Scripts (CScripts), and showed how to run them with SourcePoint. Today, I do a deeper dive.
As you may have seen from my last blog, my old favorite open-source platform, the MinnowBoard, has been declared End-of-Life. So how am I to satisfy my innate need to explore the low-level interfaces between silicon, hardware and firmware? I may have found a new open source firmware board that meets my needs.
I’ve been working from home for quite some time now, and don’t have access to all the equipment I normally would have at the office. And I’ve wanted to flash the MinnowBoard (and some other boards). So, rather than wait for the coronavirus shelter-in-place to lift, I went out and bought a DediProg SF100 of my own. Here’s my out-of-the-box experience.
As everyone who works with server designs knows, Intel publishes a group of JTAG-based scripts called the Intel Customer Scripts (ICS, or CScripts for short). The CScripts are derived from internal applications that Intel uses for silicon validation, and they are enormously useful for board bring-up and debug. This week, I took a look at them, and ran some with SourcePoint.
In my last few blogs, I’ve looked at the use of Intel Trace features for capturing valuable debug information. In particular, Architectural Event Trace (AET) and Management Engine (ME) message trace are very powerful capabilities. This week, we put these trace events in a meaningful code context by correlating them with Intel Processor Trace (IPT).
Last week, I used Architectural Event Trace (AET) to capture all events that invoked Model Specific Register (MSR) reads and writes. This week, I use the Trace Hub to trace Intel Management Engine (ME, also known as Converged Security and Management Engine (CSME)) events.
In the first and second episodes of this series, I did a basic introduction of how to set up AET and to trace I/O reads and writes. This week, I look at tracing all Model Specific Register (MSR) reads and writes.
Last week, I wrote an introduction to Architectural Event Trace, an extremely powerful JTAG-based Trace facility within current Intel silicon. Using this technology in conjunction with SourcePoint gives the firmware developer unprecedented insight into program execution and events. This week, I look at some of the use cases.