

©2024 ASSET InterTech, Inc. 1
 SourcePoint Getting Started Guide – UP Xtreme i11

SourcePoint

Getting Started Guide for the

AAEON UP Xtreme i11

Revision 2.4

©2024 ASSET InterTech, Inc. 2
 SourcePoint Getting Started Guide – UP Xtreme i11

Contents

REVISION HISTORY ... 4

WELCOME! .. 5

GETTING STARTED WITH SOURCEPOINT ... 6

Boards and Cables ... 6

BIOS Settings .. 8

DbCStatus.exe: Red is Bad, Green and Yellow are Good ... 12

Basic SourcePoint Debugging .. 14

Advanced Topics: Using Trace ... 26

Configuring the Intel Trace Hub ... 26

Using Architectural Event Trace (AET) ... 27

Intel Processor Trace ... 31

Basic SourcePoint Troubleshooting Tips .. 33

Trace buffer overflows... 33

Intel Processor Trace can be slow ... 35

My board is not booting – what now? ... 38

SOURCEPOINT DEBUGGING FOR WINDOWS ... 39

Configuring the target and setting up pre-requisites – Getting Started .. 42

How to Establish a SourcePoint WinDbg Session .. 44

Step 1: Connect SourcePoint to the target .. 44

Step 2: Start WinDbg via a SourcePoint macro.. 45

Step 3: Load symbols with the LoadCurrent macro ... 48

What happens if the symbols don’t show up? .. 53

Getting SourcePoint to display module names as well as function names ... 55

Troubleshooting Tips and Errata ... 57

Windows crashes ... 57

WinDbg Classic is better than WinDbgX .. 57

Pause in Initial Symbol Load .. 58

LoadCurrent versus LoadAll ... 58

COM(32) Surrogate .. 58

Viewing the Stack .. 58

LoadCurrent intermittently fails in User code ... 60

Breaks are not process-aware ... 60

©2024 ASSET InterTech, Inc. 3
 SourcePoint Getting Started Guide – UP Xtreme i11

Mangled function names ... 60

WinDbg FP register display is not working .. 61

Problems with symbol loading from local cache ... 61

SOURCEPOINT DEBUGGING FOR HYPER-V .. 66

Getting Started .. 66

VMM breakpoints, and debugging the Secure Kernel ... 68

VMCS Viewer/Editor .. 71

VM Exit breakpoints and Basic Exit Reasons ... 72

Using Intel PT with Hyper-V ... 74

Suggested Hyper-V Reading .. 75

Troubleshooting Tips on Hyper-V/ VBS Enabled Targets ... 77

VM Resume breakpoint with Intel PT crashes the target .. 77

Hardware breakpoints don’t work well in the Secure Kernel .. 77

AET only partially functional .. 77

Support for VM Exit Reasons > 63 ... 78

Intel PT Call Chart does not work reliably .. 79

CONCLUSION ... 81

©2024 ASSET InterTech, Inc. 4
 SourcePoint Getting Started Guide – UP Xtreme i11

REVISION HISTORY

Revision Number Description Date

1.0 Original document, describes v0000
board support

November 28, 2021

2.0 Added content for new support of v0001
(with the Type-C connector removed)
AAEON UP Xtreme i11 board

May 30, 2022

2.1 Updated for WinDbg support and other
perfective changes

December 3, 2023

2.2 Update for beta release SourcePoint
7.12.52

March 31, 2024

2.3 Production release documentation for
7.12.53.

May 5, 2024

2.4 Production release for 7.12.59.
Consolidating SourcePoint UEFI and
SourcePoint WinDbg documentation.

July 13, 2024

©2024 ASSET InterTech, Inc. 5
 SourcePoint Getting Started Guide – UP Xtreme i11

WELCOME!

Thank you very much for your SourcePoint purchase! We appreciate you acquiring our
best-in-class debugger, and hope you enjoy using it. We strive to deliver the most
powerful, easy-to-use and polished product as possible. So, please feel free to share
your feedback directly at our support site at https://www.asset-intertech.com/support/, or
via your favorite social media outlet.

As with any new tool, mastering SourcePoint takes an investment in terms of time and
effort. JTAG-based debug is a fairly specialized area, and low-level “on the metal”
firmware development on x86 platforms is even more so. So, in your use of the tool, you
may encounter behavior that seems non-intuitive or even wrong. You may be
encountering a tool corner case, a limitation inherent in JTAG or DCI, or even a bug. If
so, try a few different options as may be referenced in the Troubleshooting section of
this Guide, and if it persists, give us a call. We are happy to support you.

https://www.asset-intertech.com/support/

©2024 ASSET InterTech, Inc. 6
 SourcePoint Getting Started Guide – UP Xtreme i11

GETTING STARTED WITH SOURCEPOINT

Read this section first! It provides an introduction to the configuration changes you need

to make on the AAEON UP Xtreme i11 target, and provides a basic overview on running

SourcePoint. Then, you can jump ahead to debugging Windows and Hyper-V.

Boards and Cables

The board covered in this document is the AAEON UP Xtreme i11 board, based upon
the Intel Tiger Lake CPU.

The Tiger Lake boards come in four flavors: Celeron, i3, i5 and i7. All boards are suited
for Windows debugging. The Celeron board is the least expensive, and supports all the
latest Intel debug and trace features such as Intel Processor Trace (Intel PT), Intel
Trace Hub, Architectural Event Trace (AET), and others.

©2024 ASSET InterTech, Inc. 7
 SourcePoint Getting Started Guide – UP Xtreme i11

WARNING:

Do NOT plug a regular USB cable into the target and attempt to use DCI. Specialty

cables, with VBUS snipped, are required; using a regular USB cable may possibly fry

your target, or worse.

The main source to purchase the specialty DCI cable needed for SourcePoint

debugging is ASSET InterTech. This target has its Type-C port enabled for DCI. If you

have a debug host with a Type-A port, you’ll need to purchase the part #

ITPDCIAMCM1MU (1.0 meter) cable. The longer 1.8-meter ITPDCIAMCM2MU cable

will work as well. If your host has a Type-C port, purchase the ITPDCIC2CD2U1M.

Using Type-A/C hubs have been seen to work, but are not warranted. Type A/C

adapters have been seen not to work.

Contact your ASSET representative to obtain the cable needed for your configuration.

©2024 ASSET InterTech, Inc. 8
 SourcePoint Getting Started Guide – UP Xtreme i11

BIOS Settings

The AAEON UP Xtreme i11 boards come equipped with an AMI Aptio BIOS that is
based upon typical Intel Customer Reference Board (CRB) BIOS.

Luckily, the platform comes with all the necessary hardware hooks and firmware straps
to support Intel Direct Connect Interface (DCI) out of the box.

The USB Type C port on the board is the port of interest:

There are three BIOS settings to change for the board to work with SourcePoint and
DCI:

There are three settings in the default AAEON BIOS that need to be changed to
successfully JTAG debug the UP Xtreme i11 target:

1. Disable the WDT timer
2. Disable the TCO timer
3. Set the Platform Debug Consent to Enabled (USB2 DbC).

©2024 ASSET InterTech, Inc. 9
 SourcePoint Getting Started Guide – UP Xtreme i11

Go into the BIOS Boot menu (this is accomplished by rebooting the board, at the same
time holding down the F7 key, and you’ll be promoted for the password for the “CRB
Advanced” BIOS menu. Note that CRB is Customer Reference Board, an Intel
reference:

The password is upassw0rd.
And that is a number “zero” (0) in the password, not the letter “O”.

Enter Setup, and use the arrow key to move over to the Boot menu. and set WDT Timer
-> Disabled. If you don’t, run-control will be successful, but the board will power-cycle
every 30 seconds; putting a real crimp in your debugging!

There is another setting within the CRB Advanced menu to Disable the TCO Timer from
being re-enabled by Windows; this is set to Disabled by default when shipped from
AAEON, but if you run into issues with run-control stability, you might want to check this:

CRB Setup > CRB Chipset > PCH-IO Configuration > Enable TCO

Timer must be set to Disabled.

©2024 ASSET InterTech, Inc. 10
 SourcePoint Getting Started Guide – UP Xtreme i11

Finally, go to CRB Setup > CRB Advanced > Debug Settings and set

Platform Debug Consent to Enabled (USB2 DbC):

©2024 ASSET InterTech, Inc. 11
 SourcePoint Getting Started Guide – UP Xtreme i11

Remember to do a “Save & Exit” with the F4 key after the changes! Otherwise,
your changes won’t be saved.

Power Tip: We have observed that, on very rare occasions, the saved settings that
you’ve made will be undone by a “BIOS restore”. If you begin to observe strange
effects, like autonomous platform resets while in run-control mode, check to ensure that
the changes you’ve made have not been undone.

You are now ready to test your connection, and then launch SourcePoint and begin
debugging.

©2024 ASSET InterTech, Inc. 12
 SourcePoint Getting Started Guide – UP Xtreme i11

DbCStatus.exe: Red is Bad, Green and Yellow are Good

Luckily, there is a convenient application in the SourcePoint install directory that will tell
you that the DCI driver is successfully installed on your computer, and it is possible to
make a connection between SourcePoint and the target.

Navigate to C:\Program Files (x86)\Arium\SourcePoint 7.12.59 (where 59

is your current SourcePoint release), and launch the DbCStatus.exe. You should see

the red ball, indicating that there is no connection:

Ensure that the Type-C cable is firmly connected to both the host and target, and power
up the UP Xtreme i11. In a moment the ball should turn green:

Let the platform boot to the UEFI shell. Congratulations! You have a working DCI
connection. It’s smooth sailing from here.

©2024 ASSET InterTech, Inc. 13
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: If you are using SourcePoint WinDbg for debugging this board, and have
Windows already installed, there may be situations where you want to go to BIOS setup
before booting all the way up to Windows. In this case, press F7 after powering on to
stop at the BIOS setup.

Power Tip: We have found that some versions of the Celeron board will not power up
successfully after a power cycle. Here’s the workaround:
1. Apply power back to the target. You will see that it doesn’t power up, and the blue

light does not light up on the power switch.
2. Unplug the DCI cable from the Type-C plug.
3. The board will start to power up. Press F7 and you will stop at the UEFI menu

password screen.
4. Hot Plug the Type-C cable back in. Your DCI connection will be restored, and you

will see the DbCStatus ball turn green. You may continue your Windows debugging
session.

©2024 ASSET InterTech, Inc. 14
 SourcePoint Getting Started Guide – UP Xtreme i11

Basic SourcePoint Debugging

When you launch SourcePoint for the first time, you will see the main screen, mostly
gray:

SourcePoint uses Projects (files with suffix .prj) as containers for your debugging
session. You can create as many Projects as you want, with all your own preferences
saved. Often, once you have the SourcePoint Project configured to your liking, you’ll
save it and use it repeatedly during your separate debugging sessions. Other users may
wish to save a separate Project for each separate debugging session. That’s really a
matter of user preference and what you’re debugging – it’s your choice.

Now it’s time to create the Project. Under File > Project… select New Project:

©2024 ASSET InterTech, Inc. 15
 SourcePoint Getting Started Guide – UP Xtreme i11

You’ll be presented with the New Project Wizard (NPW). The emulator connection
should be via DCI:

©2024 ASSET InterTech, Inc. 16
 SourcePoint Getting Started Guide – UP Xtreme i11

After hitting Next, you’ll be prompted for the Project Name, Location to store the

Project, and the location of the Target Configuration file:

©2024 ASSET InterTech, Inc. 17
 SourcePoint Getting Started Guide – UP Xtreme i11

Note that the Target Configuration (TC) files located in C:\My

Documents\Arium\Targets are used in conjunction with the jtag-devices.xml

file to define the specific silicon and SourcePoint settings necessary to ensure a
successful DCI connection.

For the UP Xtreme i11 boards, custom TC files have been created, so you shouldn’t do
an Identify Target to automatically select the TC file of interest. Rather, manually

select the specific TC file that is customized for this target (TGL\UP-Xtreme-

i11_DbC.tc) and hit Open:

©2024 ASSET InterTech, Inc. 18
 SourcePoint Getting Started Guide – UP Xtreme i11

Then, your screen should look something like this, after you’ve replaced the default
Project file File name with your preferred name (in this instance, My Tiger Lake Project):

©2024 ASSET InterTech, Inc. 19
 SourcePoint Getting Started Guide – UP Xtreme i11

Hit Next, then Finish, and SourcePoint should successfully connect to the target. You

should see “JtagTest: Successful operation” followed by “Configuration

state: Connected” in the Status bar at the bottom left:

©2024 ASSET InterTech, Inc. 20
 SourcePoint Getting Started Guide – UP Xtreme i11

Now the fun part begins. Click on the buttons at the top to set up the Viewpoint, Code,
Command, Registers and other windows to your own preference. Move the windows
around and resize them to take best advantage of your available screen real estate.
You can right-click in the title bar of each window to change its type and, for example, to
dock the window to the bottom, right side, etc.

A sample layout is below:

©2024 ASSET InterTech, Inc. 21
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: the window layout can be saved as a separate file. That way, when you
create a new Project, you can just Load the layout file separately, without having to
create and move the windows around again. Choose File > Layout > Save

Layout… to create a .lyt file, and then do a Load Layout… to save yourself time every

time you create a new Project.

Exploring Options > Preferences… and some of the other menu items may give

you some more labor-saving ideas. For instance, your workflow might suggest to
disable both Load last project on startup and Save project on. This gives

more control on entry and exit from the application:

©2024 ASSET InterTech, Inc. 22
 SourcePoint Getting Started Guide – UP Xtreme i11

Another suggestion is to check Save project on exit. It’s a matter of preference.

This is a good point to do a Project > Save Project… That way, you don’t have to

start all over, if for some reason your project gets messed up.

At this point, you are ready to fully begin your debug session. Many of the operations
can be accessed via the toolbar at the top of the screen. You can issue a Stop on the

target, Step Into, Reset and halt at the reset vector, set some breakpoints, Go to the

breakpoint, and so on. Use the buttons at the top, in the SourcePoint Icon toolbar
section, to initiate these actions. Use the function keys (i.e. F8 for Step Into) as you gain
experience.

©2024 ASSET InterTech, Inc. 23
 SourcePoint Getting Started Guide – UP Xtreme i11

Hit the Refresh button in the Code window after the first Stop. This is only necessary

once, to get out of Safe Mode; the Code window will automatically refresh with all run-
control operations (stop, go, single-step, etc.) afterwards.

Refer to the SourcePoint User Guide in your install directory for detailed instructions on
using all of the tool’s features.

The board will halt automatically at the reset vector when you hit the SourcePoint Reset
button (don’t do this yet!):

©2024 ASSET InterTech, Inc. 24
 SourcePoint Getting Started Guide – UP Xtreme i11

This is NOT desirable, because some of the AAEON Tiger Lake boards have issues
recovering from the reset vector. It is recommended that you disable the default halt at
the reset vector by going to the Options > Emulator Configuration > Target Reset and
click on “Run the target” in the “After SourcePoint reset” box:

©2024 ASSET InterTech, Inc. 25
 SourcePoint Getting Started Guide – UP Xtreme i11

Congratulations, you have mastered SourcePoint’s basic capabilities, and are using
run-control. Many users are content to just use these basic operations, because run-
control by itself is very powerful. However, if you wish to master the product and use
some of its more advanced features, read on.

©2024 ASSET InterTech, Inc. 26
 SourcePoint Getting Started Guide – UP Xtreme i11

Advanced Topics: Using Trace

Trace is by far one of the most useful debugging utilities for triaging the most difficult,
hard-to-reproduce bugs. Fortunately, the Tiger Lake CPU is equipped with all the latest-
and-greatest Intel trace logic, and SourcePoint supports them all.

Let’s look at a few of them, and how to configure their use in SourcePoint.

Configuring the Intel Trace Hub

Event tracing on the TGL platform is accomplished by the Intel Trace Hub. Fortunately,
using DCI, events supported by the Intel Trace Hub can be streamed directly out of the
system, well before Windows boots.

Boot to the UEFI shell. This is accomplished by powering on the target, and pressing
the F7 key until you come to the password entry screen. Note the Power Tip above that
references the newer Celeron boards, and the workaround necessary to get the target
to power up.

Click on the Trace button in the toolbar at the top, to open the Trace window; then click

on the Configure… button; then click on the Trace Hub tab. Set the settings as

below:

©2024 ASSET InterTech, Inc. 27
 SourcePoint Getting Started Guide – UP Xtreme i11

Once you’ve configured the Trace Hub this time, you don’t have to set it up anymore.
You can now take advantage of one of the main capabilities of the Trace Hub,
Architectural Event Trace (AET).

Using Architectural Event Trace (AET)

©2024 ASSET InterTech, Inc. 28
 SourcePoint Getting Started Guide – UP Xtreme i11

Once the Trace Hub has been enabled for the features you need, click on the AET tab,

select All as Processors to trace, and select RDMSR/WRMSR and Port In/Out

as events to trace:

Now, you can simply do a Go/Stop to capture the event trace data. Below shows using
the Command window to simulate a break on any read/write of port x’CF8’, the PCI

CONFIG_ADDRESS. This is done by typing the following into the Command window:

go til cf8io

©2024 ASSET InterTech, Inc. 29
 SourcePoint Getting Started Guide – UP Xtreme i11

This will run the target until the next IN or OUT to CF8.

After issuing the command, you’ll see something like this:

Scrolling up a little, you’ll see a mix of Port In/Out and RDMSR/WRMSR, all

timestamped.

Power tip: The Last Branch Record (LBR) stack associated with each event can be
captured as well. This is a very powerful debugging utility, especially when
troubleshooting code execution leading up to events before system memory is initialized
and Intel Processor Trace is available. Note: If you try to collect too many events and
their associated LBR instruction tracebacks, you will overflow the capacity of the DbC2
connection. Scale these back until the Trace Overflows are eliminated.

©2024 ASSET InterTech, Inc. 30
 SourcePoint Getting Started Guide – UP Xtreme i11

©2024 ASSET InterTech, Inc. 31
 SourcePoint Getting Started Guide – UP Xtreme i11

Intel Processor Trace

Intel Processor Trace (Intel PT) is available only after system memory is initialized.

It’s easy to set up. Click on the Trace button in the top toolbar, click the Configure…

button, click on the Intel PT tab, put p0 in Processors to trace, and be sure

that TSC and Cycle accurate under the Timestamp heading are enabled:

That’s all. Then use the go til cf8io trick to capture some instruction trace data:

©2024 ASSET InterTech, Inc. 32
 SourcePoint Getting Started Guide – UP Xtreme i11

There’s a lot more that you can see and do with these Trace utilities. SourcePoint can
use Intel PT to display a Call Chart and Call Tree. You can open up Code Tracking
windows that update dynamically as you walk through the code, showing you exactly
where you are and the interaction between code and events. When you have source
and symbols available, the firmware flow becomes much more intuitive and visual.
Indulge your curiosity and imagination.

The video at https://www.asset-intertech.com/wp-content/uploads/2021/11/UP-Xtreme-
i11-Getting-Started.mp4 shows some of these capabilities. The SourcePoint User Guide
also provides a very thorough, comprehensive review of the tool. And visit our
SourcePoint Academy for helpful “How To” content.

https://www.asset-intertech.com/wp-content/uploads/2021/11/UP-Xtreme-i11-Getting-Started.mp4
https://www.asset-intertech.com/wp-content/uploads/2021/11/UP-Xtreme-i11-Getting-Started.mp4
https://www.asset-intertech.com/sourcepoint-academy/

©2024 ASSET InterTech, Inc. 33
 SourcePoint Getting Started Guide – UP Xtreme i11

Basic SourcePoint Troubleshooting Tips

At some point, you’ll run into something strange. We’re the first to admit that JTAG-
based run-control and trace are not always deterministic. JTAG is a 30-year hardware
protocol, and when something goes astray at a very low level, SourcePoint tries to (but
sometimes doesn’t) recover gracefully. There will be times that the board will power
cycle on its own. Or the firmware thinks that a thread is running but gets out of sync with
the SourcePoint software, which thinks it’s halted. Or the DbCStatus.exe ball stays red
instead of turning green, while you swear you have a good DbC connection. Sometimes
you have no choice but to quit SourcePoint and power cycle the target. That usually
clears up the one-of’s. But if the issue is repeatable, we ask that you collect as much
information as you can, and open a ticket with us at https://www.asset-
intertech.com/support/. We’ll respond as soon as possible.

In the meantime, here are a few errata that we’ve noticed on the UP Xtreme i11, and
the steps needed to mitigate.

Trace buffer overflows

DCI traffic processing has its limitations. When you try to collect too much trace data,
the trace buffer overflows, causing aberrant behavior.

Although the trace data is highly compressed, some trace sources, specifically with
AET, running through the Trace Hub can exceed the capacity of the USB 2.0
connection. In theory running at 480Mbps, in practicality SourcePoint can only process
trace data at approximately 100Mbps. Beyond that, we collect ~ 20kB of trace data
before a buffer in SourcePoint overflows, and we don’t recovery gracefully.

You’ll see these symptoms of this occurrence in the SW/FW Trace window:

https://www.asset-intertech.com/support/
https://www.asset-intertech.com/support/

©2024 ASSET InterTech, Inc. 34
 SourcePoint Getting Started Guide – UP Xtreme i11

A few of these overflows are no big deal. But, if you’re tracing a huge amount of data,
SourcePoint may spin, as it tries to process all that data, and deal with the mess.
Sometimes, after maybe a few minutes, it recovers. Sometimes, you end up in limbo.

The only solution at this point is to quit SourcePoint, do an End task on the AssetDCI

Background process, power cycle the target, and start over:

©2024 ASSET InterTech, Inc. 35
 SourcePoint Getting Started Guide – UP Xtreme i11

Ultimately, we’re working on improving the performing of the AssetDCI driver, and
behaving more graciously when an overflow is encountered. But, in the interim, it is key
to ensure that the trace data collected is relatively “sparse”. Focus your debugging in
the specific area of interest. Don’t try to collect all Port IN/OUT from the reset vector all
the way through to the UEFI shell. At 750K I/Os per second, you’ll swamp the host
debugger processing, and you can’t deal with all that data anyway.

Note that this only happens with AET – that is, you can only overflow by collecting too
much AET data. It does not apply to LBR, SW/FW Trace, SVEN, or Intel PT. It may take
some trial and error to limit the scope of your event data collection.

Intel Processor Trace can be slow

When you configure Intel PT, you can specify the size of the buffer in system memory to
collect trace data:

©2024 ASSET InterTech, Inc. 36
 SourcePoint Getting Started Guide – UP Xtreme i11

Note that Intel PT directs instruction trace data to system memory. Although highly
compact and efficient, we are not streaming over DCI to the host in this case; we buffer
the code execution data until the platform is halted, at which point SourcePoint uses
JTAG over DCI to collect the trace data out of system memory, reconstruct and display

©2024 ASSET InterTech, Inc. 37
 SourcePoint Getting Started Guide – UP Xtreme i11

it. JTAG operates at fairly low speeds, and for large buffer sizes the transfer of all that
data can be slow. It starts to become noticeable beyond a buffer size of 64kB.

SourcePoint compensates for that by only pulling in the trace data that’s local to the
code display you are in. Scrolling up in the Intel PT window will prompt SourcePoint to
pull in more trace data, and display it. Be patient when this happens. If you try to collect
1GB of data from system memory over JTAG, it will take a long while for this all to be
available. Displaying the Call Chart for this much data will take a while. You’ll see this
after initial trace data collection (that only takes a few seconds), but scrolling to the top
of the Intel PT window with a 1MB trace buffer (which gives you ~ 300ms of execution
trace data) takes ~30 seconds, and then doing a Call Chart takes much longer. Be
patient.

©2024 ASSET InterTech, Inc. 38
 SourcePoint Getting Started Guide – UP Xtreme i11

My board is not booting – what now?

Once in a while, especially during an intense debug session, we have found that the
target goes into la-la land. You get to the UP splash screen, and then it just stops. Or
the screen stays black. SourcePoint run-control continues to work, but it won’t boot all
the way up to the UEFI shell. Quitting SourcePoint, unplugging the DCI cable, killing the
AssetDCI process, knocking out the AssetDCI process – all are good steps in this
instance, when you need to recover.

But then, once in a while, you wait the needed 20 seconds; and it doesn’t boot. The
screen stays blank or frozen. We know that happens with the newest Celerons, and
there’s a workaround that involves unplugging and reconnecting the DCI cable, but this
might not be the issue.

Don’t panic! For reasons we’re not sure of just yet, after about 60 seconds, the board
“wakes up” and should boot all the way to the UEFI shell.

Clearing the CMOS on the target has also been known to help when it still won’t boot
up. There’s only one thing: it has gone back to the factory settings, so you’ll need to
reset the WDT timer, and perform the other steps, as per BIOS Settings section in this
manual.

Then, you’ll be back in business.

©2024 ASSET InterTech, Inc. 39
 SourcePoint Getting Started Guide – UP Xtreme i11

SOURCEPOINT DEBUGGING FOR WINDOWS

Once you’ve configured the target and become familiar with the use of SourcePoint for
basic UEFI debugging as described above, you can begin debugging Windows in
earnest.

This section describes the use of SourcePoint WinDbg on a target with Hyper-V
disabled. For debugging of Hyper-V, skip ahead to the section on SourcePoint
Debugging for Hyper-V.

SourcePoint has implemented a connection to Microsoft’s WinDbg application by using
a public interface known as EXDI. A block diagram of how WinDbg is integrated with our
SourcePoint debugger is as below:

©2024 ASSET InterTech, Inc. 40
 SourcePoint Getting Started Guide – UP Xtreme i11

The EXtended Debug Interface (EXDI) is used to connect a WinDbg debugging session
to an existing SourcePoint JTAG-based connection to a target.

WinDbg is the controller in all transactions over EXDI, and SourcePoint is the worker.
That is, the solution is most stable when run-control based operations (that is, Break,
Go, single-step, etc.) are initiated via WinDbg. There are exceptions, particularly in the
cases of using enhanced breakpoints for Hyper-V debug and Intel Trace features, that
we will discuss later. But, in general, WinDbg issues debug primitive commands down
to SourcePoint, which in turn uses JTAG-based run-control to perform operations on the
target. Then, SourcePoint presents the results data back to WinDbg over the EXDI
connection.

©2024 ASSET InterTech, Inc. 41
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: The UP Xtreme i11 boots to the UEFI shell when initially purchased. It is
necessary to install Windows on the target. There are numerous references online on
how to do this: it is recommended to go to the AAEON https://github.com/up-board/up-
community/wiki/Windows-GSG site for helpful tips. In terms of driver installation, in most
cases all that’s needed is to install the Intel Graphics (igxpin.exe) – to improve the
monitor resolution – and, optionally, the Intel LAN.

Power Tip: Be sure that your target has sufficient memory and storage to
accommodate your Windows debugging needs. We typically recommend 16GB RAM,
and a 256GB SSD.

Before we get started, the target needs to be configured to not interfere overmuch with
JTAG-based run-control. Then, the steps needed to set up a debugging session will be
covered.

https://github.com/up-board/up-community/wiki/Windows-GSG
https://github.com/up-board/up-community/wiki/Windows-GSG

©2024 ASSET InterTech, Inc. 42
 SourcePoint Getting Started Guide – UP Xtreme i11

Configuring the target and setting up pre-requisites – Getting Started

We first need to prevent Windows from changing power states from disrupting run-
control prematurely, and VMX and VBS need to be disabled.

These steps are highly recommended (as of the time of writing) to have a successful
initial debugging session, especially for newcomers to SourcePoint WinDbg. Once
experience with SourcePoint is gained, Hyper-V can be turned back on again.

To adjust the power settings in Windows, open the Control Panel > Hardware and
Sound > Power Options > Change plan settings > Change advanced power settings
and set these per the below (use High performance dropdown). It also helps to set
“Turn off the display” and “Put the computer to sleep” both to “Never”:

For Windows VBS, go into Windows Security > Device security > Core isolation details,
and ensure that Memory Integrity is off:

©2024 ASSET InterTech, Inc. 43
 SourcePoint Getting Started Guide – UP Xtreme i11

For VMX, boot the Tiger Lake board to BIOS settings menu (pressing the F7 key when
restarting), enter the Advanced BIOS Setup (by entering the password upassw0rd) and
follow the menu path CRB Setup > CRB Advanced > CPU Configuration and

change “Intel (VMX) Virtualization Technology” to Disabled. Save and exit (pressing
F4) and the target will reset.

Power Tip: Go to CRB Setup > CRB Advanced > Platform Settings > VTIO

and make sure it is set to Disabled. This is the default in the AAEON Tiger Lake Debug
BIOS, but it’s worthwhile checking.

One last thing: To avoid the WinDbg error message “Unable to read debugger data
block header” that indicates kernel debugging is not enabled, execute the command:

>bcdedit /debug on

on the target from an Administrator command prompt, then reboot the target.
Note that this is not absolutely necessary if you’re solely going to be using SourcePoint
(with no WinDbg connection) for your debugging.

Now you’re ready to set up a debugging session.

©2024 ASSET InterTech, Inc. 44
 SourcePoint Getting Started Guide – UP Xtreme i11

How to Establish a SourcePoint WinDbg Session

NOTE: With SourcePoint WinDbg, there is no need for the kdnet Ethernet connection,
as all the traffic is over EXDI and the specialty USB cable.

Three steps are needed to begin a debugging session with SourcePoint WinDbg:

1. Connect SourcePoint to the target
2. Start WinDbg via a SourcePoint macro
3. Load symbols with the LoadCurrent macro.

Step 1: Connect SourcePoint to the target

Boot the target to Windows. Log into the Windows desktop.

Follow the steps as described in the Getting Started with SourcePoint section above.

Halt the target by hitting the Stop button in the SourcePoint Icon Toolbar at the top:

You will have to hit the Refresh button to see code displayed in the Code window. This
transitions the Code view out of Safe Mode.

Your screen should then look something like this:

©2024 ASSET InterTech, Inc. 45
 SourcePoint Getting Started Guide – UP Xtreme i11

Now, you have a choice to set up your environment for Windows or UEFI debugging in
this session.

Click on the Load WinDbg Macros button at the top of the screen. This will enable a

number of new “Windows debugging friendly” macros available for later use. The screen
should look like this:

You now have extra buttons showing up, including:

StartWinDbgC This initiates a debug session with WinDbg Classic
StartWinDbgX This initiates a debug session with WinDbgX
LoadCurrent This load symbols into SourcePoint at the current RIP
LoadAll Loads all current context symbols into SourcePoint
LoadedModuleList Displays all loaded modules
CachedModuleList Shows the module list that is currently cached

Step 2: Start WinDbg via a SourcePoint macro

Next, it is time to run the SourcePoint macro that launches WinDbg and establishes the
EXDI connection. For simplicity, click on either StartWinDbgC (Classic) or the
StartWinDbgX macro button at the top of the screen. After about 30 seconds, WinDbg
will open:

©2024 ASSET InterTech, Inc. 46
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: You have a choice of launching WinDbg Classic or WinDbgX via the macro
buttons at the top. With this release of SourcePoint, WinDbg Classic is more stable
and higher performance. See our Troubleshooting section. Alternatively, at the
SourcePoint Command line, you can type in StartWinDbg(true) to start a WinDbg
Classic session, or StartWinDbg(false) to start a WinDbgX session.

Power Tip: Ensure an environment variable _NT_WINDBG_VBS has been created,
and set it to FALSE.

The target will be halted as part of this process, assuming the VBS override
environment variable (_NT_WINDBG_VBS) has not been set:

©2024 ASSET InterTech, Inc. 47
 SourcePoint Getting Started Guide – UP Xtreme i11

SourcePoint will then look for the KdVersionBlock structure, read the kernel memory
and retrieve all the symbol information needed to match what WinDbg has (in terms of
the Microsoft symbol server, or a local symbol cache). If you have the SourcePoint Log
window open, you may see the symbol information being uploaded, but only for
WinDbgX:

If you don’t have the Log window open, you will nonetheless see the SourcePoint
“Dashboard Lights” at the bottom right lighting up as the JTAG-based memory reads are
done:

©2024 ASSET InterTech, Inc. 48
 SourcePoint Getting Started Guide – UP Xtreme i11

When the symbol load is complete, you will see that WinDbg and SourcePoint break at
the same place.

The SourcePoint Code and WinDbg Disassembly window show the same location. Both
are typically (but not necessarily) halted on logical processor 0, at a RET instruction, as

can be seen in the above image.

Step 3: Load symbols with the LoadCurrent macro

Symbols that are visible to WinDbg have to be made visible to SourcePoint as well, if
we’re going to get the most out of the joint solution.

SourcePoint has the ability to view Windows’ symbols on its own, with no connection to
WinDbg. To see what this looks like, just launch SourcePoint and load your Project, and
follow the following steps:

Ensure that the target is in a Stopped state.

Click on the LoadCurrent macro button in the SourcePoint Icon toolbar at the top.

After about 20 seconds, the SourcePoint Symbols window will display the module that
the current instruction is in (skip to the next section, What happens if the symbols don’t
show up? if it does not):

©2024 ASSET InterTech, Inc. 49
 SourcePoint Getting Started Guide – UP Xtreme i11

Interestingly, SourcePoint will display the symbols associated with intelppm.pdb
(sometimes). WinDbg does not generally display those symbols.

Expand the Labels within the Symbols window, and then you will see it populated with
all functions that are in the current module, for example:

©2024 ASSET InterTech, Inc. 50
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: If WinDbg accesses symbols outside of intelppm.pdb (which it will during
any typical debugging session), you’ll need to run another LoadCurrent to additionally

access these new symbols within SourcePoint.

Power Tip: If you want to load the symbols for an address outside of the current
module or context, say at address 0xFFFFF80643C46000, in the SourcePoint
Command window type in LoadCurrentWinDbg(FFFFF80643C46000).

Power tip: Right-click on a function name within the SourcePoint Symbols window, and
you’ll see a rich number of capabilities that can be applied to that function, such as
setting breakpoints, opening the function’s Code window, etc.

All the Windows kernel function name symbols are displayed in the SourcePoint
symbols window, under the Globals tab. You can right-click in the window to see the

function addresses as well as function names. Right-clicking on a function name gives
you the context-sensitive options to work with these functions:

©2024 ASSET InterTech, Inc. 51
 SourcePoint Getting Started Guide – UP Xtreme i11

Now, it is possible to see the power of the two applications applied together. As an
example, go into WinDbg and set a breakpoint on the entry point to the function
MmCreateProcessAddressSpace:

bp nt!MmCreateProcessAddressSpace

Then hit Go within WinDbg.

Sometimes the breakpoint is hit right away. You might need to move the target’s mouse
around, or open a window on the target, before the breakpoint is hit.

You can then see the break in both applications. Do a LoadCurrent from within

SourcePoint. You can see that the Code windows between the two applications are
symmetrical:

©2024 ASSET InterTech, Inc. 52
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: between individual “Go” commands and breaks, the context of the code will

often change (i.e. the value of CR3 changes). Even though the module name will still

appear in the SourcePoint Symbols window, the needed symbols will no longer appear

in its Code window. Hit the LoadCurrent button again to re-display the symbols.

©2024 ASSET InterTech, Inc. 53
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: Alternatively, take the following steps to ensure the Code window context is

updated upon each break:

Under the File menu, select Macro > Configure Macros…

Click on the Event Macros tab.

Select Event: Breakpoint (any)

Then browse in the main folder, and select Events.mac.

This will slow down breakpoints ever so slightly, but it will ensure the code context is

refreshed without manual intervention.

Power Tip: Once the PDB file is identified, SourcePoint will search for the symbol file in

WinDbg’s stored Symbol path, and then if not found, its Cache path. The symbol path in

most WinDbg installations is something similar to:

srv*C:\Symbols*http://msdl.microsoft.com/download/symbols

and SourcePoint has no knowledge of HTTP access, so it will extrapolate only the

C:\Symbols portion, and next go to, and include, the cache path.

What happens if the symbols don’t show up?

In some instances, there are no symbols available for the module that SourcePoint is

halted in, or the specified path to the symbols is invalid. You will see the following:

Check to ensure that your cached symbol path is correct by issuing the sympath

command from the SourcePoint Command window. If it is correct, then the symbols are

not local; fetch them from the Microsoft symbols server, presuming that they are

available.

©2024 ASSET InterTech, Inc. 54
 SourcePoint Getting Started Guide – UP Xtreme i11

Another possibility is that SourcePoint’s heuristic search for the PE32 header in system

memory misses it, because the code is too small and it overshoots, or too large and

exceeds the timeout period. There are two commands available from the SourcePoint

Command line that can help:

timeout(“nn”) in seconds will change the timeout from default 30 seconds to ‘nn’

seconds

SearchPageSize(nnnnn) in hex will change the search decrement for detecting modules

(base).

©2024 ASSET InterTech, Inc. 55
 SourcePoint Getting Started Guide – UP Xtreme i11

Getting SourcePoint to display module names as well as function names

WinDbg displays the fully qualified symbol name, including the module name, in its
windows, as in nt!MmCreateProcessAddressSpace. SourcePoint truncates them

by default to solely the function name, as in MmCreateProcessAddressSpace.

The module name prefix can be displayed by enabling SourcePoint’s Qualified Symbol
Name (QSN) format. In the Options menu, select Preferences, and click on “Use QSN
in disassembler”.

The Code window display will now look something like this:

©2024 ASSET InterTech, Inc. 56
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: Note that SourcePoint’s syntax is slightly different from WinDbg’s:

WinDbg: ntkrnlmp!PpmIdleExecuteTransition+11b9

SourcePoint: ::ntkrnlmp.PpmIdleExecuteTransition+11b9

Do a Project Save to save these settings into your Project, so they’ll automatically load

for your next session.

In an upcoming release, we’ll make QSN the default in the disassembly for Windows

debugging.

©2024 ASSET InterTech, Inc. 57
 SourcePoint Getting Started Guide – UP Xtreme i11

Troubleshooting Tips and Errata

Chances are, you’ll run into something strange during your testing. We’re the first to
admit that JTAG-based run-control and trace are not always deterministic. JTAG is a
30-year hardware protocol, and when something goes astray at a very low level within
the chip, SourcePoint tries to (but sometimes doesn’t) recover gracefully. There will be
times that the board will power cycle on its own. Or the firmware thinks that a thread is
running but gets out of sync with the SourcePoint software, which thinks it’s halted. Or
the DbCStatus.exe ball stays red instead of turning green, while you swear you have a
good DbC connection. Sometimes you have no choice but to quit SourcePoint and
power cycle the target. That usually clears up the one-of’s. But, of course, that means
quitting out of WinDbg (preferably first), then quitting out of SourcePoint, power-cycling
the target, and then re-establishing the connections from scratch. Tedious.

And, we all know that WinDbg has its quirks as well. And Windows sometimes objects
to the presence of JTAG-assisted debuggers. Combine the three, and, well, you’re
bound to run into some bugs and misbehaviors.

Hopefully you don’t run into this too many times. But, on the other hand, if you didn’t,

we’d have nothing to fix.

In the meantime, here are errata for the UP Xtreme i11, and the steps needed to
mitigate where possible.

Windows crashes

If you work with SourcePoint WinDbg long enough, you’ll likely crash Windows at some

point. The vast majority of time, quitting out of SourcePoint and power cycling the target

restores things to normal. But, in all of our testing, we’ve each had to reinstall Windows

at least once. Really, it’s no different from reinstalling Windows in a VM, only more

onerous. But we’ve not ever been able to reproduce this type of failure.

Drop us a note on our Support line, or call us, if you can reproduce this.

WinDbg Classic is better than WinDbgX

WinDbgX, in intermittent circumstances, directs SourcePoint to do numerous memory

reads at low memory. In which case, if you have the Log window open, will display

messages like:

Page table is not present

https://www.asset-intertech.com/support/

©2024 ASSET InterTech, Inc. 58
 SourcePoint Getting Started Guide – UP Xtreme i11

Page table is not present. Linear address: 0000000000001800L

Most of the time, these error messages are just informative. But they do occur much

more frequently with WinDbgX than WinDbg Classic. In general, they can be ignored.

Pause in Initial Symbol Load

Intermittently, after issuing the first Break in WinDbgX, in the middle of the memory

reads associated with the symbol loading, WinDbg stops sending commands to

SourcePoint, and the transactions stop. The SourcePoint Dashboard Lights stop

flashing, and a look at the Log window shows no traffic.

This issue seems to be very host and target specific. On some, it does not occur at all.

In others, we see more frequent failures.

The only option at this point is to quit out of WinDbg and SourcePoint, power cycle the

target, and start over. It is currently under investigation.

This issue only manifests itself with WinDbgX. WinDbg Classic does not have this

issue, so we recommend its use, instead of WinDbgX.

LoadCurrent versus LoadAll

The LoadCurrent macro makes the symbols available within the module at the current

instruction pointer visible to SourcePoint. LoadAll will retrieve all symbols for what’s in

the addressable context. It takes a long time.

COM(32) Surrogate

After a crash, when you restart SourcePoint, once in a blue moon it will misbehave.

Run-control will not work properly.

Open Task Manager, and look for a COM(32) Surrogate task. If you see one, kill it.

Viewing the Stack

SourcePoint’s Stack display in its Symbols window has been improved in the most

recent release, but needs further enhancement. You will find that it gives different

results from what will be seen in the WinDbg “k” command, and which may further differ

from what you may see in an Intel Processor Trace traceback. Here is an example:

©2024 ASSET InterTech, Inc. 59
 SourcePoint Getting Started Guide – UP Xtreme i11

If you look carefully, you’ll see that "guard_dispatch_icall" does not display in the Stack

tab of the SourcePoint Symbols window. It has a special call frame/sequence that our

Stack traceback does not display. But it does show up in Intel Processor Trace.

©2024 ASSET InterTech, Inc. 60
 SourcePoint Getting Started Guide – UP Xtreme i11

LoadCurrent intermittently fails in User code

When hitting a breakpoint set in user code, about 50% of the time a LoadCurrent will not

successfully display the symbols within the SourcePoint Code window. WinDbg

correctly displays the symbols. If you have a SourcePoint Log window open, you may

see:

File doesn't exist -> \000000000000000000000000000000000\

We are working on this.

Breaks are not process-aware

Setting breakpoints in WinDbg to break within a specific process, such as with:

bp /p <address> nt!NtReadFile explorer.exe

does not work properly. Instead of halting in the instance of nt!NtReadFile associated

with explorer.exe, it will halt at the first instance of the shared code, likely in a different

process. This is because EXDI does not provide process/thread information down to

SourcePoint, unlike the standard WinDbg kdnet interface.

Mangled function names

SourcePoint has a built-in name demangler.

Some of the Windows kernel is written in C++ code, such as in win32kbase.sys, and the

demangler comes in handy for this.

You may see this in action for example by looking at some of the win32kbase code

here:

©2024 ASSET InterTech, Inc. 61
 SourcePoint Getting Started Guide – UP Xtreme i11

Note that to see the demangled name in the SourcePoint Code window, you need to

turn “Use QSN in disassembler” off under Disassembly in menu Options > Preferences

> Program.

WinDbg FP register display is not working

WinDbg does not display the floating point registers contents when using EXDI.

SourcePoint displays the register values correctly.

Problems with symbol loading from local cache

When symbols are loaded solely with SourcePoint (WinDbg is not launched),

SourcePoint will refer to the WinDbg path local to your debugging PC. Type:

sympath

in the SourcePoint Command window, and you’ll see where SourcePoint will look. For

example:

c:\symbols;C:\ProgramData\dbg\sym

You can explicitly set the symbol path to be that of WinDbg Classic’s, by typing in the

Command line:

windbgc

©2024 ASSET InterTech, Inc. 62
 SourcePoint Getting Started Guide – UP Xtreme i11

Alternatively, typing:

windbgx

sets up the symbol path as defined within WinDbgX. Note that with WinDbgX,

SourcePoint will automatically set its own sympath.

But, symbol and cache paths are a little trickier with WinDbg Classic. WinDbgX allows

for an explicit description of the cache path:

Whereas WinDbg Classic does not; you have to embed it in the Symbol path, and that

is squirrelled away in the registry:

It is important to be aware of Workspaces. SourcePoint will use the settings detected for

default Workspaces (Default, AMD64 etc), but best practice is to create a separate

Workspace; in this case, we name it EXDI:

©2024 ASSET InterTech, Inc. 63
 SourcePoint Getting Started Guide – UP Xtreme i11

Be sure to load the Workspace after you launch WinDbg, and use the SourcePoint

windbgc and sympath commands to ensure the path is latched in. Once a Workspace

is decided on, you can force the specific Workspace by setting an environment variable

(_NT_WINDBG_WORKSPACE):

©2024 ASSET InterTech, Inc. 64
 SourcePoint Getting Started Guide – UP Xtreme i11

Note: WinDbg tends to store an extraneous “\sym” in the cache path that needs to be

worked around. You’ll see that SourcePoint handles that properly.

©2024 ASSET InterTech, Inc. 65
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: If you’re using SourcePoint by itself, it may be helpful to store as many

symbol files locally as possible. Use this following command (on the target PC) to

download them, and then copy them over to your cache path on your host debug PC:

"C:\Program Files (x86)\Windows Kits\10\Debuggers\x86\symchk.exe" /r

c:\windows /s

SRV*c:\symbols*http://msdl.microsoft.com/download/symbols

Power Tip: It’s a good idea to disable Ethernet on the target for your debugging, to

avoid Windows Update changing the modules and their GUIDs, requiring a reload to

update the cached symbol files.

©2024 ASSET InterTech, Inc. 66
 SourcePoint Getting Started Guide – UP Xtreme i11

SOURCEPOINT DEBUGGING FOR HYPER-V

Debugging with Hyper-V and Virtualization-Based Security (VBS) is supported in the
SourcePoint 7.12.59 and later releases. Visualization of the virtualization environment,
and probe mode access to it, provide an unprecedented level of capabilities.

Getting Started

Let’s get started. We’ll walk through a subset of the capabilities. There are a multitude
of areas to explore here.

Ensure that the target has Hyper-V and VBS enabled.

Then, change the Environment Variable _NT_WINDBG_VBS to TRUE, so that
SourcePoint doesn’t go scanning for the KdVersionBlock (it can’t find it in a hypervisor-
enabled target anyways):

©2024 ASSET InterTech, Inc. 67
 SourcePoint Getting Started Guide – UP Xtreme i11

It is so much easier to see VM transitions if only one processor is made active on the
target:

Via the advanced BIOS settings (with the upassw0rd password – see the SourcePoint
UEFI Getting Started Guide), go to CRB Setup > CRB Advanced > CPU Configuration,
disable Hyper-Threading (if you’re on a target that supports it – the Celeron board does
not), and set Active Processor Cores to 1:

©2024 ASSET InterTech, Inc. 68
 SourcePoint Getting Started Guide – UP Xtreme i11

Disable the synthetic watchdog on the target to ensure that the target does not
autonomously reset itself in probe mode:
>bcdedit /set {default} loadoptions "systemwatchdogpolicy=disabled"

Power Tip: After crashing the target, which you will do periodically when you go “off the
fairway” with VMM debug, you will need to power-cycle, and Windows will launch
Automatic Repair to attempt to “restore” itself. Then you have to Restart again. This is
not really necessary, and is inconvenient, so to save time, you can disable recovery
boot from an Administrator CMD window using the two bcdedit commands:
>bcdedit /set recoveryenabled No >NUL

>bcdedit /set bootstatuspolicy ignoreallfailures >NUL

Boot the target to the UEFI shell. This is accomplished by power-cycling the target and
holding down the F7 key until you see the BIOS login prompt:

VMM breakpoints, and debugging the Secure Kernel

©2024 ASSET InterTech, Inc. 69
 SourcePoint Getting Started Guide – UP Xtreme i11

Launch SourcePoint, connect to the target, issue a Stop, Refresh the Code window, and
set a VM Launch breakpoint:

Hit Go in SourcePoint. Be sure to quit out of the target’s UEFI shell password prompt
(hit Esc and then accept “Yes”) to start the Windows boot process. You will break at the
first VM launch, and land in the hypervisor, in VM Guest mode. Click on the
LoadCurrent macro button, and say “No” to the “Symbol not found” prompt to see we’re
in hvix64, for which there are no symbols:

©2024 ASSET InterTech, Inc. 70
 SourcePoint Getting Started Guide – UP Xtreme i11

Hit Go, and then LoadCurrent a second time. Do a LoadCurrent again. You’re in
hvloader (still no symbols), again in VM Guest mode.

Hit Go a third time, encountering the third VM Launch breakpoint, with the target again
in Guest mode. Hit LoadCurrent again, and provided you have the securekernel.pdb file
cached, you will see the symbols for the Secure Kernel:

All of the Secure Kernel functions are available for debug. Enjoy!

©2024 ASSET InterTech, Inc. 71
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: The above strategy works for having symbols display within SourcePoint
while debugging in a Hyper-V environment. But what if we want the symbols to show up
in WinDbg as well, while debugging via EXDI? There are several ways of doing this, but
the easiest approach is to get the module base and size from within SourcePoint, and
then use the .reload command within WinDbg to load the symbols there.

Example: while in the secure kernel with SourcePoint, click on LoadCurrent, and you’ll
see something like:

07/13/2024 13:57:30.211 Images.mac:IsKPCR Invalid KPCR Pointer. Check MSR values.

07/13/2024 13:57:30.211 Images.mac:LoadImage Performing Load Current @ 0xFFFFF8021FD48F00

07/13/2024 13:57:36.020 Images.mac:FindBase MZ Header Found @ 0xFFFFF8021FCE9000

07/13/2024 13:57:36.066 Images.mac:FindBase PE Header Found @ 0xFFFFF8021FCE9108

07/13/2024 13:57:36.066 Images.mac:FindBase PE32+ Header Found @ 0xFFFFF8021FCE9120

07/13/2024 13:57:36.169 Images.mac:FindBase Debug Directory Found @ 0xFFFFF8021FD8FED0

07/13/2024 13:57:36.272 Images.mac:FindBase Found .data Section @ 0xFFFFF8021FCE9300,

Offset @ 0xB9000, Size: 0x1A528

07/13/2024 13:57:36.272 Images.mac:FindBase Detected Module Base @ 0xFFFFF8021FCE9000,

Size: 0xFE000 [6 secs]

07/13/2024 13:57:36.336 Images.mac:LoadSymbols Using Module Name @ 0xFFFFF8021FD94900

07/13/2024 13:57:36.402 load Loading PDB format

c:\symbols\securekernel.pdb\3F38482DB080AF7428A6BB2D5374C1AD1\securekernel.pdb

Note the highlighted sections above. Use these to load the symbols within WinDbg via
.reload /f /i module=<address>,<size>:

kd>.reload /f /i securekernel.exe=0xFFFFF8021FCE9000,0xFE000

VMCS Viewer/Editor

But it gets more interesting. We are in the VTL 1 Secure Kernel, in Guest mode of
course. Let’s inspect both the Guest mode and Host mode VMCS (yes, it is possible to
look at the state of the Host while you are in Guest mode – you can only do that with
JTAG!).

In the General Registers window, click on VMCS and select Guest state. Open up a
new Registers window, and select Host state, or any of VM-Entry, VM-Exit and VM-
Control registers. Have fun.

©2024 ASSET InterTech, Inc. 72
 SourcePoint Getting Started Guide – UP Xtreme i11

VM Exit breakpoints and Basic Exit Reasons

For a more advanced topic, let’s look at using VM Exit breakpoints to capture Guest to
Host transitions.

Turn off the VM Launch breakpoint, and add a VM Exit breakpoint:

©2024 ASSET InterTech, Inc. 73
 SourcePoint Getting Started Guide – UP Xtreme i11

Clicking on the 1010… to the right of Data, shows that we can trigger on any single or
combination of VM Exit reasons, as detailed in the Intel Software Developer’s Manual,
Volume 3A, Appendix C, VMX Basic Exit Reasons. For now, let’s just leave them as all
F’s.

Then hit Go. The VM Exit breakpoint will be hit, and this puts us back into hvix64, and
this time we’re in VM Host mode:

©2024 ASSET InterTech, Inc. 74
 SourcePoint Getting Started Guide – UP Xtreme i11

Note that you can see above that the VM Exit reason is x’20 that is WRMSR, by typing
in the cause command in the SourcePoint Command window, opening up the VM-Exit
register in the Registers window and looking at VMEXIT_REASON, or hovering over the
processor in the Viewpoint window and looking at the tooltip.

Using Intel PT with Hyper-V

Uncheck the VM Exit breakpoint, and use a VM Resume breakpoint to put the target
back into the Secure Kernel.

Then open up a Trace window and activate Intel Processor Trace.

Disable the VM Resume breakpoint, and enable a breakpoint some point down into the
Secure Kernel code.

Hit Go. You will collect Intel PT within the Secure Kernel! Here’s an example:

©2024 ASSET InterTech, Inc. 75
 SourcePoint Getting Started Guide – UP Xtreme i11

Power Tip: Collecting Intel PT data from the Host while the target is in Guest mode will
cause the target to crash. As one example, if you’re in Host mode, set a VM Resume
breakpoint, and hit Go while Intel PT is enabled, this will hose the target. As another
example, while in Guest mode, if an interrupt comes along and takes the target from
Guest to Host to Guest again, Intel PT will attempt to capture the Host mode
instructions, and that will crash the target.

This will be addressed in a future SourcePoint release. Again, this capability will only be
available via JTAG.

Suggested Hyper-V Reading

Suggested reading for this section is as follows, with some tips below.

Part 1: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
This is a basic introduction to enabling HV/SK, and the use of the VM Launch and VM
Exit breakpoints.

Part 2: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
One thing to note is that the symbols for the securekernel are in fact in the public
domain, on the Microsoft symbol server. You need to ensure that these are in your
cache folder for SourcePoint to see them.

Part 3: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
This blog covers symbolic debug of the Secure Kernel, with Intel Processor Trace.

https://www.asset-intertech.com/resources/blog/2024/01/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-1/
https://www.asset-intertech.com/resources/blog/2024/02/jtag-debug-of-windows-hyper-v-secure-kernel-with-exdi-part-2/
https://www.asset-intertech.com/resources/blog/2024/03/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-3/

©2024 ASSET InterTech, Inc. 76
 SourcePoint Getting Started Guide – UP Xtreme i11

It highly recommends that the number of active processors is set to ‘1’, in order to easily
distinguish transitions with the hypervisor, secure kernel, and NT OS.

Part 4: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
Under the SourcePoint File menu, click on Macro > Load Macro… and mouse over to
C:\Users\<my computer>\Documents\Arium\SourcePoint-IA_7.12.52\Macros\WinDbg
and select vmcs.mac. This makes the dump, vmread, vmwrite, reason and ipt
commands available. The ipt() function is crucial to ensure that Intel Processor Trace
works properly between Host  Guest transitions. Note: the vmcs macro has been
deprecated and replaced by the VMCS Viewer/Editor; but there’s some interesting
tidbits in this article regardless.

Part 5: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
This is a preamble article to using Intel AET to capture RDMSR and WRMSR events,
and correlating them against the Windows MSR bitmap. For more advanced users only.

Part 6: JTAG debug of Windows Hyper-V / Secure Kernel with WinDbg and EXDI
An article about about Windows Secure Image Objects, an important structure used in
sharing information between VTL 0 and VTL 1, the normal kernel and secure kernel.

https://www.asset-intertech.com/resources/blog/2024/03/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-4/
https://www.asset-intertech.com/resources/blog/2024/03/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-5/
https://www.asset-intertech.com/resources/blog/2024/06/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-6/
https://www.asset-intertech.com/resources/blog/2024/06/jtag-debug-of-windows-hyper-v-secure-kernel-with-windbg-and-exdi-part-6/

©2024 ASSET InterTech, Inc. 77
 SourcePoint Getting Started Guide – UP Xtreme i11

Troubleshooting Tips on Hyper-V/ VBS Enabled Targets

VM Resume breakpoint with Intel PT crashes the target

When transitioning from Host to Guest mode, and halting in Guest mode, with Intel PT

active, the reads from Guest to Host memory do not succeed. This will crash the target.

You will have to quit out of SourcePoint, power-cycle the target, and start over. We are

working on this.

Note that if you have not disabled Automatic Repair, any system crash will often require

two power cycles of the target. It is recommended to disable Automatic Repair with:

>bcdedit /set recoveryenabled No >NUL

>bcdedit /set bootstatuspolicy ignoreallfailures >NUL

Also, don’t forget to turn off the synthetic watchdog:

>bcdedit /set {default} loadoptions "systemwatchdogpolicy=disabled"

Hardware breakpoints don’t work well in the Secure Kernel

There are a few issues here, including:

(1) BP indicators in the Code view come and go, which occurs when the current CR3

differs from CR3 when the BP was set.

(2) BP set via WinDbg remains set in SourcePoint after the break.

(3) The SourcePoint cause command (which displays why a breakpoint was hit) does

not work. The DR6 bit is not getting set to indicate why the BP was hit.

These are all to be fixed in the upcoming release.

AET only partially functional

Intel’s design for AET is only partially functional, with no knowledge of hypervisors and

CR3 changes, unlike Intel PT. So, in some cases, when transitioning from Host mode to

Guest mode, and where the events occur in Host mode, you don’t see the actual

disassembly in the Event trace window (remember, for now you can’t read Host mode

memory from Guest mode), but just the event itself:

©2024 ASSET InterTech, Inc. 78
 SourcePoint Getting Started Guide – UP Xtreme i11

Use LBR where applicable to perhaps get some meaningful code insight, keeping in

mind that LBR is an old instruction trace technology, and just uses MSRs to track

to/from addresses, so it is not CR3-aware either):

This behavior of AET can actually be of benefit. In some cases, it is not possible for Intel

PT to capture Host mode instruction execution while in Guest mode, without crashing

the target; AET does not suffer from this limitation – you cannot see the instructions

executed, but you can capture the occurrence of the event.

Support for VM Exit Reasons > 63

In the VM Exit breakpoint window, you can break on any single or multiple Basic Exit

Reasons, from 0 to 63. As of the time of this writing, there are a total of 78 of them:

64 XRSTORS

65 PCONFIG

66 SPP-related event

67 UMWAIT

68 TPAUSE

69 LOADIWKEY

©2024 ASSET InterTech, Inc. 79
 SourcePoint Getting Started Guide – UP Xtreme i11

70 ENCLV

72 ENQCMD PASID translation failure

73 ENQCMDS PASID translation failure

74 Bus lock

75 Instruction timeout

76 SEAMCALL

77 TDCALL

It’s a bit of a kludge to include the exit reasons beyond 63, but we’re working on it. It will

be in the next release.

Intel PT Call Chart does not work reliably

When using Intel PT for tracing code, for example, from Guest to Host transitions, you

won’t get the Call Chart with the pretty colors to appear; pressing the Analyze button

just yields a blank display:

©2024 ASSET InterTech, Inc. 80
 SourcePoint Getting Started Guide – UP Xtreme i11

Although this feature works well with Hyper-V disabled, as SourcePoint is “aware” of

function entries and exits, this is much more complex with VMM behavior, so we have

not implemented it.

©2024 ASSET InterTech, Inc. 81
 SourcePoint Getting Started Guide – UP Xtreme i11

CONCLUSION

Thank you for getting this far! We hope that you have enjoyed the ride, and are using

the power of SourcePoint successfully in your debugging and learning journeys. There

are many new things to discover in UEFI and the Windows kernels enabled by this

technology.

Feel free to browse the SourcePoint Academy at https://www.asset-

intertech.com/sourcepoint-academy/ for helpful reference guides, help material and

“how to” videos.

If you ever have any questions, please call, email or open a Support Case here:

https://www.asset-intertech.com/support/. We’ll be glad to help!

https://www.asset-intertech.com/sourcepoint-academy/
https://www.asset-intertech.com/sourcepoint-academy/
https://www.asset-intertech.com/support/

