Real Insight from Code to Silicon

SourcePoint[®] ScanWorks[®]

Guidelines for System-level JTAG Design

Michael R. Johnson ScanWorks JTAG Product Manager/Support Manager 24 2023

Agenda

- Guidelines for Board DFT based on Boundary Scan Webinar #1 & #2 recap
- Guidelines for System-level JTAG Design
 - What is System-level JTAG Design?
 - System-level JTAG Design Architectures
 - System-level JTAG Design Multidrop Devices
 - System-level JTAG Design Multi-TAP Controller
 - System-level JTAG Design Embedded Applications
 - Summary

Board DFT based on Boundary Scan - Webinar #1

- Why do we test?
- Test challenges
- **Boundary Scan overview**
- **Boundary Scan device** selection
- Focus on the Scan Chain design
- Accessing to the TAP
- Buffering the TAP
- Direct control of the system clock

- TCK and TMS distribution Pull-up/pull-down on TAP signals **Board TRST**
- - Handle troublesome devices / different voltages
- **Connector test**
 - Allow defeatable tied-off pins / unused boundary scan pins
 - Introduction to testing memory devices/flash programming
 - Bypass watchdog circuits

Covered in Board Design for Test (DFT) based on Boundary Scan Webinar #1

3

Board DFT based on Boundary Scan - Webinar #2

- Interconnect Testing
 - Cluster modeling
 - Using Discrete I/O
 - Controlling clocks
- Memory Interconnect Testing
 - Chip Enables
 - Flash Programming
 - Cell Z/Cell Active Configurations
- Testing with FPGAs
 - Pros/cons of testing unconfigured and configured

Covered in Board Design for Test (DFT) based on Boundary Scan Webinar #2

ScanWorks[®]

What is System-level JTAG Design?

- An electronic system is a group of interrelated devices, boards, and sub-assemblies that function together to accomplish a task
- At a fundamental level, testing a system's structural integrity would involve verifying that each component is properly connected to all other components that require such connections
- System test is to verify the structural integrity and functionality at the level of the complex whole

What is System-level JTAG Design?

- System-level JTAG (SJTAG) presumes that concept of applying JTAG to the individual boards of the target system has been embraced and implemented
- System-level creates a test access mechanism that extends the usefulness of JTAG throughout the entire product life-cycle
- System-level JTAG extends JTAG significantly beyond the traditional board-level scope of structural test and device programming
- The potential of SJTAG is illustrated by the Venn Diagram described as the SJTAG Universe

Ring

- Advantage
 - Single Scan Chain per system with one access point
 - No special circuitry for the system boards themselves is required
- Disadvantage
 - One break in the Scan Chain will disable all Boundary Scan operations
 - Unless bypass circuitry is implemented
 - Slow access time for very long Scan Chain
 - Can only test as fast as the slowest board in the Scan Chain

Star

- Advantage
 - Allows boards to be tested independently
 - A faulty board does not make the scan test for the other boards unusable
- Disadvantage
 - Can only test one board at a time
 - Hardware must be designed to support Star architecture or additional devices are required to select TMS
 - Cumbersome to implement in large multiboard systems

Multi-drop Device

- Advantage
 - Simple, single point of access on the backplane as Ring architecture
- Disadvantage
 - Requires additional devices placed on the board and/or backplane

Device

Multi-drop Device

- SCANSTA112 7-Port Multi-drop 1149.1 (JTAG) Multiplexer
 - Create multiple Scan Paths (LSP0-LSP6)
 - Test individual boards and individual Scan Paths
 - Several types of multidrop devices exist on the market for use

ScanWorks[®]

Multi-drop Devices

Manufacturer	Device
Texas Instruments	Scan Path Linker (SPL) – SN54ACT8997 Addressable Scan Port (ASP) – SN54A Linking Addressable Scan Port (LASP) -
National Semiconductor	Scan Bridge – SCANSTA111, SCANSTA1 Gateway – JTSO3, JTSO6
Lattice Semiconductor	BSCAN2 (Multiple Scan Port Linker)

7 BT8996 – SN54LVT8986 112

Multi-TAP Controller

- Advantage
 - Single point of access on the backplane for each board in the system

Disadvantage

 Requires multi-TAP controller and backplane design considerations

ScanWorks[®]

Multi-TAP Controller

- PCIe-410
 - ScanWorks supports up to 3 PCIe-410 cards installed within a desktop PC
 - Each 410 pod connects to a PCIe card and has 4 TAPs
 - 12 TAPs for system-level JTAG testing

System-level JTAG Design Architectures Summary

Architecture	Advantage	Disadvantage
Ring	Single Scan Chain per system with one access point No special circuitry for the system boards themselves is required	One break in the So Unless bypass circu Slow access time for Can only test as fas
Star	Allows boards to be tested independently A faulty board does not make the scan test for the other boards unusable	Can only test one b Hardware must be devices are require Cumbersome to im
Multi-drop Device	Simple, single point of access on the backplane as Ring architecture	Requires additiona
Multi-TAP Controller	Single point of access on the backplane for each board in the system	Requires multi-TAP

- can Chain will disable all Boundary Scan operations uitry is implemented
- or very long Scan Chain
- st as the slowest board in the Scan Chain
- board at a time
- e designed to support Star architecture or additional ed to select TMS
- nplement in large multi-board systems
- I devices placed on the board and/or backplane
- controller and backplane design considerations

ScanWorks Embedded Diagnostics (SED) for Test

- JTAG is typically used "locally" for board test development, production and system debug with a dedicated bus manager
- Since JTAG is software that leverages on-chip embedded logic, it is possible to port that application directly onto the board itself (SoC)
- SED for Test eliminates the need for bus manager, cables, and fixturing for JTAG testing
- SED for Test creates a "remote" JTAG/boundary-scan test and programming application
- Embedded Boundary Scan directly on the board/system

SED for Test

- Test vectors are stored locally on the system
- Expands the universe of testing (ex. in-system structural testing, in-system programming, in-situ diagnostics, etc.)
- Addresses intermittent faults and "No Fault Found" (NFF) issues
- Creates a powerful BIST without external hardware that can be used throughout the entire lifecycle of the board/system

SED for Test

- The resources required for the TAP Controller IP are small when compared to today's FPGAs
 - Uses < 4,000 Lookup Tables (LUTs)
 - Uses less than < 75kb memory
- Action players run on the CPU
 - Occupies < 2MB flash footprint
- Action data
 - Occupies ~ 300kB (typical) to >~1MB (for large designs)

SED for Debug

- Remote Host running Intel[®] Customer Scripts (Cscripts)
- **On-Target Diagnostics** (OTD) – applications on Baseboard Management Controller (BMC) invoking debug/run-control autonomously:
 - Speed
 - Scalability
 - Security

SED for Built-in Self Test

- In the most general case, system-level access to BIST can be mediated via any on-chip or off-chip processor
- Provides test, debug, and validation support at-scale
- Industry standard IEEE 1687 (IJTAG) for access and control of embedded instruments (MBIST, Logic Test, IO BIST, Scan Test, Array Freeze & Dump, etc.)
- Unparalleled insight into IC, board and system internals and their impacts on planetary-scale computing

© Siemens 2021 | ITC 2021 Diamond Sponsorship Presentation

SIEMENS

Guidelines for System-level JTAG Design

Summary

Guidelines for System-level JTAG Design

- What is System-level JTAG Design?
 - System-level JTAG, or SJTAG, expands the application potential of JTAG significantly beyond the traditional board-level scope of structural test and device programming

System-level JTAG Design Architectures

- **Ring and Star**
- System-level JTAG Design Devices and Controller
 - Multi-drop devices Scan Path Linkers
 - Multi-TAP Controller PCIe-410
- System-level JTAG Design Embedded Applications
 - SED for Test, SED for Debug, SED for Built-in Self-Test

For More Information

- View the webinar, Guidelines for Board Design for Test (DFT) based on Boundary Scan Webinar #1, https://www.asset-intertech.com/wp-content/uploads/2022/12/Boundary-Scan-Design-for-Test.mp4
- View the webinar, Guidelines for Board Design for Test (DFT) based on Boundary Scan Webinar #2, https://www.asset-intertech.com/wp-content/uploads/2023/04/Boundary-Scan-Design-for-Test_-Part-2.mp4
- Go to the blog series, Everything You Need to Know About ScanWorks Interconnect Blog Series, https://www.asset-intertech.com/resources/blog/2022/09/everything-youneed-to-know-about-scanworks-interconnect-part-1/
- Download the eBook, Testing DDR Memory with Boundary Scan/JTAG (Third Edition), https://www.asset-intertech.com/resources/eresources/ddr-memory-test-moderntools-for-validation-test-and-debug/
- View the webinar, Squeezing Out More Test Coverage: Bridging the Gap Between Boundary Scan and Functional Test, https://www.assetintertech.com/resources/videos/bridging-the-gap-between-boundary-scan-and-<u>functional-test/</u>

Questions and Contact Information

Michael R. Johnson ScanWorks JTAG Product Manager/Support Manager 7161 Bishop Rd. Ste. 250 Plano, TX. 75024 michael.johnson@asset-intertech.com https://www.linkedin.com/in/michaelrjohnson1911 www.asset-intertech.com

22

© 2023, ASSET InterTech, Inc.

Real Insight from Code to Silicon

© 2023, ASSET InterTech, Inc.

