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Introduction 

In this tutorial, you will learn the basic elements of boundary-scan architecture — where it came from, 

what problems it solves, and its implications on the design of an integrated-circuit device. This tutorial 

also provides an overview of the data standards applicable to the boundary-scan architecture and an 

overview of the software tools available to perform boundary-scan-based tests. 

The core reference is the 2001 version of the Standard: 

IEEE Standard 1149.1-2001 “Test Access Port and Boundary-Scan Architecture,” available from the IEEE, 

445 Hoes Lane, PO Box 1331, Piscataway, New Jersey 08855-1331, USA.  

The standard was initially created in 1990 and revised in 1993, 1994 and 2001. You can obtain a copy of 

the standard via: http://standards.ieee.org/ 

For further, more recent publications on the boundary-scan architecture, see the Bibliography at the end of 

this tutorial. 

Chapter 1: The Motivation for Boundary-Scan Architecture 

Since the mid-1970s, the structural testing of loaded printed circuit boards (PCBs) has relied very heavily 

on the use of the so-called in-circuit “bed-of-nails” technique (Figure 1). This method of testing makes 

use of a fixture containing a bed-of-nails to access individual devices on the board through test landing 

sites or pads laid into the copper interconnect, or other convenient contact points. Testing then proceeds in 

two phases: power-off tests followed by power-on tests. Power-off tests check the integrity of the physical 

contact between a nail and the on-board access point. Open and shorts tests are then carried out based on 

impedance measurements. 
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Figure 1:  ICT versus Functional Test 

Power-on tests apply stimulus to a chosen device on a board, with an accompanying measurement of the 

response from that device. Other devices that are electrically connected to the device-under-test are 

usually placed into a safe state (a process called “guarding”). In this way, the tester is able to check the 

presence, orientation, and bonding of the device-under-test on the board. 

Fundamentally, the in-circuit bed-of-nails technique relies on physical access to all devices on a board. 

For plated-through-hole technology, the access is usually gained by adding test landing sites or “lands” 

into the interconnects on the “B” side of the board — that is, the solder side of the board. The advent of 

onserted devices (surface mount) meant that manufacturers began to place components on both sides of 

the board — the “A” side and the “B” side. The smaller pitch between the leads of surface-mount 

components caused a corresponding decrease in the physical distance between the interconnects. This had 

serious impact on the ability to place a nail accurately onto a target test land. The whole question of 

access was further compounded by the development of multi-layer boards. 

Such was the situation in the mid-1980s when a group of concerned test engineers in a number of 

European electronics systems companies got together to examine the problem and its possible solutions. 

This group of people called itself the Joint European Test Action Group (JETAG). Their preferred method 

of solution was based on the concept of a serial shift register around the boundary of the device — hence, 

the name “boundary-scan.” Later, the group was joined by representatives from North American 

companies and the ‘E’ for “European” was dropped from the title of the organization, leaving it Joint Test 
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Action Group (JTAG). This was the organization that finally converted its ideas into an international 

standard. 

Chapter 2: The Principle of Boundary-Scan Architecture 

Each primary input signal and primary output signal is supplemented with a multi-purpose memory 

element called a boundary-scan cell. Cells on a device’s primary inputs are referred to as “input cells;” 

cells on primary outputs are referred to as “output cells.” “Input” and “output” is relative to the core logic 

of the device. (Later, we will see that it is more convenient to reference the terms “input” and “output” to 

the interconnect between two or more devices.) See Figure 2. 

Any Digital Chip

Each boundary-scan cell can:
 Capture data on its parallel input PI
 Update data onto its parallel output PO
 Serially scan data from SO to its neighbor’s SI
 Behave transparently: PI passes to PO
 Note: all digital logic is contained inside the 

boundary-scan register

Memory
Element

PI

PO

SOSI

Test Data In (TDI)

Test Clock (TCK)

Test Mode Select (TMS)

Test Data Out (TDO)

 

Figure 2:  Principle of Boundary-Scan Architecture 

The collection of boundary-scan cells is configured into a parallel-in, parallel-out shift register. A parallel 

load operation, called a “capture” operation, causes signal values on device input pins to be loaded into 

input cells and signal values passing from the core logic to device output pins to be loaded into output 

cells. A parallel unload operation — called an “update” operation — causes signal values already present 

in the output scan cells to be passed out through the device output pins. Depending on the nature of the 

input scan cells, signal values already present in the input scan cells will be passed into the core logic. 

Data can also be shifted around the shift register in serial mode, starting from a dedicated device input pin 

called “Test Data In” (TDI) and terminating at a dedicated device output pin called “Test Data Out” 
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(TDO). The test clock, TCK, is fed in via yet another dedicated device input pin and the mode of 

operation is controlled by a dedicated “Test Mode Select” (TMS) serial control signal. 

Using the Scan Path 

At the device level, the boundary-scan elements contribute nothing to the functionality of the core logic. 

In fact, the boundary-scan path is independent of the function of the device. As shown in Figure 3, the 

value of the scan path is at the board level. 

 

Figure 3:  Using the Boundary-Scan Path 

Figure 3 shows a board containing four boundary-scan devices. Notice that there is an edge-connector 

input called TDI connected to the TDI of the first device. TDO from the first device is connected to TDI 

of the second device, and so on, creating a global scan path terminating at the edge connector output 

called TDO. TCK is connected in parallel to each device’s TCK input. TMS works similarly. 

In this way, particular tests can be applied to the device interconnects via the global scan path — by 

loading the stimulus values into the appropriate device-output scan cells via the edge connector TDI 

(shift-in operation), applying the stimulus (update operation), capturing the responses at device-input scan 

cells (capture operation), and shifting the response values out to the edge connector TDO (shift-out 

operation). 

Essentially, boundary-scan cells can be thought of as “virtual nails.” 

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

Core Logic

TDI

TCK

TMS

TDO

TDI

TCK

TMS

TDO
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Figure 4 shows a basic universal boundary-scan cell. It has four modes of operation: normal, update, 

capture, and serial shift. The memory element is shown to be a simple D-type flip-flop with front-end and 

back-end multiplexing of data. (As with all circuits in this tutorial, it is important to note that the circuit 

shown in Figure 4 is only an example of how the requirement defined in the Standard could be realized. 

The IEEE 1149.1 Standard does not mandate the design of the circuit, only its functional specification.) 

 

M o d e S h i f t D R 

S c a n I n 
( S I ) 

C l o c k D R 

S c a n O u t 
( S O ) 

1 D 

C 1 

Q 1 D 

C 1 

Q 

U p d a t e D R 

1 
1 

G 
1 
1 

G 

D a t a _ I n 
( P I ) D a t a O u t 

( P O ) S h i f t 
R e g i s t e r 

P a r a l l e l O u t p u t 
R e g i s t e r 

I n p u t 
M u x 

O u t p u t 
M u x 

 

Figure 4:  Basic Boundary-Scan Cell  

During normal mode, Data_In is passed straight through to Data_Out. During update mode, the content of 

the output register is passed through to Data_Out. During capture mode, the Data_In signal is routed to 

the shift register and the value is captured by the next ClockDR. During shift mode, the Scan_Out of one 

register flip-flop is passed to the Scan_In of the next via a hard-wired path. Note that both capture and 

shift operations do not interfere with the normal passing of data from the parallel-in terminal to the 

parallel-out terminal. This allows the capture of operational values “on the fly” and the movement of 

these values for inspection without interference with functional modes of operation. This application of 

the boundary-scan architecture has tremendous potential for real-time monitoring of the operational status 

of a system — a sort of electronic camera taking snapshots — and is one reason why TCK is kept separate 

from any system clocks. 

The use of boundary-scan cells to test the presence, orientation, and bonding of devices in place on a 

circuit board was the original motivation for inclusion in a device. The use of scan cells as a means of 

applying tests to individual devices is not the major application of boundary-scan architecture. Consider 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

12 

the reasons for boundary-scan architecture in the first place. The prime function of the bed-of-nails in-

circuit tester was to test for manufacturing defects, such as missing devices, damaged devices, open and 

short circuits, misaligned devices, and wrong devices. See Figure 5. 

 

Figure 5:  Bed-of-Nails Fault Coverage 

In-circuit testers were not intended to prove the overall functionality of the devices on-board. It was 

assumed that devices had already been tested for functionality prior to assembly on the board. 

Unfortunately, in-circuit test techniques had to make use of device functionality in order to test the 

interconnect structure — hence the rather large libraries of merchant device functions and the problems 

caused by the increasing use of custom designs such as ASICs and CPLDs. 

Given that the boundary-scan architecture was seen as an alternative way of testing for the presence of 

manufacturing defects, we should question what these defects are, what causes them, and where they 

occur.  

An examination of the root cause for defects shows them to be caused by any one of three “shock waves”: 

electrical shock (e.g., electrostatic discharge), mechanical shock (e.g., clumsy handling), or thermal shock 

(e.g., hot spots caused by the solder operation). A defect, if it occurs, is likely present either in the 

periphery of the device (leg, bond wire, driver amplifier), in the solder, or in the interconnect between 

devices. It is very unusual to find damage to the core logic without some sort of associated damage to the 

periphery of the device. 

Driver Sensor

Defects covered:

nail - plated-through hole - interconnect - solder -
leg - bond wire - device - bond wire - leg - solder -
interconnect - plated-through hole - nail
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In this respect, the boundary-scan cells are precisely where we want them — at the beginning and ends of 

the core function of the device (see Figure 6). 

 

Figure 6:  Boundary-Scan Fault Coverage (Intest) 

And, more importantly, boundary scan cells are located at the beginning and end of interconnect paths 

because this is the region most likely to be damaged during board assembly (see Figure 7). 

 

Figure 7:  Boundary-Scan Fault Coverage (Extest) 

Using boundary-scan cells to test a device’s core functionality is called “internal test” or simply Intest. 

Using the boundary-scan cells to test the interconnect structure between two devices is called “external 

test” or simply Extest. The use of the cells for Extest is the major application of boundary-scan 

architecture, searching for opens and shorts plus damage to the periphery of the device. Intest is only 

In this mode (INternal TEST), defects covered are:

Driver Sensor

Boundary-scan cells are "Virtual Nails"

scan cell - device - scan cell

In this mode (EXternal TEST), defects covered are:

Driver Sensor

scan cell - driver - bond wire - leg - solder - interconnect -

solder - leg - bond wire - driver - scan cell
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really used for very limited testing of the core functionality (i.e., an existence test — “are you there, are 

you alive?”) or to identify defects such as devices missing, incorrectly oriented, or misalignment. 

Chapter 3: IEEE 1149.1 Device Architecture 

After nearly five years of discussion, the JTAG organization finally proposed the architecture shown in Figure 8. 

Test Data In
TDI

Test Data Out
TDO

Test Mode Select
TMS

Test Clock
TCK

Bypass register

Test Reset
TRST* (optional)

Any Digital Chip

Any Internal Register

Identification Register

Boundary-Scan Register

Instruction Register

TAP
Controller

1

1

1

 

Figure 8:  IEEE 1149.1 Chip Architecture 

Figure 8 shows the following elements: 

• A set of four dedicated test pins — Test Data In (TDI), Test Mode Select (TMS), Test Clock 

(TCK), Test Data Out (TDO) — and one optional test pin Test Reset (TRST*). These pins are 

collectively referred to as the Test Access Port (TAP). 

• A boundary-scan cell on the device primary input and primary output pins of a device, 

connected internally to form a serial boundary-scan register (Boundary Scan). 

• A finite-state machine TAP controller with inputs TCK, TMS, and TRST*. 

• An n-bit (n  2) Instruction Register (IR), holding the current instruction. 

• A 1-bit bypass register (Bypass). 

• An optional 32-bit Identification Register (Ident) capable of being loaded with a permanent 

device identification code. 
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At any time, only one register can be connected from TDI to TDO (e.g., IR, Bypass, Boundary-scan, 

Ident, or even some appropriate register internal to the core logic). The selected register is identified by 

the decoded output of the IR. Certain instructions are mandatory, such as Extest (boundary-scan register 

selected), whereas others are optional, such as the Idcode instruction (Ident register selected). 

Let’s take a closer look at each part of this architecture. 

The Instruction Register 

An Instruction Register (IR) has a shift section that can be connected to TDI and TDO, and a hold section, 

holding the current instruction as shown in Figure 9. 

 

Figure 9:  The Instruction Register 

There may be some decoding logic between the two sections depending on the width of the register and 

the number of different instructions. The control signals to the IR originate from the TAP controller and 

either cause a shift-in, shift-out through the IR shift section, or cause the contents of the shift section to be 

passed across to the hold section (update operation). It is also possible to load (capture) certain hard-wired 

values into the shift section of the IR. The IR must be at least two-bits long (to allow coding of the four 

mandatory instructions — Bypass, Sample, Preload, Extest — but the maximum length of the IR is not 

defined. In capture mode, the two least significant bits must capture a 01 pattern (see Figure 9). The 

values captured into higher-order bits are not defined. One possible use of these higher order bits is to 
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capture an informal identification code if the 32-bit Ident register is not implemented. In practice, the only 

mandated bit pattern for IR capture is the 01 pattern. We will return to the value of capturing this pattern 

later in this tutorial. 

The Instructions 

The IEEE 1149.1-2001 version of the Standard describes four mandatory instructions: Bypass, Sample, 

Preload, and Extest. 

The Bypass instruction must be assigned an all-1s code. When executed, the Bypass instruction causes the 

Bypass register to be placed between the TDI and TDO pins. By definition, the initialized state of the hold 

section of the IR should contain the Bypass instruction code unless the optional Identification Register 

(Ident) has been implemented, in which case, the Idcode instruction code should be present in the hold 

section. 

The Sample and Preload instructions both select the boundary-scan register when executed. The Sample 

instruction sets up the boundary-scan cells to sample (capture) values moving into the device. The 

Preload instruction is used to preload known values into the output boundary-scan cells prior to some 

follow-on operation. The codes for the Sample and Preload instructions are not defined. 

The Extest instruction selects the boundary-scan register preparatory to interconnect testing. Prior to the 

2001 version of the Standard, the code for Extest was defined to be the all-0s code. Since 2001, the code 

is no longer defined. 

The IEEE 1149.1 Standard defines a number of optional instructions (instructions that do not need to be 

implemented, but which have a prescribed operation when they are used). Examples of optional 

instructions include: 

Intest, the instruction that selects the boundary-scan register preparatory to applying tests to the core logic 

of the device. 

Idcode, the instruction that selects the Identification Register between TDI and TDO preparatory to 

loading the internal hard-wired Idcode values and reading them out through TDO. Note that if the Idcode 
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instruction is loaded and there is no Identification Register present on the device, then the Idcode 

instruction must be interpreted as if it were the Bypass instruction. 

The Runbist instruction initiates an internal self-test routine and places the pass/fail result register between 

TDI and TDO. 

Two new instructions were introduced in the 1993 revision, 1149.1a. These were Clamp and Highz. 

Clamp is an instruction that drives preset scan-cell values onto the outputs of devices (established initially 

with the Preload instruction) and then selects the Bypass register between TDI and TDO. Clamp would be 

used to set up safe “guarding” values on the outputs of certain devices in order to avoid bus contention 

problems, for example. 

Highz is similar to Clamp, but the device is designed such that all outputs can be placed in either a high-Z 

mode (3-state outputs) or input receive mode (for bidirectional scan cells). HighZ establishes these values 

on the output pins but leaves the Bypass register as the selected register Note that the Enable control 

signal to do this is supplied directly from the IR upon execution of the HighZ instruction. Preload is not 

used. 

With the exception of Bypass, the codes for all instructions are undefined. Given the need for four 

mandatory instructions, the minimum length of the IR is two bits. The maximum length is undefined. Any 

instruction can have more than one code and all unused codes are interpreted as Bypass. Note that the 

designer may use certain codes to implement “private” instructions — that is, instructions whose 

functions are not made public. In these circumstances, the designer must state that these codes are private 

so that the user can avoid loading the codes.  

Using the Instruction Register (IR) 

Before proceeding with a description of other parts of the architecture, we will first examine how to load 

the IR and decode its contents. Consider the board circuit shown in Figure 10. 
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Figure 10:  Using the Instruction Register — Step 1 

Assume that what we want to do is to place Chip 1 into bypass mode (to shorten the time it takes to get 

test stimulus to devices farther down the scan chain) and place chips 2 and 3 into Extest mode preparatory 

to setting up tests to check the interconnect between Chips 2 and 3. This set-up requires loading the 

Bypass instruction (all-1s) into the IR of chip 1 and the Extest instruction (assumed to be all-0s for Chips 

2 and 3) into the IRs of Chips 2 and 3. 

Step 1 connects the IRs of all three devices between their respective TDI and TDO pins. This is achieved 

by a special sequence of values on the serial control line TMS going to each TAP controller. Note that the 

TMS (and TCK) lines are connected to all devices in parallel. Any sequence of values on TMS will be 

interpreted in the same way by each TAP controller. Later, we will see the precise TMS sequence to select 

the IR between TDI and TDO. For now, we will assume that such a sequence exists. 

Step 2 loads the appropriate instructions into the various IRs via the global connection of IRs. If we 

assume simple two-bit IRs per device, this operation amounts to a serial load of the sequence 110000 into 

the edge-connector TDI to place 00 in the IRs of Chips 2 and 3, and 11 in the IR of Chip 1. The IRs are 

now set up with the correct instructions loaded into their shift sections. 

Step 3, shown in Figure 11, places further values on TMS to cause each TAP controller to issue the 

control-signal values to transfer the values in the shift sections of the IRs to the hold sections where they 
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become the current instruction. This is the Update operation. At this point, the various instructions are 

obeyed — that is, Chip 1 deselects the IR and selects the Bypass register between TDI and TDO (Bypass 

instruction), and Chips 2 and 3 deselect their IRs and select their boundary-scan registers between TDI 

and TDO (Extest instruction). The devices are now set up and ready for the Extest operation. 

❑ Step 2: decode and execute new instructions.  New target 
registers are selected

❑ Devices now set up to apply interconnect tests between 
devices 2 and 3

TDI

TMS

TCK

TDO

1 2 3

 

Figure 11:  Using the Instruction Register — Step 3 

Use of the “Capture 01” Mode 

Previously we discussed the capture of the fixed 01 pattern into the least two significant positions of the 

Instruction Register. Normally, we would think only of “shift and update” operations for the IR. The 

question arises — what is the use of the “capture 01” pattern? 

To answer this question, we need to think about the use of boundary-scan architecture at the board level. 

Consider again the circuit in Figure 10. 

Previously, we saw how to set up a test environment preparatory to carrying out interconnect tests. To do 

this, we made use of the test infrastructure (i.e., the on-chip boundary-scan features plus the board-level 

TMS and TCK connections and the chip-to-chip TDO-to-TDI interconnects). It is important to know that 

this infrastructure is fault-free before making use of it. In other words, we must first “test the tester” 

before using the tester to test other parts of the board. This is the purpose of the IR capture 01 operation. 

Essentially, the following happens: 
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Step 1. Apply the sequence to TMS, which causes each device to place the IR between TDI 

and TDO. At this stage, there is a serial shift register that starts at the board TDI input and 

ends at the board TDO output and which is made up of the various IRs in the devices — an 

IR chain. 

Step 2. Apply an additional sequence to TMS to cause each IR to capture the hardwired 01 

into the least two significant positions of the IR shift register. Higher-order bits capture what 

they are set up to capture. These values are not mandated by the Standard. The captured 01 

values constitute a checkerboard “flush” test for the serial IR chain. 

Step 3. Clock the captured values out of the IR chain to the board’s TDO output while 

clocking in he instruction code sequence 110000. 

If the sequence TDO: 10…10…10… emerges, then we can be reasonably sure of the following facts: 

• The TMS control signal is properly connected from the board’s TMS input to the TMS inputs of 

every device. 

• The TCK control signal is properly connected from the board’s TCK input to the TCK inputs of 

every device. 

• The TDO from one device is properly connected to the TDI of its logical neighbor. 

• Each internal TAP controller is at least capable of responding correctly to the sequences on TMS 

that cause the IR both to capture and to shift. 

• It is usual to feed the inverse values 10 into the board TDI input to determine when to terminate 

the shift-out phase (Step 3). These bits are called the “sentinel” bits. They have an added benefit as 

they help to remove a possible cause of incorrect diagnosis if there is a TDI-to-TDO short circuit 

on one of the devices. 

Steps 1 to 3 represent a minimum integrity test for the boundary-scan infrastructure. Additional tests can 

be performed. For example: load and execute the Bypass instruction into all devices to show that the 

bypass registers are functioning correctly; load an instruction (e.g., Extest) to select the boundary-scan 

register and pass a flush test through the boundary-scan register to check the integrity of the boundary-

scan cells. The question that is raised is why should all these additional integrity tests be done? If our 

purpose is just to test for manufacturing defects on the test infrastructure, the IR checkerboard test is 
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probably sufficient. All additional integrity tests deal with testing the functionality of the IEEE 1149.1 

features on the devices. We could argue that this is more a chip test requirement, not a board test 

requirement (in fact, the same argument could be raised to explain why the Intest instruction is not 

mandatory). 

Most test engineers run the extra integrity tests as time permits. These tests provide additional confidence 

that the test infrastructure is healthy before using it to test other parts of the board. 

The Test Access Port (TAP) 

We return now to the TAP and its controller (Figure 12). The TAP consists of four mandatory terminals 

plus one optional terminal. 

 

Figure 12:  TAP Controller Global View 

The mandatory terminals are: 

• Test Data In (TDI): serial test data in with a default value of 1. 

• Test Data Out (TDO): serial test data out with a default value of Z and only active during a 

shift operation. 

• Test Mode Select (TMS): serial input control signal with a default value of 1. 

• Test Clock (TCK): dedicated test clock, any convenient frequency. 

The optional terminal is: 

ClockDR

ShiftDR

UpdateDR

Reset*

Select

ClockIR

ShiftIR

UpdateIR

Enable

TMS

TCK

TRST* (Optional)

Test Access Port

Controller
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• Test Reset (TRST*): asynchronous TAP controller reset with default value of 1 and active 

low. 

TMS and TCK (and the optional TRST*) go to a finite-state machine controller, which produces the 

various control signals. These signals include dedicated signals to the IR (ClockIR, ShiftIR, UpdateIR) 

and generic signals to all data registers (ClockDR, ShiftDR, UpdateDR). The data register that responds is 

the one enabled by the conditional control signals generated at the parallel outputs of the IR, according to 

the particular instruction. Additionally, there are generic Select, Reset, and Enable signals. 

Figure 13 shows the state table for the TAP controller. The value on the state transition arcs is the value of 

TMS. A state transition occurs on the positive edge of TCK and output values change on the negative 

edge of TCK.  
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Figure 13:  TAP Controller State Table Diagram 

The TAP controller initializes in the Test-Logic-Reset state (“Asleep” state). While TMS remains a 1 (the 

default value), the state remains unchanged. Pulling TMS low causes a transition to the Run-Test/Idle 

state (“Awake and do nothing” state). Normally, we want to move to the Select-IR-Scan state ready to 

load and execute a new instruction.  

An additional one-one sequence on TMS will achieve this. From here, we can move through the various 

Capture-IR, Shift-IR, and Update-IR states as required. The last operation is the Update-IR operation and, 

at this point, the instruction loaded into the shift section of the IR is transferred to the hold section to 
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become the current instruction. This causes the IR to be deselected as the register connected between TDI 

and TDO and the data register identified by the current instruction to be selected as the new target register 

between TDI and TDO (e.g., if the instruction is Bypass, the Bypass register is the selected data register). 

From now on, we can manipulate the target data register with the generic Capture-DR, Shift-DR, and 

Update-DR control signals. 

Note that there is no master reset to the TAP controller if the optional TRST* is not implemented. The 

TAP controller is mandated to power up in the Test-Logic Reset state. If there is a need to re-initialize the 

controller, it can be done by holding TMS high and clocking TCK up to a maximum of five clocks. In 

general, TMS = 0 holds the current state whereas TMS = 1 causes a state transition. The reader is invited 

to verify that from any start state, five TCKs is sufficient to return the controller to the Test-Logic-Reset 

state, given that TMS remains at logic 1. 

Each of the main branches of the state table contains additional Exit and Pause states. The Exit1 state 

allows a transition from the shift operation to Update. It also allows the controller to be placed in a Pause 

state. This might be necessary if, for example, all devices have their boundary-scan registers selected as 

the data registers and an external tester pin channel is either loading or unloading test data (e.g., as in the 

use of Extest to test interconnect structures). If the length of the chained boundary-scan registers is longer 

than the memory associated with the tester channel, then it will be necessary to update or unload the 

content of the channel memory before resuming the shift operation through the boundary-scan path. The 

Pause state enables this action and the Exit2 state allows a return to the shift operation. 

In general, a TAP controller requires four state flip-flops and another four flip-flops to hold the values of 

certain output signals. The additional next-state decoder and output decoder logic adds another 20 to 40 

gates. 

The Bypass Register 

Figure 14 shows a typical design for a Bypass register. It is a 1-bit register, selected by the Bypass 

instruction and it provides a basic shift function. There is no parallel output (which means that the 

Update-DR control has no effect on the register), but there is a defined effect with the Capture-DR control 

— the register captures a hard-wired value of 0. We will shortly explain the benefit of this. 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

24 

 

Figure 14:  The Bypass Register 

The Identification Register 

The optional Identification (Ident) register is a 32-bit register with capture and shift modes of operation 

(Figure 15). The captured 32 bits identify the device through the following fields: 

• Bit 0 (least significant bit) is always 1. 

• Bits 1 - 11 identify the manufacturer of the device using a compact form of the JEDEC 

identification code. 

• Bits 12 - 27 provide a 16-bit free format part number field. 

• Bits 28 - 31 provide a 4-bit free format field to specify up to 16 different versions of the same 

basic device. 
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VersionVersion Part NumberPart Number Manufacturer
Identity

Manufacturer
Identity

4-bits
Any format

16-bits
Any format
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Coded form
of JEDEC

D

Clk

Q

ID Code bit

Shift in

Shift out

ShiftDR

ClockDR

TDI TDO

LSBLSB

1

 

Figure 15:  Device Identification Code Structure 

Once captured, the 32-bit identification code can be shifted out through TDO for inspection. Figure 15 

also shows a possible implementation of one cell in the 32-bit register. 

We will now investigate why the least significant bit (lsb) of the Ident register is a 1 and why the Bypass 

register captures a hard-wired value of 0. 

Use of the lsb = 1 Feature 

Consider the following field service scenario. A customer’s computer system has broken down. A 

hardware fault on a particular board is suspected as the cause. There are many variations of the board and 

the service engineer needs to identify the board type and the component versions. All the engineer knows 

is that there are boundary-scan components on the board and the locations of the primary (edge-

connector) TDI, TDO, TMS, TCK ports plus Power and Ground. The following procedure identifies the 

boundary-scan components on the board and whether or not they have Ident registers. 

Step 1. Power up the board and sequence values on TMS to enter the Select DR-Scan state. 

By default, the instruction loaded into the hold stage of every boundary-scan device on 

power-up must be Idcode if the device contains an Ident register, or Bypass if the device 

does not contain an Ident register. This is mandated by the Standard. This is shown in Figure 

16. 
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Figure 16:  Use of the lsb = 1 Feature — Step 1 

Step 2. Capture the hard-wired values (Capture-DR) in the default selected Bypass or Ident 

register. 

Step 3. Shift (Shift-DR) the captured values out through the primary TDO output. See Figure 

17. A leading 0 identifies a device without an Ident register. A leading 1 identifies a device 

with an Ident register, in which case the next 31 bits are of interest. 

❑ Clock out content of concatenated registers though TDO
▪ Note: front-end open TDI will  feed logic 1s into the chain

❑ Terminate with all-1s (8 x 1s: illegal JEDEC code)

TDI

TMS

TCK

TDO

1 2 3

Logic 1

 

Figure 17:  Use of the lsb = 1 Feature — Step 3 
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In the situation of a true “blind” interrogation (i.e., one in which it is not known how many devices on the 

board have IEEE 1149.1 features), the process can be terminated by feeding in an illegal sequence 

through the primary TDI and waiting for this sequence to appear at the primary TDO. Such a sequence is 

seven consecutive 1s in bits 1-7 of the manufacturer identity field. The JEDEC coding system avoids this 

sequence. It is usual to add another 0 to this sequence just in case the primary TDI is stuck-at-1. See 

Figure 17. 

Boundary-Scan Register 

We are now ready to take a more detailed look at the boundary-scan cells. Boundary-scan cells are placed 

on the device signal input ports, output ports, and on the control lines of bidirectional (I/O) ports and 

tristate (0, 1, Z) ports. These cells are linked together to form the boundary-scan register. The order of 

linking is determined by the physical adjacency of the pins and/or by other layout constraints. The 

boundary-scan register is selected by the Extest, Sample, Preload, and Intest instructions. 

There are many different designs for boundary-scan cells. Figure 18 shows a simple design capable only 

of capture and shift operations. Such a cell could be used on device inputs that are especially sensitive to 

extra loading on the Data_In signal e.g., a system clock. (Note: none of the four mandatory instructions 

require an update operation on the input scan cells.) 

 

Figure 18:  Basic Boundary-Scan Cell (Input) 
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Figure 19 shows a more universal design for a boundary-scan cell. This design is capable of all three 

operations, capture, shift, and update, and it can serve as either an input or an output cell on a device 

signal pin. This design has separate flip-flops for shift and hold functions. Data can be shifted through the 

boundary-scan shift path without interfering with the value in the hold section (which could be routed to 

the data-out port through the output multiplexer). 

 

Figure 19:  Basic Boundary-Scan Cell (Input/Output) 

Figure 20 shows why a hold section might be required. Assume that the three outputs from the boundary-

scan device are control signals to the Chip-Select (CS) controls of three RAM devices. In the normal 

course of events, only one RAM is selected to talk to the data bus. This means that most combinations of 

the three CS signals are illegal.  
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Figure 20:  A Reason for the Hold State 

It would be impossible to guard against illegal sequences if we were passing data along the boundary-scan 

path without the hold element and the output multiplexer was open to the shifting values. If the 

multiplexer was open to the values generated by the core logic, we may still have a problem if we are not 

exercising tight control over the status of the core logic. A simple solution is to include the hold section 

and to use the Preload instruction to load safe values into the hold sections. Then, use the Clamp 

instruction to pass these values out through the output multiplexer. 

Providing Boundary-Scan Cells 

Primarily, boundary-scan cells must be provided on all device input and output signal pins, with the 

exception of Power and Ground. Note that there must be no circuitry between the pin and the boundary-

scan cell with the exception of driver amplifiers or other forms of analog circuitry. 

In the case of pin fan-in, boundary-scan cells should be provided on each primary input to the core logic. 

In this way, each input can be set up with an independent value. This provides the maximum flexibility 

for Intest. 

Similarly with pin fan-out, if each output pin has a boundary-scan cell, then Extest is able to set different 

and independent values. 
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Where there are tristate output pins, then there must be a boundary-scan cell on the status control signal 

into the output driver amplifier. Figure 21 shows a simple example of a tristate output pin.  
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S c a n C e l l 

TDO 

 

Figure 21:  Control of Tristate Outputs 

Figure 22 shows the set up for a bidirectional I/O pin. Here, we see that three boundary-scan cells are 

required: one on the input side, one on the output side, and one to allow control of the I/O status. 
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Figure 22:  Bidirectional Input/Output Pins 

Accessing Other Core-Logic Registers 

The IEEE 1149.1 architecture does allow the definition and use of “private” instructions to access any 

suitable internal shift registers. An example could be an instruction InScan to allow access to an internal 

scan path register via the TDI-TDO route. 
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Another important optional instruction is RunBist. Because of the growing importance of device-internal 

self-test structures, the behavior of RunBist is defined in the Standard. The self-test routine must be self-

initializing (i.e., no external seed values are allowed), and the execution of RunBist essentially targets a 

self-test result register between TDI and TDO. Once the self-test routine is initiated, the TAP controller is 

held in its Run-Test/Idle state for the duration of the test. The self-test clock can either be TCK or, more 

usually, a much faster clock. 

At the end of the self-test cycle, the targeted register holds the pass/fail result. It is important that this 

value is not changed by any subsequent pulses on TCK. In this way, parallel self-tests of different lengths 

on different devices on the same board can be carried out. When the final (i.e., the longest in run time) 

self-test is complete, all results can be clocked out along the register path made up of the linked individual 

result registers. 

The 2013 Version 

In 2013, a major revision to the 1149.1 standard was ratified. Importantly, devices compliant with 

previous versions of the 1149.1 standard are compliant with the 2013 version. The 2013 version offers 

optional additions. For more comprehensive details, refer directly to the IEEE 1149.1-2013 standard. [2] 

The changes to the 1149.1 standard are summarized below: 

• A test mode persistence controller that can keep the test mode active even if the active instruction 

does not force test mode. Three new instructions (CLAMP_HOLD, TMP_STATUS, AND 

CLAMP_RELEASE) support this controller.  

• A new, optional instruction (ECIDCODE). This instruction supplements IDCODE and 

USERCODE and queries the Electronic Chip Identification value used to identify individual 

integrated circuits.  

• A component initialization mechanism that allows more options in initializing components for 

test. Three new instructions (INIT_SETUP, INIT_SETUP_CLAMP, and INIT_RUN) support this 

mechanism. 

• A new test data register (reset_select) that allows TAP-controlled reset functions for components. 

A new instruction (IC_RESET) supports this register.  

• A recommended, but optional, TAP to test data register interface.  
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• Rules to support observe-only boundary-scan register cells. These can capture signal values or 

fault conditions on target pins.  

• Rules to support excludable boundary-scan register segments.  

• Updates to the Boundary Scan Description Language definitions.  

• Codification of Procedural Description Language (PDL). PDL is used to document the procedural 

and data requirements for some of the new instructions.  

Chapter 4: Application at the Board Level 

General Strategy 

As a complement to this tutorial, we will look briefly at the three major stages of board-test strategy for a 

board populated by IEEE 1149.1-compliant devices (a “pure” boundary-scan board).  

A general-purpose, three-step strategy for testing a pure boundary-scan board is: 

Step 1. Carry out a boundary-scan infrastructure test by using either the blind interrogation 

technique described earlier (pages 29-30) or through the Capture-IR/Shift-IR operations to 

load and shift the built-in checkerboard values. Further optional infrastructure tests can be 

carried out if time permits. 

Step 2. Use the Extest instruction to apply stimulus and capture responses across the 

interconnect structures between the devices on the board. 

This is the major application of the boundary-scan architecture and we will return 

to the basic algorithms later in this tutorial. 

Step 3. Carry out either a limited “existence” test on the individual devices (using Intest) or 

initiate device self-test routines (using RunBist). 

At the end of Step 3, we have “tested the tester” (Step 1); tested the regions most susceptible to assembly 

damage caused by electrical, mechanical, or thermal shock (Step 2); and tested that the right devices are 

in their correct positions on the board (Step 3). 
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Interconnect Test Example 

Consider the simple four-net interconnect structure shown in Figure 23. Assume both devices are IEEE 

1149.1 compliant and the left-hand device drives values into the right-hand device. Assume further that 

there is an unwanted short-circuit defect between Nets 1 and 2, and an unwanted open-circuit defect along 

Net 4. How can we test for such defects? 

 

Figure 23:  Interconnect Testing Example 

Figure 24 shows a solution. The short circuit (assumed to behave logically like a wired-AND gate) is 

detected by applying unequal logic values (i.e., logic 1 on Net 1, logic 0 on Net 2) from Chip 1 to Chip 2. 

The wired-AND behavior causes Chip 2 to receive two logic 0s, allowing identification of the defect. 

Net 1

Net 2

Net 3

Net 4

Chip 1 Chip 2Open

Short

Problem: How to test for the open and short faults?
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Figure 24:  Interconnect Testing Solution 

Similarly, if the open-circuit behaves like a stuck-at-0 fault, the defect is detected by applying a logic 1 

from Chip 1 on Net 4 and observing that Chip 2 captured a logic 0. 

A question arises — can we devise a general-purpose algorithm for creating a series of tests capable of 

detecting any 2-net short circuit (of either a wired-AND or a wired-OR nature) and any single-net open 

circuit (causing either a stuck-at-1 or a stuck-at-0 fault)? 

This question was answered in 1974 in connection with a similar requirement for testing ribbon cables 

(Kautz, IEEE Trans. Computers, 1974, pp. 358-363). Consider Figure 25.  

This diagram shows three consecutive tests applied to Nets 1 to 4. The first test is the vertical pattern 

1110; the second is 0101; and the third is 1001. Think about the patterns “horizontally”; that is, the 

sequence 101 applied to Net 1, and so on. We can consider 101 to be a binary code assigned to Net 1. 

Similarly, the three tests define other horizontal codes for Nets 2, 3, and 4. Kautz showed that a sufficient 

condition to detect any pair of short-circuited nets was that the “horizontal” codes must be unique for each 

net1. This means that the total number of bits in each code (the number of tests) is given by ceil [log2(N)], 

 

1 If each net has a unique code, at some point any two nets have complementary stimulus values assigned.  This  is a necessary 

and sufficient condition to detect a short circuit of type wired-AND or wired-OR.  
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where N is the number of nets and ceil means ceiling (the upper integer value of the logarithm). This is 

illustrated in Figure 25. 

 

Figure 25:  Detecting the Fault 

In Figure 25, each horizontal stimulus code constructed from the three vertical tests is different. The 

response codes on nets 1 and 2 are incorrect because of the short circuit between these two nets. 

At this point, we can ask, why use a three-bit code? With four nets, ceil [log2 (N)] is 2 and each net could 

be assigned a unique two-bit code. This is true, but the additional requirement to cover single stuck-at-1 

and stuck-at-0 faults precludes the all-1 and all-0 codes. A stuck-at-1 fault would never be detected if the 

input code is all 1s: similarly for the stuck-at-0 fault and the all-0 code. In effect, the all-1s and all-0s 

become forbidden codes. 

This means that the total number of bits in each code to satisfy the uniqueness property and to exclude the 

two forbidden codes is given by ceil [log2 (N+2)] where the “+2” represents the two “virtual” nets with 

the all-0 and all-1 code assignments. This results in a three-bit code for the four nets in Figure 25. 

Now consider the effect of applying these codes to the four-net infrastructure. The response codes on Nets 

1 and 2 are different to their respective input stimulus codes, but they are both the same code (001). From 

this information, we deduce: 

1. there is a short-circuit fault between Nets 1 and 2 
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2. the short-circuit is a “wired-AND” type 

Unfortunately, this diagnosis may not be fully correct. Net 3, which is not short-circuited, was tested by 

the code 001. This code is the same as the faulty response code, and although the net 3 response is correct 

in terms of it being the same as the stimulus code, it could be 001 because net 3 is also part of the short 

circuit problem (i.e., nets 1, 2 and 3 could all be shorted together). 

This diagnostic ambiguity is an example of the aliasing syndrome of short-circuit faults. There are ways 

of overcoming this syndrome (and other syndromes), but the solutions are beyond the scope of this 

tutorial. One additional test to reduce the ambiguity is 0011 (see Figure 26). Basically, the fourth test 

splits the known short circuit pair (net 1, net 2) from the possible short-circuit candidate (net 3). 

 

Figure 26:  Locating the Fault 

To conclude this example, notice that the s-a-0 open circuit on net 4 is detected and located cleanly by the 

all-0 response code. This code is one of the two forbidden codes and cannot be aliased to any other code 

associated with a defect-free interconnect. 

Practical Aspects of Using Boundary-Scan Technology 

Handling Non-Boundary-Scan Clusters 

In reality, boards are populated with both boundary-scan and non-boundary-scan devices. The question 

arises, “what can we do to test the presence, orientation and bonding of the non-boundary-scan devices?” 
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The answer to the question depends, in part, on the degree of controllability and observability afforded the 

non-boundary scan devices through the boundary-scan registers of boundary scan devices.  

Figure 27 shows a “cluster” of three non-boundary scan devices surrounded by three boundary scan 

devices. The boundary-scan registers in U1, U2, U3 can be used to drive test-pattern stimuli into the non-

boundary scan cluster, and to observe the cluster responses, but it will be difficult to control and observe 

the truly buried nets inside the cluster (e.g., between U4 and U5).  

U1

U3

U2

U4

U5

U6

Real Nail

 

Figure 27: Handling Non-Boundary Scan Clusters 

Given that we are not testing the full functionality of the non-boundary scan devices — only their 

presence, orientation and bonding — one solution is to develop a suitable set of tests for the non-

boundary scan cluster that are applied from the boundary-scan driver cells and which drive signal values 

along the buried nets, targeted on opens and shorts. The responses are propagated out to the boundary-

scan receiver cells.  

For clusters of relatively simple non-boundary scan devices, generating these tests may not be too 

difficult. For clusters of complex non-boundary scan devices, generating the tests may become very 

difficult and there are no automatic pattern-generator tools to help the board test programmer. 

Consequently, an alternative solution is to make use of real nails (i.e. physical probes) to access the buried 

nets, as shown in the diagram. Clearly, these nets have to be brought to the surface of the board (to allow 
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physical probing) and the cost of test will increase (because of the extra cost of the bed-of-nails fixture), 

but this may be the only way to solve the problem. A solution that combines the virtual access of 

boundary scan and the real access of a bed-of-nails system is generally known as a Limited Access 

solution.  

Access to RAM Arrays 

Many boards contain arrays of Random Access Memory (RAM) devices (Figure 28). RAMs are not 

usually equipped with boundary scan and so they too present manufacturing-defect testing challenges. In 

a way, an array of RAMs is a special case of a cluster of non-boundary scan devices. 

Core Logic

Core LogicCore Logic
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Figure 28:  Testing a RAM Array Via Boundary Scan 

Boards that contain RAMs typically also contain a microprocessor. The usual practice is to use the 

microprocessor to test the presence, orientation and bonding of the RAM devices (i.e., the microprocessor 

becomes an on-board tester). This is acceptable as long as there is a microprocessor on the board. If there 

is no such device, then the RAMs can be tested for manufacturing defects through the boundary-scan 

registers of boundary scan devices as long as these registers have access to the control, data and address 

ports of the RAMs. Test times will be slow but the number of tests will not be significant since the 

purpose of the tests is to identify any opens or shorts on the RAM pins. Suitable tests can be derived from 

the classical walking-1/walking-0 patterns or from the ceil [log2 (N+2)] patterns described earlier. 
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Other Issues of Boundary Scan-to-Non-Boundary Scan Interfacing 

Figure 29 illustrates some of the other issues of interfacing between boundary scan and non-boundary 

scan devices. 
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Figure 29:  Boundary Scan-to-non-Boundary Scan Interface 

Consider what happens when we try to set up interconnect tests between U1’s bidirectional pins (marked 

IOZ on nets n1, n2) and U3’s bidirectional pins (marked IOZ on nets n5, n6) via the bus. First, we have to 

determine the exact nature of the boundary-scan cells on U1 and U3 IOZ pins. One set has to be set up as 

drivers and the other set as receivers. Assume we specify U1’s pins to be the drivers and U3’s pins to be 

the receivers. The interconnect test-pattern generator will compute tests from U1 to U3 based on the 

standard algorithm. 

To set U1’s pins into driver mode, we need to control net n7 (U1 O_Enab) to the appropriate value. n7 is 

directly controllable, so this will not be a problem. Now consider the O_Enab pin of U3. The value on 

this pin needs to be set to the appropriate level to make U3’s bidirectional pins behave as receivers. The 

control for U3 O_Enab comes from the non-boundary scan device U2, along net n9. n9 is not directly 

controllable so we have a problem of trying to find out what to do on the input side of U2 to set U3’s 

O_Enab to the correct value. If the inputs to U2 can be controlled by a boundary scan device (e.g., by the 

boundary-scan register of U1), then we can set fixed values in U1’s output scan cells to hold U2 inputs to 

set U2’s output values to the values required by U3’s O_Enab input. The values held in U1’s output scan 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

40 

cells are known as constraints, overriding any other values that might be generated by the interconnect 

test-pattern generator. Basically, the requirement for a constraint generates a mask which ensures that a 

particular output driver scan cell is always updated with the same constraint value. 

Now, return to the U1-to-U3 interconnect tests. The board-level netlist will identify U2 as another device 

with access to the bus. Before tests can be applied between U1 and U3, we first have to know the nature 

of the pins of U2 that are connected to the bus. Are they inputs only (I), outputs only (O), outputs with a 

high-Z state OZ), or full bidirectionals (IOZ)? Eventually, we might need to know the input-output nature 

of every pin on this non-boundary scan device. This data, which is sometimes called characteristic or 

cluster-model data, is easily created and absolutely necessary if we are to avoid potentially dangerous 

situations during interconnect test. For example, if U2’s pins are IOZ and they are in their output-drive 

state, then tests between U1 and U3 can cause damage to U2 through back-driving (bus contention). As a 

result, we need to set yet another constraint value into the boundary-scan cell in U1 that controls the value 

on U2’s O_Enab pin, along net n8.  

Next, let’s consider net n10. This net connects between the two boundary scan devices, U1 and U3, and, 

as a result,is a candidate for interconnect testing. Note however that the net also connects to the non-

boundary-scan device, U2. Again, we need to know the nature of the U2 pin: is it an input or an output? If 

it is an input, then there is no problem with driving between U1 and U3. If it is an OZ pin, then we would 

need to set it into its high-Z safe state before applying the interconnect test on n10. 

Finally, consider the connections n11 and n12 between U1 and U3 via U4. This appears to be a boundary-

scan-to-non-boundary-scan-to-boundary-scan series of connections and so is not amenable to interconnect 

testing between U1 and U3. But, we note that U4 has a very special logical property: it is transparent to 

digital signals. If we knew about this property, we could basically ignore its presence and treat n11 and 

n12 as a single connection between U1 and U3, thereby increasing defect coverage. In general, identifying 

transparent devices (e.g., series resistors, non-inverting line drivers) or devices with simple transparent 

modes (e.g., multiplexers), will enhance the defect coverage. In the case of a multiplexer, we need to 

control the control signals to select a particular input to pass through to the output. Constraint values can 

be used to achieve this. 
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The bottom line on all this is that most of the time spent in preparing a board-level test program is spent 

on the boundary-scan-to-non-boundary-scan interface, identifying and solving potential problems, as 

discussed above. The more boundary-scan devices there are on the board, as a percentage of all the digital 

devices on the board, the easier it is to prepare a board-level test program. 

Assembling the Final Test Program 

Figure 30 summarizes the major stages of assembling a final test program. 
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Figure 30:  Assembling a Test Program - Tool Flow 

First, the device BSDL files (more on this later) and board netlist data is used to compile a database. Non-

boundary-scan characteristic or model data is also assembled so that it can be used by the various pattern 

generators. The test program itself is composed of several segments: 

• Board-level infrastructure integrity test, which tests the following: device TDO-to-TDI 

interconnects, distribution of TMS, TCK and TRST*, if present. Typically, these tests use both 

a DR-Scan cycle and an IR-Scan cycle. The former is an application of the blind interrogation 

test whereas the latter uses the 01 captured into the Instruction Register, as described earlier. 

• Full enhanced binary count tests between all boundary-scan interconnects. This test sets non-

boundary-scan devices into safe states and/or uses non-boundary-scan outputs to assert control 

over boundary-scan devices where necessary. 
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• Tests to be applied to non-boundary-scan clusters via a combination of boundary-scan devices, 

real nails (if available), and the normal board edge-connector signals. These tests may be input 

in a simple one/zero format or by using a higher-level test language, such as a macro language 

or C++. 

• Tests to be applied to on-board RAM devices, either via an on-board microprocessor or via the 

boundary-scan registers of the boundary-scan devices. 

Diagnostics applied to production boards may then make use of internal design-for-test structures such as 

internal scan (often called Scan-Thru-TAP), Built-In Self Test or simply through the InTest Instruction, if 

available. The final test results are displayed to the user through an interface which allows line-by-line 

real-time debug, or by means of a graphical display of applied stimulus and captured test waveforms. 

Tester Hardware 

Modern low-cost board testers for boards populated with boundary-scan devices are based on a personal 

computer (see Figure 31). The drive/sense capability of the PC is enhanced through a controller card fitted 

either into an expansion slot (PC-AT, PCI or VXI) or into a USB socket. The PC is connected to the 

board-under-test via a signal interface pod. TCK speeds are generally in the region of 10 MHz to 25 MHz, 

but can be higher. Additional driver/sensors are often available to provide direct control and observe on 

selected edge-connector positions (e.g., control a board Master Reset signal or monitor a flash memory 

device’s Ready/Busy signal). The stimulus/response patterns themselves, along with the correct value-

changes on TMS, are stored in RAM devices mounted on the controller card. These devices form a 

hardware buffer to hold applied stimulus values and collect actual response values for comparison with 

the expected values. Overall, the test-preparation and test-application software in the PC is controlled 

under the Windows OS. 
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Figure 31:  Tester Hardware 

Such board testers are low-cost, compared to traditional in-circuit testers. In addition, PC-based testers 

can be very portable, opening up the possibility to make use of the test program in other test requirements 

on the boards (e.g., in multi-board system integration and debug and in field service). 

Chapter 5: Related Data Formats 

Several data formats have emerged to make IEEE 1149.1 successful and well-supported by tools. This 

chapter discusses the most widely accepted data formats that support IEEE 1149.1, - BSDL, HSDL, and 

SVF and STAPL. 

Boundary-Scan Description Language (BSDL) 

This section discusses the now mandatory data format for describing how IEEE 1149.1 is implemented in 

a device — BSDL, or Boundary-Scan Description Language. 

What Is BSDL? 

BSDL is a subset of VHDL (VHSIC Hardware Description Language) that describes how IEEE 1149.1 is 

implemented in a device and how it operates. BSDL captures the essential features of any IEEE 1149.1 

implementation. BSDL was approved in 1994 as IEEE Std.1149.1b. 
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One of the major uses of BSDL is as an enabler for the development of tools to automate the testing 

process based on IEEE 1149.1. Tools developed to support the standard can control the TAP (Test Access 

Port) if they know how the boundary-scan architecture was implemented in the device. Tools can also 

control the I/O pins of the device. BSDL provides a standard machine and human-readable data format for 

describing how IEEE 1149.1 is implemented in a device. 

How BSDL is Used 

Many IEEE 1149.1 tools on the market support BSDL as a data input format. These tools offer different 

capabilities to persons implementing IEEE 1149.1 in their designs, including Automatic Test Pattern 

Generation (ATPG) for interconnect tests and Automatic Test Equipment (ATE). 

When you use tools that support BSDL, you should obtain BSDL files for boundary-scan devices from 

your semiconductor vendor. This results in significant time and cost savings. 

Teradyne estimates that to create in-circuit test patterns for a leading microprocessor normally can require 

as much as seven weeks time: 

• One week to study the device 

• Four weeks to develop in-circuit test patterns 

• Two weeks to verify the patterns on ATE 

If the microprocessor supports IEEE 1149.1, and the BSDL is supplied by the vendor, the time to develop 

in-circuit test patterns is less than two hours using today's tools. 

Elements of BSDL 

A BSDL description for a device consists of the following elements: 

• Entity descriptions 

• Generic parameter 

• Logical port description 

• Use statements 

• Pin mapping(s) 

• Scan port identification 
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• Instruction Register description 

• Register access description 

• Boundary Register description 

Entity Descriptions — The entity statement names the entity, such as the device name (e.g., 

SN74ABT8245). An entity description begins with an entity statement and terminates with an end 

statement. 

entity XYZ is  

   {statements to describe the entity go here} 

  end XYZ  

Generic Parameter — A generic parameter is a parameter that may come from outside the entity, or it may 

be defaulted, such as a package type (e.g., “DW”). 

  generic (PHYSICAL_PIN_MAP : string := “DW”); 

Logical Port Description — The port description gives logical names to the I/O pins (system and TAP 

pins) and denotes their nature, such as input, output, bidirectional, and so on. 

  port (OE:in bit; 

      Y:out bit_vector(1 to 3); 

      A:in bit_vector(1 to 3); 

      GND, VCC, NC:linkage bit; 

      TDO:out bit; 

      TMS, TDI, TCK:in bit); 

Use Statements — The use statement refers to external definitions found in packages and package bodies. 

  use STD_1149_1_1994.all; 

Pin Mapping(s) — The pin mapping provides a mapping of logical signals onto the physical pins of a 

particular device package. 

  attribute PIN_MAP of XYZ : entity is  

  PHYSICAL_PIN_MAP; 

  constant DW:PIN_MAP_STRING:= 

   “OE:1, Y:(2,3,4), A:(5,6,7), GND:8, VCC:9, “& 

      “TDO:10, TDI:11, TMS:12, TCK:13, NC:14”; 

Scan Port Identification — The scan port identification statements define the device's TAP. 

  attribute TAP_SCAN_IN of TDI : signal is TRUE; 

  attribute TAP_SCAN_OUT of TDO : signal is TRUE; 

  attribute TAP_SCAN_MODE of TMS : signal is TRUE; 
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  attribute TAP_SCAN_CLOCK of TCK : signal is (50.0e6, 

     BOTH); 

Instruction Register Description — The Instruction Register description identifies the device-dependent 

characteristics of the Instruction Register. 

  attribute INSTRUCTION_LENGTH of XYZ : entity is 2; 

  attribute INSTRUCTION_OPCODE of XYZ : entity is 

   “BYPASS (11), “& 

   “EXTEST (00), “& 

   “SAMPLE (10) “; 

  attribute INSTRUCTION_CAPTURE of XYZ : entity is 

     “01”; 

Register Access Description — The register access defines which register is placed between TDI and 

TDO for each instruction. 

  attribute REGISTER_ACCESS of XYZ : entity is 

   “BOUNDARY (EXTEST, SAMPLE), “& 

   “BYPASS (BYPASS) “; 

Boundary Register Description — The Boundary Register description contains a list of boundary-scan 

cells, along with information regarding the cell type and associated control. 

  attribute BOUNDARY_LENGTH of XYZ : entity is 7; 

  attribute BOUNDARY_REGISTER of XYZ : entity is 

   “0 (BC_1, Y(1), output3, X, 6, 0, Z), “& 

   “1 (BC_1, Y(2), output3, X, 6, 0, Z), “& 

   “2 (BC_1, Y(3), output3, X, 6, 0, Z), “& 

   “3 (BC_1, A(1), input, X), “& 

   “4 (BC_1, A(2), input, X), “& 

   “5 (BC_1, A(3), input, X), “& 

   “6 (BC_1, OE, input, X), “& 

   “6 (BC_1, *, control, 0)”; 

Hierarchical Scan Description Language (HSDL) 

This section discusses a data format for describing how IEEE 1149.1 was implemented at the board or 

system level — HSDL, or Hierarchical Scan Description Language. 

What Is HSDL? 

Originally, Texas Instruments (TI) developed the Hierarchical Scan Description Language (HSDL) to 

complement BSDL using the same subset of VHDL statements as BSDL. TI transferred HSDL ownership 

to ASSET Intertech, INC. in 1995, which is now the contact point for maintaining the HSDL standard and 

is directly responsible for additions or changes to the standard.  
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HSDL picks up where BSDL stops. HSDL describes additional attributes of IEEE 1149.1 devices and 

how IEEE 1149.1 devices are connected at the board and system level. 

HSDL uses the BSDL entity and package in new ways. Entities in HSDL are used to describe modules as 

well as devices. A module is any level of architecture above the device level, including boards, multichip 

modules/System in Packages, backplanes, subsystems, and systems. In addition, HSDL provides two new 

packages used to indicate that an entity is an HSDL device or module. 

BSDL is well suited for describing how IEEE 1149.1 is implemented in a device, but stops there. HSDL 

provides a method for describing how IEEE 1149.1 devices are connected at the board, module, and 

system levels. HSDL serves three needs not addressed by BSDL.  

• Description of the test bus interconnections of IEEE 1149.1 at the board or module level 

• Description of boards with dynamic and reconfigurable architectures 

• Ease-of-use and risk reduction improvement during interactive design debug and verification 

In this way, BSDL and HSDL can be used together to obtain a full description of the unit under test 

(UUT). In addition, a basic device-level BSDL file can be augmented with appropriate HSDL statements 

to ease its use for interactive design debug of the UUT. 

HSDL Module Statements 

HSDL module statements use much of the same syntax as BSDL. New statements have been added to 

describe the members and scan paths of the module and to simplify interactive use. 

• Entity descriptions 

• Generic parameter 

• Logical port description 

• Use statements 

• [Optional module descriptions] 

• [Optional port description(s)] 

• Pin mapping(s) 

• Scan port identification 
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• [Optional member description(s)] 

• [Optional bus description(s)] 

• Path description 

• [Optional member connections] 

• [Optional constraint description(s)] 

• [Optional design warning] 

Entity Descriptions — The entity statement names the entity, such as the module name (e.g., BOARD). 

An entity description begins with an entity statement and terminates with an end statement. 

  entity BOARD is  

   {statements to describe the entity go here} 

  end BOARD; 

Generic Parameter — A generic parameter may come from outside the entity or it may be defaulted, such 

as a package type (e.g., “UNDEFINED”). 

  generic (PHYSICAL_PIN_MAP : string := (“UNDEFINED”) 

Logical Port Description — The port description gives logical names to the I/O pins (system and TAP 

pins), and denotes their nature such as input, output, bidirectional, and so on. 

  port (TDI:in bit; 

      TDO:out bit; 

      TMS:in bit; 

      TCK:in bit); 

Use Statements — The use statement refers to external definitions found in packages and package bodies. 

  use STD_1149_1_1994.all; 

  use HSDL_module.all; 

Pin Mapping(s) — The pin mapping provides a mapping of logical signals onto the physical pins of a 

particular entity. 

  attribute PIN_MAP of BOARD : entity is 

  PHYSICAL_PIN_MAP; 

   constant PINOUT1 : PIN_MAP_STRING := 

   “TDI:1, TDO:2, TMS:3, TCK:4, GND:5”; 

Scan Port Identification — The scan port identification statements define the entity's TAP. 

  attribute TAP_SCAN_IN of TDI : signal is TRUE; 
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  attribute TAP_SCAN_OUT of TDO : signal is TRUE; 

  attribute TAP_SCAN_MODE of TMS : signal is TRUE; 

  attribute TAP_SCAN_CLOCK of TCK : signal is (5.0e6, 

        LOW); 

Members Description (Optional) — Members represent devices or other modules that are on the module. 

Usually members represent components, but some boards may contain scannable daughtercards, card 

slots, or other sub-assemblies that require modules to describe them. 

  attribute MEMBERS of BOARD : entity is 

   “U1 (XYZ1, DW),”& 

   “U2 (XYZ2, DW), “; 

Bus Composition (Optional) — Buses in an HSDL module can be built of module buses, member module 

buses, member device buses, and member device test registers. 

  attribute BUS_COMPOSITION of BOARD : entity is 

   “bus1[4] (U1.Boundary[3,0]), “& 

   “bus2[4] (U2.Boundary[3,0]), “; 

Path Description — Module paths are intended to describe the netlist of TAP signals (scan paths) on the 

board. 

   constant boardpath1 : STATIC_PATH := 

    “U1, U2”; 

   end BOARD; 

For a complete specification of the HSDL language contact ASSET InterTech or your local ASSET 

representative. 

Serial Vector Format (SVF) 

What Is SVF? 

Serial Vector Format, commonly referred to as SVF, was jointly developed by Texas Instruments and 

Teradyne in 1991. ASSET InterTech, Inc. is the contact point for maintaining the SVF standard and is 

directly responsible for additions or changes to the standard.  

SVF is a standard ASCII format for expressing test patterns that represent the stimulus, expected 

response, and mask data for IEEE 1149.1-based tests. The need for SVF arose from the desire to have 

vendor-independent IEEE 1149.1 test patterns that are transportable across a wide selection of simulation 

software and test equipment — from design verification through field diagnostics. 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

50 

Boundary-scan test execution is controlled by the sequencing of TAP signals on the pins of the devices. 

Each device's behavior is determined solely by the states of its TAP pins. Boundary-scan tools must 

maintain knowledge of the sequences required to exert certain behaviors within a device and where that 

device is located down the serial scan path. 

SVF controls the IEEE 1149.1 test bus using commands that transition the TAP from one steady state to 

another. Rather than describe the explicit state of the IEEE 1149.1 bus on every TCK cycle, SVF 

describes it in terms of transactions conducted between stable states. For instance, the process of scanning 

in an instruction is described merely in terms of the data involved and the desired stable state to enter after 

the scan has been completed.  

The states, such as Capture, Shift, and Update, are inferred rather than explicitly represented. The data to 

be scanned in, expected data out, and compare mask are all grouped in an easily understandable manner. 

A command is provided to support deterministic navigation of TAP states where required. 

In addition to supporting a higher-level depiction of scan operations, SVF also supports combined serial 

and parallel operations. This allows SVF to accommodate ATE environments where some 

stimulus/response is handled via parallel I/O and serial signals are accessed via an IEEE 1149.1-control 

environment. 

SVF also supports the concept of scan offsets. Offsets allow a test to be applied to a component or cluster 

of logic embedded in the middle of a scan path. For example, assume a device exists in multiple instances 

on a board. Serially applied tests were generated by the designer and are available in SVF format. To 

reuse this test, it is necessary to put all other devices which are on the scan path into bypass mode. To 

accomplish this, the IEEE 1149.1 test controller must comprehend the number of Instruction Register bits 

before and after the target device. Once in bypass, the devices introduce Data Register bits before and 

after the target device. 

SVF allows a header and trailer to be defined once, which maintains the Instruction Register and Data 

Registers of the non-targeted devices in the desired bypass state. No modifications are required to the 

SVF for the device. If the same test was targeted at another device downstream in the scan path, this 

would be accommodated by changing the headers and trailers. 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

51 

The offset approach is capable of installing any Instruction and Data Register stimulus, provided these 

values are constant for the entire process of applying the SVF device sequence. 

SVF Structure 

The SVF file is defined as an ASCII file containing a set of SVF statements. Statements are terminated by 

a semicolon (;) and may continue for more than one line. The maximum number of ASCII characters per 

line is 256. SVF is not case sensitive and comments can be inserted into an SVF file after an exclamation 

point (!) or a pair of slashes (//). 

Each statement consists of a command and parameters associated with that specific command. Commands 

can be grouped into three types: state commands, offset commands, and parallel commands. 

State Commands 

State commands are used to specify how the test sequences traverse the IEEE 1149.1 TAP state machine. 

The following state commands are supported: 

• SDR — Scan Data Register 

• SIR  — Scan Instruction Register 

• ENDDR — Define end state of DR scan 

• ENDIR — Define end state of IR scan 

• RUNTEST — Enter Run-Test/Idle state 

• STATE — Go to specified stable state 

• TRST — Drive TRST line to the designated level 

SDR performs an IEEE 1149.1 Data Register scan. SIR performs an IEEE 1149.1 Instruction Register 

scan. ENDDR and ENDIR establish a default state for the bus following any Data Register scan or 

Instruction Register scan, respectively. RUNTEST goes to Run-Test/Idle state for a specific number of 

TCKs. For each of the above commands, a default path through the state machine is used. Each of these 

commands also terminates in a stable, non-scannable state. 

STATE places the bus in a designated IEEE 1149.1 stable state. TRST activates or deactivates the 

optional test reset signal of the IEEE 1149.1 bus. 
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Offset Commands 

Offset commands allow a series of SVF commands to target a contiguous series of points in the scan path. 

Examples would be a sequence for executing self-test on a device or a cluster test where all devices 

involved in the cluster test are grouped together. The following offset commands are supported: 

• HDR  — Header data for data bits 

• HIR  — Header data for instruction bits 

• TDR  — Trailer data for data bits 

• TIR  — Trailer data for instruction bits 

HDR specifies a particular pattern of data bits to be padded onto the front of every data scan. HIR 

specifies the same for the front of every Instruction Register scan. These patterns need only be specified 

once and are included on each scan unless changed by a subsequent HDR, HIR, TDR, or TIR command. 

Parallel Commands 

Parallel commands are used to map and apply the following commands: 

• PIO — Specifies a parallel test pattern 

• PIOMAP — Designates the mapping of bits in the PIO command to logical pin names 

Parallel commands allow SVF to combine serial and parallel sequences. PIOMAP commands are used by 

parallel I/O controllers to map data bits in the command into parallel I/O channels using the ASCII logical 

pin name as a reference. The PIO command specifies the execution of a parallel pattern 

application/sample. SVF does not specify any other properties of parallel I/O such as drive, levels, or 

skew. 

Default State Transitions 

SVF uses names for the TAP states that are similar to the IEEE 1149.1 TAP state names. Following is a 

list of SVF equivalent names for the TAP states. 

IEEE 1149.1 TAP State Name [SVF TAP State Name] 

• Test-Logic-Reset  [RESET] 
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• Run-Test/Idle  [IDLE] 

• Select-DR-Scan  [DRSELECT] 

• Capture-DR  [DRCAPTURE] 

• Shift-DR   [DRSHIFT] 

• Pause-DR   [DRPAUSE] 

• Exit1-DR   [DREXIT1] 

• Exit2-DR   [DREXIT2] 

• Update-DR  [DRUPDATE] 

• Select-IR-Scan  [IRSELECT] 

• Capture-IR  [IRCAPTURE] 

• Shift-IR   [IRSHIFT] 

• Pause-IR   [IRPAUSE] 

• Exit1-IR   [IREXIT1] 

• Exit2-IR   [IREXIT2] 

• Update-IR  [IRUPDATE] 

The following list gives several examples of the default paths that are taken when transitioning from one 

state to a specified new state. For example, if the current state is RESET and you select DRPAUSE as the 

end state, the TAP moves from RESET through IDLE, DRSELECT, DRCAPTURE, DREXIT1 to 

DRPAUSE. You only have to specify the current and end states, not each intermediate step. 

Stable State Path Examples 

Current State End State State Path 

RESET RESET RESET 

RESET  IDLE  RESET 

  IDLE   
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RESET  DRPAUSE  RESET 

  IDLE  

   DRSELECT  

   DRCAPTURE 

   DREXIT1 

   DRPAUSE 

RESET  IRPAUSE  RESET 

  IDLE  

  DRSELECT 

   IRSELECT 

   IRCAPTURE 

   IREXIT1 

   IRPAUSE 

SVF Example 

The following is an example SVF file: 

  !  Begin Test Program 
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  !  Disable Test Reset line 

     TRST OFF; 

  !  Initialize UUT 

     STATE RESET; 

  !  End IR scans in DRPAUSE 

     ENDIR DRPAUSE; 

  !  24 bit IR header 

     HIR 24 TDI (FFFFFF); 

  !  3 bit DR header 

     HDR 3 TDI (7) TDO (7) MASK (0); 

  !  16 bit IR trailer 

     TIR 16 TDI (FFFF); 

  !  2 bit DR trailer 

     TDR 2 TDI (3); 

  !  8 bit IR scan, load BIST seed 

     SDR 16 TDI (ABCD); 

  !  RUNBIST for 95 TCK Clocks 

     RUNTEST 95 TCK ENDSTATE IRPAUSE 

  !  16 bit DR scan, check BIST status 

     SDR 16 TDI (0000) TDO (1234) MASK (FFFF); 

  !  Enter Test-Logic-Reset 

     STATE RESET; 

  ! End Test Program 

The test begins by de-asserting TRST. The DRPAUSE state is established as the default end state for 

instruction scans and data scans. Twenty-four bits of header and sixteen bits of trailer data are specified 

for Instruction Register scans. No status bits are checked. Three bits of header data and two bits of trailer 

data are specified for Data Register scans. 

In this example, a single device in the middle of the scan is targeted. Notice from the 24-bit IR header 

(3x8-bit IR) and the 3-bit DR header (3x1-bit DR) that the targeted device has three devices before it in 

the scan path. From the 16-bit IR trailer (2x8-bit IR) and the 2-bit DR trailer (2x2-bit DR), the targeted 

device has two devices following it in the scan path. After the header and trailer offsets are established, all 

subsequent scans are the concatenation of the header, scan data, and trailer bits. The targeted device 

supports BIST, which is initialized by scanning a hex ABCD into the selected Data Register. The BIST in 

the targeted device is executed by entering the Run-Test/Idle state for 95-clock cycles. Next, the BIST 

result is scanned out and the status bits compared against a deterministic value to determine pass/fail. 

Standard Test And Programming Language, STAPL 

What is STAPL? 

The Standard Test And Programming language, STAPL, was developed in the late 1990s to overcome the 

limitations of SVF when used to program on-board CPLDs and FPGAs via their respective 1149.1 

interfaces. The language was created by taking a proprietary Altera programming language called JAM 
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(not an acronym) and wrapping a BASIC program control flow around it. The resulting language was then 

submitted to the JEDEC (formerly known as Joint Electron Design Engineering Council) Solid State 

Technology Association and finally approved as JEDEC’s JESD 71-1999 STAPL Standard, available for 

free from www.jedec.org/download/search/jesd71.pdf  

Basic Structure of a STAPL program 

A STAPL file contains four main sections: 

1. NOTE statements containing information-only text strings. 

2. CPLD ACTION statements, such as bulk or sector erase, program the device, verify programmed 

content, add program security, check IDCODE values, discharge high-voltage charge pumps, etc. 

3. PROCEDURE blocks and DATA blocks, containing STAPL executable processing and 

computation statements and associated data. PROCEDURE operation statements are based on but 

extended from SVF statements. Here are some examples: 

IRSCAN (instead of SVF’s SIR), 

DRSCAN (instead of SVF’s SDR) 

FREQUENCY (to change TCK frequency), 

POSTDR (modify the behaviour of a DRSCAN operation) 

PROCEDURE flow control statements are also available. Here are some examples: 

IF <Condition> THEN,  

GOTO, 

FOR loops,  

PROCEDURES are identified inside ACTIONS. 

1. A CRC statement containing the Cyclic Redundancy Code for the complete file to verify that the file 

has not been corrupted. 

http://www.jedec.org/download/search/jesd71.pdf
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STAPL Composers, Players and Sessions 

 

Figure 32: Programming a CPLD Through the Scan Chain 

A STAPL program is composed using a Composer and then played using a Player. A STAPL session 

occurs when a STAPL program is executed 

A STAPL Composer can be a free-standing utility or part of an integrated program-preparation-and-

delivery system. The only requirement is that the final program is compliant with the JEEC STAPL 

Standard and that it contains the following: 

• All mandatory NOTE fields 

• At least one ACTION statement 

• One or more PROCEDURE and DATA blocks 

• One CRC statement. 

STAPL players must support both interpreted and compiled STAPL programs and must posses the 

following characteristics: 

• Execute a STAPL file 

• Process user-specified ACTIONS and PROCEDURES 
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• Check the CRC signature. 

• Extract information from NOTE fields 

• Correctly access the 1149.1 signals at the primary TAP 

• Access other special control signals e.g. signals outside of the control of 1149.1 

• Be able to create real-time delays 

• Report results 

STAPL Program Example 

The following simple example of a STAPL program reads the ID code from an 1149.1 CPLD. 

‘ Lines with a leading apostrophe character are Comment lines 

‘ This program reads the ID code of a CPLD 32 times 

‘ The expected code is 00FDEC01 

‘ The IDCODE instruction code is a 9-bit code 001101000 

 

‘ The following are the mandatory NOTE statements 

NOTE “CREATOR” “STAPL Composer v2.3; 

NOTE “DEVICE” “Test32MC”; 

NOTE “DATE” 2007/01/23”; 

NOTE “STAPL_VERSION” “JEDS00-A”; 

NOTE “ALG_VERSION” “3”; 

NOTE “STACK_DEPTH” “2”; 

NOTE “MAX_FREQ” “10000000”;   ‘ 10MHz 

NOTE “TARGET” “1”; 

NOTE “IDCODE” “00FDEC01”; 

 

‘ Beginning of the executable part of the file. 

‘ Define an ACTION for the file. 

PROCEDURE DO_READ_IDCODE; 

 

‘ Declare variables for data arrays. 

BOOLEAN capture_data 32; 

BOOLEAN idcode_instr[9] = #001101000; 

BOOLEAN all_ones[32] = #FFFFFFFF; 

INTEGER i; 

 

‘ Initialize the device to the Test-Logic Reset state 

STATE RESET; 

 

‘ Load IDCODE instruction code. 

IRSCAN 9, idcode_instr[8..0]; 

 

‘ Capture IDCODE values 32 times and shift out. 

‘ Check that least-significant bit is always a logic-1. 

‘ This acts as a crude connection and signal integrity test. 

DRSCAN 32, all_ones[31..0], CAPTURE capture_data[31..0]; 

 

‘ Display captured value on console. 

EXPORT “IDCODE”, capture_data[31..0]; 

ENDPROC; 

 

‘ Finally, check file CRC signature 
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CRC 7358; 

STAPL: final comments 

Since its inception in 1999, the acceptance of STAPL by the industry has been slow but steady. Its 

acceptance was boosted by the development of the IEEE 1532 In-System Configuration Standard in 2000 

and, more recently, the SJTAG working group has seriously considered STAPL as the language for 

describing system-level JTAG operations in a multi-board environment. But, it remains to be seen if all 

PLD vendors will support it and if the SJTAG working group will be able to extend it to suit the purposes 

of that initiative. 

Chapter 6: IEEE 1532 In-Circuit Configuration Standard 

In this chapter, concepts concerning the in-system configuration of programmable logic devices on boards 

and the approach taken in the 1532 Standard are presented. 

 

Figure 33:  Background on In-System Configuration 

Development of the IEEE 1532 Standard 

In the early 90s when boundary-scan was first established, the Programmable Logic Device (PLD) 

vendors were among the first to adopt this new technology. They did so for in-system configuration 

purposes – that is, the programming of on-board PLDs in situ. The PLD vendors did this by adding 
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1149.1 features to their devices and then placing the devices in the board-level scan path. They quickly 

realized that 1149.1 access to the internal data and address registers was an ideal way to load 

configuration data into a PLD after the device had been assembled onto the board. The problem was that 

each vendor developed a proprietary method for defining the program data and controlling the 

configuration process. This resulted in devices that had to be individually programmed. Attempts at data-

format standardization were made, including using ASSET’s Serial Vector Format and Altera’s JAM with 

its JEDEC derivative, STAPL (see Chapter 5), but the result was that boards containing multiple PLDs 

from different vendors still required that each PLD be individually programmed. This became a limiting 

factor in board manufacturing. 

PLD Programming Environment 

 

Figure 34:  Programming the PLD Through the Scan Chain 

Here is a typical in-system configuration programming environment. 

Basically, all the non-PLD boundary-scan devices are placed in BYPASS mode but the PLD is in full 

programming configuration mode. Through special 1532 instructions, the program data register and 

program address register are both placed between the PLD’s TDI and TDO pins. In this way, an external 
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programming system, such as ASSET’s ScanWorks®, can access the PLD for programming purposes 

through the board’s primary Test Access Port. 

Before we get to the detail of 1532, let’s take a look at some of the reasons for wanting to configure PLDs 

after they have been mounted on a board: 

• Inventory management is simplified. 

• The need for off-line programming stations is either reduced or removed completely. 

• Rapid prototype configuration and especially re-configuration increases design flexibility and 

response-to-change requests. 

• The need for on-board sockets is removed. Such sockets are often a cause of pin damage or 

interconnect failures. 

• Similarly, the risk of damage caused by mechanical handling and electro-static discharge is 

also reduced. 

• And finally, the ability to carry out system and field-service program upgrades assists system 

debug. 

PLD Programming Formats and Languages 

 

Figure 35:  PLD Programming Formats and Languages 
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PLD formats and languages for describing program data and program algorithms should be clarified at 

this point. The figure shows three of the more well-known formats and languages, but there are others, 

which are usually proprietary technology developed by PLD vendors. Of the three mentioned above, 

Serial Vector Format, although basic, has become a baseline generic format supported by virtually all 

PLD and ATE vendors. STAPL, the JEDEC Standard Test And Programming Language, is a more-

recent attempt to produce a vendor-neutral programming language. It is based on Altera’s JAM language 

and SVF. SVF and STAPL are described in more detail in Chapter 5. 

The 2002 version of 1532 defined its own data format using ASCII to define data that matched the 

programming Flows built into the extended BSDL file. More on this later. 

 

Figure 36:  Getting Programming Data to the PLD 

In terms of delivery of the program data and program algorithms to the on-board PLD via the scan chain, 

this is achieved by a so-called “1532 Player” program-delivery-and-verification-system, such as ASSET’s 

ScanWorks®. In addition to the usual device BSDL files and board-level netlist, the Player will require the 

1532 in-system configuration data file, plus the BSDL file for the on-board PLD, or PLDs, and the 1532 

BSDL extensions. More information on these extensions will be presented later. 

Actual delivery to the on-board PLD is via the primary board TAP. 
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IEEE 1532 In-System Configuration Standard 

The IEEE 1532 Working Group was formed in 1996. The mission of the group was “to define, document 

and promote the use of a standardized process and methodology for implementing programming 

capabilities within programmable ICs utilizing and compatible with the IEEE 1149.1 communication 

protocol …” Basically, to configure or reconfigure, read back, verify or erase PLDs after they have been 

assembled on a board. The 1532 Standard defines several new internal registers to assist configuration 

programming, along with new mandatory and optional instructions compatible with the 1149.1 physical 

and logical protocols. 

Please note that In-System Configuration, ISC, is also known as In-System Programming, ISP, but 

because ISP is a trademark of Lattice its use is not approved by the IEEE Standards Authority. 

 

Figure 37:  IEEE 1532 - General Architecture 

Here we see the general architecture of a 1532 device. In addition to the standard 1149.1 ports, registers 

and TAP controller, a number of new registers are defined together with two new internal control signals: 

ISC_Enabled and ISC_Done. ISC_Enabled indicates that the device is either ready for a programming 

activity or not. ISC_Done indicates that a program has either been successfully written into the device or 

not.  

Now, to return to the new registers.  
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Figure 38: IEEE 1532 - New Registers 

Some of the new registers, and their function, are listed above, but the following offers more detail.  

• ISC_Default is used by any in-system configuration instruction that does not need to shift-in 

or shift-out data to control or monitor an operation. An example could be a bulk erase 

operation. However, it is a requirement of 1149.1 that a register is placed between TDI and 

TDO by any instruction. The typical solution in 1532 is to use the Bypass register as 

ISC_Default. 

• ISC_Config is an optional program configuration register used for pre-setting internal 

configuration data. Values captured or loaded determine the results or parameters of a 

programming environment. An example could be to select a specific part of the array for 

programming. 

• ISC_PData is the program address and/or data register. 

• ISC_RData is the readback data register. 

• ISC_Status is an optional 2-bit register that indicate status of the current instruction, as shown 

in the Figure. 
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Figure 39:  IEEE 1532 - Other New Registers (Optional) 

Other optional registers defined in the Standard are listed in this Figure. 

Accessing Program Data and Address Registers 

 

Figure 40:  Basic Program Memory Array Access 
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This figure shows one of the ways by which the internal data and address registers can be configured 

during programming operations that write or read data into or from specific addressed locations. Note that 

the 1532 Standard does not mandate the architecture of the memory array access circuitry. 

The diagram shows a basic scheme whereby Address and Data are concatenated to form one accessible register. The memory 

array holds the configuration data that determines the programmed function of the device. 

IEEE 1532 Instructions  

We’ll now take a look at the various mandatory and optional instructions defined in the 1532 Standard.  

 

Figure 41: Mandatory Instructions 

First, a 1532-compliant device must also be fully compliant with 1149.1. This means that the four 

mandatory 1149.1 instructions are also mandatory for 1532. 

Second, the two optional 1149.1 instructions, IDCODE and USERCODE, become mandatory for 1532. 

The remaining four new instructions – ISC_ENABLE, ISC_DISABLE, ISC_PROGRAM and 

ISC_NOOP – are the basic instructions required to enable or disable the programming mode and to carry 

out a programming action. 
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Figure 42:  Optional Programming Instructions 

This figure defines optional instructions to facilitate the programming process depending on the existence, 

or otherwise, of the associated feature in the PLD.  

 

Figure 43: Optional Program Control and Security Instructions 

Similarly, this figure defines more optional instructions – this time to facilitate program control and also 

to set program security parameters. 
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Figure 44:  Optional Address and Data Access Instructions 

These optional instructions allow access to additional hard-wired internal data and to refine the address 

and data-access operations. 

As you see, 1532 is very rich in its instruction set and, of course, additional private instructions can still 

be developed to accommodate a variety of special features available in commercial PLDs. 

Flows, Procedures and Actions 

Turning to the Boundary Scan Description Language requirements, there is an extensions mechanism in 

BSDL that will allow the special attributes of 1532 features to be defined. This is a straight-forward 

process and does not merit any special comment, but one thing that has been added to 1532 BSDL is the 

ability to define programming Flows, Procedures and Actions. These are worth further elaboration. 

• An in-system configuration Flow is a logical sequence of in-system configuration instructions 

that perform a basic programming function. Examples could be program array, read array, 

erase, check ID, and others. Flow also specifies how programming data is to be provided to a 

programming process. Some examples are hard-coded data, address data, R/W data.  

• An in-system configuration Procedure is an allowed sequence of Flows. For example, 

Procedure Erase could be based on the flows check ID followed by erase. 
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• An in-system configuration Action is an allowed sequence of Procedures, such as a complete 

programming cycle. 

This hierarchical method for defining programming operations is illustrated in the next figure. 

 

Figure 45:  Top-Level ISC Programming Flows, Procedures and Actions 

The diagram shows a possible sequence of operations to program a 1532-compliant device. The Flow, 

Procedure and Action examples just mentioned are also shown. 

Conclusions 

To conclude, IEEE1532 is intended to support three different types of programming environments: 

• Programming a free-standing single device using a device programmer. 

• In-system configuration of a single device on a printed-circuit assembly. 

• Concurrent in-system configuration of multiple devices on a printed-circuit assembly. 

In reality, the last two environments are where 1532 really comes into its own. 

Adoption of the 1532 Standard has been “slow but steady” and companies such as ASSET InterTech now 

provide programming support for boards containing 1532-compliant devices. 
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To Probe Further … 

 

Figure 46:  IEEE 1532 - To Probe Further 

Chapter 7: The IEEE 1149.6 Standard 

The IEEE 1149.6-2003 Standard for Boundary-Scan Testing of Advanced Digital Networks was approved 

in March 2003 and was created to solve test problems associated with DC-coupled and AC-coupled 

single-ended and differential signal interconnects. This chapter briefly describes these problems and 

summarizes the approach taken by this new standard. 

What’s The Problem? 

In terms of “what’s the problem?”, the answer is that testing AC-coupled interconnects is both different 

from and more difficult than testing DC-coupled interconnects, especially if the interconnects are 

differential. But many modern data buses now make use of AC-coupled differential interconnects so a 

closer look at the bus structures is warranted. Nowadays, there are a variety of high-speed bus styles, such 

as the following:  

• S-ATA 1.0 (1.5 Gbits/s Serial Advanced Technology Attachment for storage interface 

communication) 

• PCIe (Peripheral Component Interconnect Express) 
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• HyperTransport 

• Infiniband-embedded 

• FibreChannel 

• Serial RapidIO 

• XAUI 

• GigaBit Ethernet 

• And several others 

All of these buses share one salient feature: they are intended for gigabits-per-second data transmission 

and, in some cases, for device interconnects operating at different output-voltage levels. It is this latter 

feature that leads to the AC-coupled requirement. 

 

Figure 47:  High-Speed Serial Buses - Application to PC Motherboard 

Just to show the proliferation of these high-speed buses, the figure shows a PC motherboard making use 

of two of the more popular buses: PCI-Express and the Serial Advanced Technology Attachment bus. 
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Figure 48: PCI-Express Lane Architecture 

Digging a little deeper into the architecture of a PCI-Express system, here we see two 4-wire 

Transmit/Receive lanes. Looking specifically at Lane 0, we see the two AC-coupled Low Voltage 

Differential Signal, LVDS, interconnect pairs between the two devices as required by the PCI-Express 

Standard.  

DC and AC-coupled Low-Voltage Differential Signals 

 

Figure 49:  Differential DC Coupling 
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Here is a typical DC-coupled differential pair. The signal coming from the transmitter driver is split into 

two legs: a positive leg and a negative leg. The terminating resistor at the receiver develops a positive or 

negative voltage that is interpreted by the receiver amplifier as a logic-1 or logic-0 depending on the 

polarity of the voltage. 

In this diagram we also see standard 1149.1 boundary-scan cells upstream of the transmitter and 

downstream of the receiver but note that these cells do not give us independent control of each leg of the 

interconnect. As a result, defect coverage would be limited to a very small subset of the actual possible 

opens and shorts that can occur on the differential pair. A key objective of 1149.6 is to improve 

significantly the defect coverage on differential interconnects. 

 

Figure 50: Differential AC Coupling 

If the signal drive-voltage from device 1 on the left is different from the signal-receive voltage of device 2 

on the right, then we will need to block the DC component of the signal with a series capacitor. This 

creates an AC-coupled connection. Now, we are truly prevented from using regular 1149.1 boundary-scan 

cells. 1149.1 assumes a DC connection from the drive scan-cell to the receive scan-cell. 

It was this basic limitation of 1149.1 that led to the creation of the 1149.6 standard. 
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SERializer-DESerializer, SERDES, Structures 

 

Figure 51:  AC-Coupled SERDES Interconnects 

Before we get to the 1149.6 solution, let us ask the question “where do we see AC-coupled differential 

interconnects?” 

Mostly, these high-speed interconnects occur between SERializer-DESerializer devices : the so-called 

SERDES designs. Inside the SERDES devices, data is handled at a lower frequency such as 200 

Megabits-per-second and placed in multiple parallel registers. Before transmission, all the data is 

collected into a serializing register and transmitted at a much-higher frequency. To keep the numbers 

simple, if we had ten equal-length parallel registers all working at 200 Megabits-per-second and we 

collect all the data into a single serializer register before transmission, we would have to send at ten times 

the internal 200 Megabits-per-second speed – that is, at 2 Gigabits-per-second. 

At the far end, we would collect all the data into a single receive register and break it back down to blocks 

of data to go into multiple parallel registers where we can process at the original frequency of 200 

Megabits-per-second.  
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The point here is that the processing speed is lower than the transmission speed and we really need to 

check the integrity of the transmission path as well as what is going on inside the devices.  

Where Can Defects Occur? 

 

Figure 52:  Where Can Defects Occur? 

Looking at where defects can occur, there are three main places: 

• Inside the devices, 

• At the external bonding points, and 

• Along the external interconnects themselves. 

1149.6 addresses opens and shorts at the external bonding points and along the external interconnects. At 

this point, care must be taken. Some differential systems are designed to be fault tolerant. That is, if there 

is an open on one of the two legs, for example, the receiver will still produce a stable logic value, usually 

logic-1. Similarly, a direct short between the positive leg and the negative leg will also produce a stable 

result. Such defects may or may not be detected by low-frequency testing of the differential interconnect 

and may dictate a higher-frequency test strategy. As we will see, 1149.6 is not a high-frequency test 

strategy and although there are solutions to the need for high-speed testing on differential connections, 

these solutions are outside the scope of this tutorial. 
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Options for AC-Coupling Test 

 

Figure 53: Options for Testing AC-Coupled Interconnects 

So, what are the options for testing DC and AC-coupled differential interconnects? 

Clearly, 1149.1 will not work for AC-coupled differential interconnects. It may work for DC-coupled 

differential interconnects but the defect coverage would be low as pointed out earlier. 

We could look at a solution based on the use of 1149.4 Analog Boundary Modules attached to the 

individual legs of the interconnects but the biggest objection to this solution would probably be the 

potential impact on mission-mode performance at gigabits-per-second speeds of operation. In all 

likelihood, no one has tried using 1149.4 ABMs in this context. 

So that leads us to the 1149.6 solution. In fact, there are other solutions as well, such as, some form of 

device-internal built-in self-test that drives stimulus and senses and checks responses between devices on 

a board, such as Intel’s recently announced IBIST technique. In this tutorial however, I will focus only on 

the 1149.6 solution. 

Another note of caution. 1149.6 was approved in March 2003. This is relatively recent, and, like any new 

standard, there may be initial problems with its adoption. To get the latest information on this standard, 

contact the 1149.6 experts at ASSET InterTech. 
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IEEE 1149.6 Basic Architecture 

The objective of IEEE 1149.6 is to solve test problems associated with Advanced I/O (AIO) connections. 

These are defined as connections based on AC-coupled 2-wire differential signaling. But, the approach 

must also work with DC-coupled pairs. Testing an AC-coupled line requires a time-varying signal as 

opposed to a static time-invariant signal. As we will see, this is the main feature that differentiates an 

1149.6 solution from an 1149.1 solution. 

 

Figure 54:  Interconnect Test: IEEE 1149.6 Solution 

The new 1149.6 Standard calls for a modified boundary-scan cell upstream of the differential driver. This 

cell is capable of delivering a single pulse or a train of pulses to the individual legs of the interconnect 

pair. The standard also calls for a special form of test receiver on each receiving leg. These receivers are 

capable of determining whether the AC-signal coming in is rising or falling. A rising edge indicates that 

this leg is positive with respect to the other leg, whereas a falling edge indicates that this leg is negative 

with respect to the other leg. In this way, the incoming AC-signal is digitized, and the result is captured in 

normal 1149.1 boundary-scan cells placed at the outputs of the test receivers. Under normal 

circumstances, the values captured in the two-receiver scan-cells should always be complementary. 

The bottom line is that the 1149.6 Standard affords much better fault coverage, particularly of opens, and 

there is no impact on mission-mode performance. 
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Figure 55:  Modified TX Boundary-Scan Cell 

Here we see more detail of the modified driver-boundary-scan cell. Essentially, multiplexers are used to 

route a single AC pulse or train of pulses into the transmitter driver and away to the differential signal 

legs. Note that the actual signal into the driver can be either the AC test-signal, or a DC test-signal coming 

from the boundary-scan cell, or the mission-mode signal. In this way, such a boundary-scan cell will 

support standard 1149.1 EXTEST operations as well as the new 1149.6 requirement to drive a pulse. This 

is an important consideration for a board that contains a mix of 1149.1 and 1149.6 devices. 

 

Figure 56:  1149.6 Test Receiver 
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At the receiver end, the AC signal is fed into what is called a hysteretic comparator, which compares the 

received signal with a delayed version of itself in order to determine the rising or falling nature of the 

signal. The output – a logic 1 if rising; a logic 0 if falling – is passed to the downstream boundary-scan 

cell where it can be captured and scanned out in the normal way.  

 

Figure 57:  New 1149.6 Instructions 

The 1149.6 Standard calls for two new mandatory instructions to support the new architectural features: 

EXTEST_PULSE and EXTEST_TRAIN 

As the names suggest, EXTEST_PULSE generates a single pulse by entering and exiting the Run-

Test/Idle state of the 1149.1 TAP controller; whereas EXTEST_TRAIN generates a stream of pulses 

while in the Run-Test/Idle state. In case you are curious, the BSDL file for an 1149.6 device will specify 

the minimum number of pulses and the maximum time period allowed for pulse generation in the Run-

Test/Idle state. In this way, designers can control the number of pulses that are generated by controlling 

the frequency of TCK. 

Conclusions 

The 1149.6 Standard was created and approved within a two-year period. This is very fast for an IEEE 

standard and essentially demonstrates that there was a real test issue associated with AC-coupled 

differential interconnects and a willingness to produce a general solution which was not necessarily the 
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same as any earlier home-spun solutions. Already, companies such as Agilent Technologies, Cisco, 

National Semiconductors and PLX Technologies have 1149.6-compliant devices and ASSET InterTech 

has updated its ScanWorks® product to accommodate such devices. In addition, several EDA test-

synthesis companies have announced 1149.6 insertion tools so the adoption of the standard is off to a 

good start. 

To Probe Further … 

 

Figure 58:  IEEE 1149.6 - To Probe Further  

Chapter 8: DFT Boundary-Scan Guidelines for Devices and Boards 

This chapter discusses the reasons for Design-For-Test (DFT) guidelines and summarize the more 

important rules to follow. At the end of the chapter, information will be provided on where to find a more 

detailed list of DFT guidelines. 

Why Do We Need DFT Guidelines? 

We should start with the basic question – why do we need DFT guidelines if the on-board digital devices 

already contain boundary scan? 

The answer is that it is easy to design the board such that the board test engineer is not able to take 

advantage of all the boundary-scan features, or that certain optional boundary-scan features that could 
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have been designed in are missing. DFT guidelines are intended to act as a checklist for both chip-level 

designers responsible for inserting boundary scan inside their devices and board-level designers, both 

electrical and layout, who are responsible for making sure all the boundary-scan features are not only 

usable but efficiently usable. 

Chip-Level DFT Guidelines 

Let’s explore further, starting with the chip-level designers. 

 

Figure 59:  ASIC/SoC/SiP Chip-Level DFT Guidelines 

First and foremost, we should ask “Who drives the specification for boundary-scan features inside new 

Application-Specific ICs (ASICs), System-on-Chip (SoC) and System-in-Package (SiP) devices?” The 

answer is “all those who will benefit from the use of boundary scan” – that is, prototype board debug 

engineers, board test programmers, system integrators, and field service repair engineers. It’s also worth 

adding device procurement people to this group. This makes such people conscious of the need to buy 

1149.1-compliant devices. Consequently, the correct way to specify the 1149.1 features in a new ASIC, 

SoC or SiP is for all these people to sit down and decide the product life-time strategy for testing the 

boards. Each engineer will have a different view of the requirements specification and, collectively, the 

group can try to come up with a consensus view of the overall requirement, but note that obtaining a 

consensus view can be difficult! 
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Once specified, the requirement can be presented to the chip designer in the form of a BSDL file. Some 

1149.1 chip-level boundary-scan synthesis programs can accept BSDL as an input specification. Check 

with your EDA vendor. 

 

Figure 60:  Chip-Level DFT Guidelines: Some Examples 

In terms of the chip-level guidelines themselves, the list above illustrates the sort of things that should be 

considered by those responsible for adding boundary scan logic to devices. 

Working through the list: 

Specify 1149.1 compliance and check for compliance. 

It is very important that boundary-scan devices not only comply to the 1149.1 Standard but that they have been 

checked by a reputable compliance checker such as ASSET’s BSDL Validation Services. 

Include the optional 1149.1 TRST* signal. 

This signal is optional but adding it to the device simplifies board initialization. 

Include all optional 1149.1 instructions. 

There are six optional instructions. They all have value at board test. Check the requirements with the 

board test engineers. 
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Determine the tolerance to output pin shorts. 

It is ironic that the only way to use boundary-scan to find pin-to-pin shorts at the board level is by 

deliberately creating contention on two driver scan cells i.e. causing one driver to drive a logic 1 and the 

other to drive a logic 0. If the short is present, then we assume that it is either a strong-1 weak-0 (Wired-

OR) short or weak-1 strong-0 (Wired-AND) short. Such a test places a stress on the output drivers since 

one output will dominate, forcing the other to its opposite logic value and possibly damaging the output 

drive amplifier of the weaker signal. You will need to determine the vulnerability of the output drivers to 

such damage. 

Increase on-board short-circuit coverage by using special self-sensing boundary-scan cells, such as 

BC_7s thru BC-10s 

Replacing BC_1s with self-sensing boundary-scan cells (BC_7s thru BC_10s) will increase short-circuit 

detection between boundary-scan and non-boundary-scan devices on a board. 

Ensure no internal ground bounce caused by EXTEST operations. 

The 1149.1 Standard mandates no ground bounce inside the device caused by any boundary-scan activity 

and so the device should be OK but it is better to check to be sure. 

 

Figure 61:  Chip-Level DFT Guidelines - Some More Examples 
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This figure contains yet more chip-level guidelines. Space does not permit all the detail, but these 

guidelines are included here for completeness. 

Board-Level DFT Guidelines 

Let’s move on to the board-level guidelines. 

 

Figure 62:  Board-Level DFT Guidelines 

First, as a board designer you should maximize the use of 1149.1-compliant devices. The more boundary-

scan register access you have, the more fault-coverage will be obtained, both between boundary-scan and 

boundary-scan devices and between boundary-scan and non-boundary-scan devices. 

You should also make sure that the device BSDL files have been validated and that all non-compliant 

features, if they exist, are documented in the Design_Warning section of the BSDL files. 

Compliance-enable pins are also available on certain CPLDs. We will discuss what to do with these pins 

later. 



IEEE 1149.1 JTAG and Boundary-Scan Tutorial – Second Edition 

                                                                             

85 

 

Figure 63:  Board-Level DFT Guidelines - Some Examples 

Here is additional information on each of the guidelines listed in the figure above. 

Design a simple board-level boundary-scan infrastructure. 

The distribution of TMS and TCK can be simple i.e. broadcast simultaneously to every boundary-scan 

device, or complex – multiple TMS controls for example. Also, a single chain of devices can be designed 

to be dynamically reconfigurable into a number of smaller isolated chains to aid diagnosis. And, 

remember: “You can only go as fast as the slowest device in the chain”. The basic rule for infrastructure 

design is “keep it simple” unless you can see a reason to design a more complex chain of boundary-scan 

devices. 

Ensure easy access to all primary TAP pins. 

Essentially, make sure that all primary TAP signals on the board – TDI-in, TDO-out, TMS, TCK and 

TRST* (if present) – are easily accessed by the tester, such as from the edge connector or via a plug and 

socket arrangement. 

Buffer primary TAP signals onto the board. 
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Primary TAP signals require buffering onto the board. Use simple line-driver buffer devices. This 

guideline also includes advice on primary TAP signal terminations, e.g. 10KΩ pull-ups on TDI-In, TMS 

and TCK upstream of their buffers, and proper termination on TDO-Out. 

Ensure careful layout of TAP Signals: TCK, TMS, TDI and TDO. 

TCK and TMS especially need special care during board layout. They are master boundary-scan control 

signals and on big boards they can be connected to many different devices. So, it is important to remove 

any signal skew. 

Tie board TRST* with a defeatable pull-down resistor upstream of the buffer. 

Once the board is operating normally, all boundary-scan logic inside on-board devices should be in a 

passive state – that is, the Test-Logic Reset state. Tying TRST* low ensures this for all devices containing 

the optional TRST* control pin. 

Consider the use of in-circuit nails to resolve certain diagnostic ambiguities like TDO-to-TDI opens. 

Boundary scan does not eliminate the need for physical probes. Quite the contrary, physical probes from 

an in-circuit or flying probe tester, for example, can be used intelligently to supplement the control and 

observable characteristics of the non-boundary-scan devices on the board. More on this later. 
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Figure 64:  Board-Level DFT Guidelines - Some More Examples 

Here are some more guidelines, for completeness. Note the first item in the list above for dealing with 

access to RAMs, Flash, CPLDs and FPGAs for both test and in-system configuration. Using boundary 

scan to configure CPLDs and FPGAs once these devices are mounted on a board is a major new 

application of boundary scan. Similarly, loading data into on-board flash devices is also relatively new. 

Generally, these applications are known as In-System Configuration or In-System Programming.: see the 

chapter on the IEEE 1532 In-System Configuration Standard for more detail. 

 

Figure 65:  Board-Level DFT Guidelines - Yet More Examples 

This should complete the list of board-level DFT guidelines. Of special note here is the fourth item 

reinforcing earlier comments on combining the virtual access of boundary scan with the physical access, 

if available, of in-circuit or flying-probe test. 

Chapter 9: Boundary-Scan Tools 

To complete this tutorial, we will discuss the software tools that are required to use boundary-scan 

technology for interconnect testing and other design debug and diagnostic operations on devices, boards, 

and systems. 
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Product Life Cycle Issues 

Reaping the full value from your boundary-scan investment requires the use of a toolset that meets your 

testing and debug needs during the entire product life cycle. Because the fixturing requirements of 

boundary-scan designs are fairly simple and consistent from one design to the next, you can now use the 

same toolset during all phases of the product life cycle. However, the toolset must offer features to meet 

your specific needs during each phase of the product’s life cycle. 

The toolset you choose should meet the needs of all major phases in the product life cycle, including 

design debug, manufacturing test, and field test and repair. In addition, tools used during the 

manufacturing test process should also meet the needs of its four subprocesses: vector creation, test 

program creation, test program execution, and diagnosis. A discussion of the objectives of each process 

follows.  

Design Debug 

Design Debug examines a product and ensures that it is functioning properly. Often, the product in 

question is one of a limited number of products built in order to prove out the functional design of the 

system; these are called prototype products or prototypes. Even though the goal of this process is to 

determine if the prototype system functions as expected, the design engineer must first identify and repair 

any structural problems caused by incorrect physical construction of the product, e.g., solder globs that 

short two adjacent pins on a device. In this sense, the design engineer must first perform the 

manufacturing test process in order to complete the debugging process. To complete structural and 

functional testing requires creating tests.  

Manufacturing Test 

The goals of this process are to determine if any errors were made in the manufacturing process and if the 

unit under test (UUT) functions as specified and verified during the design debug process. 

Vector Creation 

The focus of this subprocess is the creation and verification of the test vectors that are required to meet 

the test objectives for the current project. The tests that can be developed fall into two major categories: 

structural or functional. The goal of structural tests is to identify structural problems caused by incorrect 
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physical construction of the product, e.g., solder globs that short two adjacent pins on a device. Functional 

tests attempt to verify that the product functions as expected under specified stimulus. In order to do 

functional tests, the product must usually be free from any structural defects. During the test vector 

verification stage of this subprocess, a known-good product should be used in order to detect any issues 

with the test vectors themselves. 

Test Program Development 

The goal of this subprocess is to provide an executable software program, including test vectors, to apply 

the appropriate boundary-scan tests and, in the case of a test failure, determine what action should be 

taken with respect to the failed product. This software program is called a test program. Once available, 

the test program is installed on the test machines on the manufacturing floor and executed by the test 

operator on products as they pass through the manufacturing line. 

There is a wide range of capabilities that might be placed into a test program. At one end of the scale, the 

test program may simply be a batch file that sequentially executes the same test on each product without 

requiring any interaction with the operator. In this case, the test program may only provide textual 

information to the operator on the results of the test application. For example, a PASS/FAIL message 

could be provided with instructions to remove the bad product from the manufacturing line. At the other 

end of the scale, the test program may involve a sophisticated graphical user interface, which requires 

significant decision making on the test operator’s part to complete the test and provide significant 

diagnostic information to the test operator as to what is wrong with the product being tested. 

Another consideration in this subprocess is the need for structural and functional tests in order to 

complete the testing of the unit. A concern arises because sometimes the test operator must use several 

different test tools, each of which is tuned for a particular test type. 

Test Program Execution 

This subprocess involves the actual execution of the appropriate test vectors on products as they move 

through the manufacturing line. This subprocess also involves determining what action to take when a 

product fails a specific test. Test execution and diagnosis is controlled by the test program. The person 

who executes this subprocess is called the test operator. 
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Since the goal of the manufacturing line is to keep products moving at a specified pace, full analysis or 

repair of failed products is not done at this time. Most often failed products are removed from the line, 

tagged as being defective, and attached with some type of information that can be used to further diagnose 

and repair the product at a later time. 

Diagnosis 

This subprocess has two goals: 1) determine why a specific product failed a specific test and, 2) if 

possible, affect the necessary repairs to that product. During the normal manufacturing process failed 

units are diagnosed in order to affect sufficient repairs to allow the units to become part of manufacturing 

output. 

In the preferred case, the diagnostic engineer first examines the test results from the test failure to 

determine that the product is faulty. After this examination, if the defect cannot be determined, the 

diagnostic engineer usually re-runs the same test to determine if the failure is repeatable in the current 

environment. If the defect is still not determinable, the diagnostic engineer will typically execute 

additional previously created tests or tests specifically created during diagnosis to debug the product. 

In many ways, this process is similar to the design debug process, except that the diagnostic engineer 

knows that the board has at least one defect. In addition, the diagnostic engineer may have information to 

help pinpoint where that defect is. 

Unlike the design debug process, the diagnostic engineer almost certainly does not have any depth of 

knowledge of the product at hand and does not have access to the type of computer-aided design 

information or other data available in earlier processes. 

Field Test and Repair 

The goal of this process is to quickly determine what product or part of a product in end-customer use is 

faulty and replace it. In this way, this process is similar to the first part of the diagnosis process, except 

here the engineer may be dealing with the test and diagnosis of a much more complicated system 

involving many individual boards or subsystems. 

As in the diagnosis process, the field test engineer will want to run the test program for a product to 

determine what is wrong. Moreover, he may want to run additional tests or interactive applications in 
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order to further isolate the defective unit. Also, this testing should be done with no or only minimal 

human intervention. In this case, the product’s operating system automatically, or under human direction, 

runs the required tests and reports back appropriate diagnostic information. 

A key point about this process is that it always occurs in an environment that is not directly under the 

control of the company that produced the product. This means that the people and tools used during this 

process must be flexible and must be available at the end-customer’s site. 

Boundary-Scan Tools Requirements 

A well-developed implementation of boundary-scan architecture in combination with the right boundary-

scan software tools can provide major benefits over more traditional methods such as logic analyzers, 

oscilloscopes, and in-circuit testers for many test and design debug tasks.  

These benefits include: 

• Easily handle complex system configurations which include daughtercards, multichip modules 

(MCMs), single inline memory modules (SIMMs), or other modules that are added to the main 

board 

• Test systems which are configurable where the system composition changes based on end-

customer demands 

• Access and control device registers, buses, and pins 

• Easily accessed Built-In Self-Test (BIST) capabilities present in devices in the system 

• Integrated testing of non-scannable devices and memories 

• Integrate a boundary-scan test suite with other test tools and test executives through industry-

standard programming interfaces 

• Price commensurate with performance because the toolset runs on multiple platforms 

• Reuse test suites at higher levels of integration and through different phases of the product life-

cycle 

• Embed tests into the system for on-line testing and diagnostics while in the field 

• Complete the required manufacturing defect detection and diagnosis 
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In the following discussion, we will examine each process of the product life-cycle and what boundary-

scan tools are required to gain the most from your boundary-scan investment. 

Design Debug 

With the inclusion of boundary-scan architecture into a design, the design team has a real opportunity (for 

the first time) to perform deterministic structural defect analysis on prototype boards and systems in a 

manufacturing environment. To support this type of analysis, the boundary-scan tools must have the same 

kinds of tools as traditionally found in a manufacturing test environment. A more complete description of 

these capabilities is included in the Manufacturing Test section, but, in general, the following capabilities 

are required: 

• Vector creation tools for: 

o scan path and interconnect testing 

o non-scan clusters of logic surrounded by boundary-scan devices 

o memory testing 

o conversion of chip-level parallel tests for application in a serial environment 

o easily creating other custom tests for the UUT 

• Diagnostics capabilities for interconnect testing with resolution to at least the net-level and 

preferably to the pin-level and other diagnostics for analyzing results from serial vector 

application 

In addition to assisting with manufacturing defect analysis of prototypes, boundary-scan tools can provide 

the design engineer with many capabilities to assist functional debug of the prototype design. Boundary-

scan based interactive design tools allow the design engineer to access and control boundary-scan device 

registers and pins as an adjunct to other functional tester access. With this ability, the designer can ensure 

that correct values are driven to critical components, drive specific values onto a device, or gain access to 

internal device registers that might provide clues to functional errors. These design debug tools fall into 

two general capabilities: scan analysis and debugging.  

Scan analysis tools allow you to apply test vectors to the unit under test, capture responses, and view 

those responses in state table or digital waveform displays. These tools also support concepts in common 

with logic analyzers, such as triggering and sequences that allow you to control when and how much 
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response data to collect for analysis. With these tools, you can view a large number of vectors and analyze 

the hardware’s response. Comparisons can be made between expected and actual values, automatically 

speeding debug time. 

Debugging tools provide an interactive interface for control and observation of the IEEE 1149.1 

architecture. Features include the following: 

• Graphical view of the design hierarchy 

• Ability to edit scan data at the register and pin level 

• Data manipulation via user-defined symbolics or via binary, decimal, or hexadecimal data 

input 

• Register grouping based on a design’s functionality 

• One-button interface to apply changes made to the instructions and data values 

• Single-step application of pre-existing tests or serial vectors 

• Interactive recording to create a test from an interactive sequence of debug steps 

Manufacturing Test 

Vector Creation 

Vector creation tools provide a means to create and verify five basic types of tests: scan path integrity, 

interconnect, cluster, memory, and custom. A brief discussion of each of these types of vector creation 

follows. 

Scan path integrity tests involve verifying that the four-wire connection for the boundary-scan test bus 

does not have faults on it. The tool should provide an automated means of creating the vector sequence 

required to verify this. Diagnostics will pinpoint the device and signal which is faulty. 

Interconnect tests are the same as in the traditional manufacturing test environment and provide the ability 

to detect and isolate common stuck-at and open/shorts on device interconnect. The tool should provide an 

automated means of creating these vectors, accepting as inputs your device-level boundary-scan 

descriptions, a description of how the boundary-scan devices are arranged in the scan chain, and CAE 

netlist information in common formats for the non-test device interconnections. The tools also should 

provide a means to easily ignore series devices in the design as a means of improving diagnostics later. As 
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well, the tool should provide an easy means of setting control values on certain pins that may not be 

changed during the test, e.g., a program pin on an FPGA or PLD. Textual outputs of fault coverage and 

vector responses are also required. 

Cluster tests are generated to test either a single device or cluster of non-boundary-scan devices 

surrounded by boundary-scan devices. This is achieved through Component Actions. This tool should 

provide a means of automatically setting the values for boundary-scan control cells to control the 

operation of bidirectional and tristate pins during vector application and response acquisition. 

Memory test creation involves the automatic generation of the vectors required to test address, data, and 

control lines for memory devices adjacent to boundary-scan devices. This tool should use the boundary-

scan description of the system, and specific information on the type and size of the memory device to 

create vectors for application. 

Custom tests involve those tests you might want to create which are particular to your design. For this 

type of test creation, the vector creation tool needs to provide an easy-to-use and simple programming 

language that allows full access and control of the registers and pins on boundary-scan devices. Using this 

programming language, you should be able to easily tailor vectors to verify an array of static functional or 

structural problems with your design, including the execution of BIST capabilities in a device. 

Test Program Creation 

Once the vectors required for the scan-based manufacturing test have been created, they must be 

assembled into a test program for delivery to the manufacturing floor. 

Test program creation takes into account all of the varying needs you have in the manufacturing 

environment to provide you the functions for developing custom test suites, integrating test suites with 

other test tools and executives, or building an entire manufacturing test capability. The environment 

should include a simple means of creating a test program based on industry-standard test executives and 

provide industry-standard programming environments such as C and C++ for more complex test program 

creation. 
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The programming environment should provide access to the boundary-scan-accessible registers and pins 

through natural programming methods for custom-test suite development. It also should allow reuse of 

previously created test programs and vectors to speed the test development process.  

Finally, with a high-level language basis, the programming environment enables you to: 

• Reuse diagnostic reporting or other error routines that have been developed previously 

• Share data with other test instruments 

• Integrate boundary-scan-based tests into commercial test executives 

• Quickly produce a customized user-interface for your test program based on Windows® 

technology 

Test Program Execution 

Once test programs are complete, you will need an effective means of deploying your boundary-scan 

based tests in a manufacturing environment. For this task, boundary-scan solutions should include PC-

based board test application systems that support multiple possible hardware interfaces such as USB, 

PCIe, ethernet and PXI with the ability to integrate boundary-scan controlled parallel I/O modules. These 

solutions assist with creating a manufacturing test environment to fully use boundary-scan testing. 

Diagnosis 

When failures are discovered in the manufacturing line, the boundary-scan tools provide several levels of 

diagnostics. These include text-based analysis of serial vectors results, net-level diagnostics for 

interconnect and cluster tests, and pin-level diagnostics for interconnect tests. 

The net-level diagnostics must provide isolation down to the failing net, but may not detect the actual pin 

with the fault. This is often sufficient for many faults and provides sufficient data for fixing or proceeding 

with other tests. 

Pin-level diagnostics must provide detailed fault diagnostics for various stuck-at conditions, bridging 

faults, open and bad bidirectional cells, and other opens and shorts. With this detailed information, you 

can find and fix the faulty component. 
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Field Test and Repair 

For field test and repair, boundary-scan tools allow the application of debug and diagnostics capabilities 

on portable computing platforms, such as the parallel printer port or PCMCIA card on a laptop computer. 

In addition, tests can be embedded into the unit-under-test for self-test purposes. This involves the 

inclusion in the design of a test bus controller device and use of controller-specific “C” code to direct the 

application of vectors, acquisition of responses, and diagnostics. Although diagnostics are often limited to 

go/no-go, this provides a powerful alternative to lower the cost of testing by eliminating the expense of 

on-site visits for determining which unit must be replaced or repaired. 

Chapter 10: Recent Developments 

Since the first publication of this booklet in 2000, there have been some significant developments in the 

world of boundary scan technology. This chapter takes a look at these developments. 

IEEE 1687 (IJTAG) Initiative 

For some years now, enterprising device designers have been using the 1149.1 Test-Access Port (TAP) 

and Instruction Register system to access and make use of device-internal registers for device design-

debug and test purposes. Early examples include access to the control registers of memory-BIST engines 

and logic-BIST seed setup and signature registers. More-recently, we have seen the development of TAP 

access to embedded signal-conditioning instrumentation prior to display on an external logic-analyzer or 

oscilloscope. 
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Figure 66: TAP Access to Embedded Instruments 

Many other examples abound and in 2004 at the IEEE International Test Conference, several interested 

parties came together to discuss the need for a new standardization effort. The result was the Internal 

JTAG (IJTAG) initiative. Basically, the intent of IJTAG is to standardize the way an external system 

could communicate with any form of internal design debug and test instruments via the 1149.1 TAP. 

Here, the word instrument is used to mean any on-chip circuit for test, debug, diagnosis, monitoring, 

characterization, configuration, or functional use. 

The IJTAG working group is now on its way to creating a new IEEE standard, 1687. The permission to 

do this was approved by the IEEE Standards Authority in March 2006. To quote from the proposal form: 

 “This Standard will develop a methodology for access to embedded test and debug features, (but not the 

design of the features themselves) via the IEEE 1149.1 Test Access Port (TAP) and additional signals that 

may be required. The elements of the methodology include a description language for the characteristics 

of the features and for communication with the features, and requirements for interfacing to the features” 

In simpler words: 

1687 enables a solution to access, configure, control and gather results from embedded on-chip 

instruments (e.g. Internal Scan, BIST engines, IEEE 1500 Wrappers, Test-Data Compressors, Design 

Debug Logic, etc.) using an 1149.1 TAP Controller as the main gateway to and from the chip. 1687 will 
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define the instrument access path, the instrument access protocol, and maybe the instrument interface port 

– but 1687 will not dictate, modify, or define the instrument. 

At the time of this writing, the 1687 Working group was finalizing a definition of a standard hardware 

interface between the top-level 1149.1 TAP and a range of lower-level instruments. To find out the latest 

status, visit http://grouper.ieee.org/groups/1687/. 

System JTAG (SJTAG) Initiative 

Since the early 1990s, companies such as Lucent Technologies (formerly AT&T) and Ericsson have been 

looking to extend the use of single-board boundary-scan infrastructures into the multi-board (system) 

domain. Initially, this was to verify that: 

• each board is present, is the correct board and is correctly inserted into the motherboard 

socket, and 

• each board-to-board interconnect on the motherboard system backplane is validated i.e. a 

continuity test to detect any unwanted opens or shorts. 

But, eventually, the system companies realized that there was much more that could be done with system-

level JTAG, such as: 

• in-system configuration and re-configuration of on-board Programmable Logic Devices such 

as CPLDs, FPGAs and Flash devices; 

• re-use of device-internal design-debug and test instrumentation to support diagnosis down to 

the smallest replaceable unit, especially in field-service and repair depot environments; 

• access to embedded board-level BIST routines; 

• as a way of reducing the number of No-Trouble-Found boards shipped back to a repair depot. 

In support of these requirements, various forms of system-level boundary-scan architectures were 

proposed – ring (daisy chain), star (radial) and multi-drop – and both National Semiconductor and Texas 

Instruments produced special system JTAG support devices – ScanBridge and Linking Addressable Scan 

Port respectively. Tool vendors, such as ASSET InterTech, extended their tools to accommodate the new 

system-level applications of boundary scan. 
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Unfortunately, there is no common standard for describing the architecture of the system-level boundary-

scan infrastructure. Moreover, there is no JTAG Test Command and Data Language capable of covering 

the following basic requirements: 

• Represent embedded test data (e.g. vectors) efficiently 

• Write to, Read from and Manage test data stored on the board 

• Run an embedded test 

• Configure and Validate an on-board PLD 

• Capture the result of a test and Compare with the expected result 

• Log test execution details (time, date, result, etc) 

• Send specific test reports and service logs to an internal or external Test Manager. 

The purpose of SJTAG is to investigate solutions to these questions. 

At the time of this writing, the leadership of SJTAG has just changed hands and attention is focused on 

the wording of a new standard request to the IEEE, defining the various use scenarios, determining the 

necessary primitives for the control of SJTAG applications via board-level primary TAPs and identifying 

the commands to define the test steps and associated test application levels.   

Boundary Scan and its Relationship with other Test Techniques 

As the adoption of boundary scan has grown, questions have been asked about its relationship with other 

more-established test techniques, notably any form of In-Circuit Test (ICT) based on physical nail access 

and microprocessor emulation techniques. 

Considering nail-based techniques, what became clear is that ICT was and still is one of the main test 

techniques used by the Electronic Manufacturing Services (EMS) companies and that such companies 

were very keen to combine the power of boundary-scan test with in-circuit test. Boundary scan had found 

its main application in prototype board debug in laboratories where access to an ICT was not possible. In 

contrast, production volume test in EMS companies was mostly based on ICT techniques. Consequently, 

the boundary-scan vendors, such as ASSET InterTech, and EMS companies looked at the synergistic 

relationship between these two test technologies. This study was largely driven by the systems company 

customers of the EMSs and resulted in an integration of the two techniques. A test program developed 
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solely for use on a boundary-scan tester was integrated into an ICT environment where it could be 

enhanced by the additional physical access, especially into the non-boundary-scan clusters on the board. 

 

Figure 67: Accessing a Non-Boundary-Scan Cluster Using Nails 

But, it is not as easy as it sounds. Just wheeling a boundary-scan tester up against an ICT will not work. 

There are hardware and software integration issues to work through. Successful commercial solutions are 

truly integrated in all respects; namely, a single common controller card, common database and DFT 

guidelines that take advantage of both test technologies. 

Turning to emulation, we should first define the type and purpose of board test via emulation. 

Traditional CPU emulators replace the board’s processor and take control over all processor buses. 

Read/write access to all parts of the board’s memory and I/O are available via the emulator. However, 

CPU emulators are not viable for higher speed processors (>20-30MHz). So, CPU manufacturers added 

debug commands to allow their CPUs to be controlled in the same way as an emulator, typically via the 

1149.1 TAP. 

CPU debug ports use the standard 1149.1 TAP plus a number of additional control lines, including Reset, 

Power, etc. Testers that use debug ports to control CPUs are still described as CPU Emulators for 

historical reasons.  
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Figure 68: Boundary Scan and Emulation Dual-Approach Testing 

CPU emulation is traditionally used for functional checkout of boards but it can also be used for structural 

checkout. In the diagram above, assume that the CPU, PCI Bridge, Memory Control ASIC, Ethernet 

Controller and IO CPLD all have boundary scan included in their design. Assume that all the other 

devices do not have boundary scan. In a traditional boundary-scan only set of structural tests, it would be 

difficult to test the non-boundary-scan devices using the boundary-scan features on the board. These 

devices would have to be considered as clusters and we could try to test them for presence, orientation 

and bonding defects (a structural test) using the boundary-scan registers of the boundary-scan devices. 

But, the cluster models would be complex and there would be no guarantee of success. 

An alternative, therefore, is to use the external CPU Emulator to access the non-boundary-scan devices 

and carry out simple structural tests. 

In summary, we should use boundary scan where possible as vectors and diagnostics can be automatically 

generated and diagnostics are more specific. But, we can use CPU emulation for testing non-boundary 

scan parts. Test generation will be semi-automated, and diagnostic resolutions will be to functional 

misbehavior rather than to a component or interconnect level. In addition, CPU emulation can provide 

functional test coverage at full speed to both boundary scan and non-boundary scan parts. Memory testing 

is possible with either method, but only interconnect testing is possible with boundary scan. 
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This approach has been proven in the industry such as ASSET InterTech’s ScanWorks® product 

Processor-based Test Control (PCT). 

Other New Standard Developments 

 

Figure 69: The Explosive Growth of Boundary-Scan Technology 

Figure 71 summarizes the explosive growth of boundary-scan technology since the publication of the first 

version of the IEEE 1149.1 standard in 1990. As we see, boundary-scan has not only expanded at the 

single board level (IEEE 1149.4-1999, 1532-2002 and 1149.6-2003) but it has also moved backward into 

core-based designs (IEEE 1500-2005 and 5001-2003 and now 1687/IJTAG) and forward into multi-board 

system designs (under investigation by the SJTAG Working Group). Additionally, two new standards, 

IEEE 1581 and 1149.7, are underway. 1581 is targeted at making non-boundary-scan clusters easier to 

test from a boundary-scan register in an 1149.1-compliant device and 1149.7, which is also known as 

compact JTAG (cJTAG) is targeted at reducing the standard 4-wire 1149.1 interface down to just two 

wires. 
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To read more on all these activities, visit the following web sites. 

 IEEE 1149.1-2013, https://standards.ieee.org/ieee/1149.1/4484/ 

IEEE 1149.4, https://standards.ieee.org/ieee/1149.4/4022 

IEEE 1149.6 https://standards.ieee.org/ieee/1149.6/4706/  

IEEE 1149.7, cJTAG: https://standards.ieee.org/ieee/1149.7/3936/  

IEEE 1149.10, https://standards.ieee.org/ieee/1149.10/5786/  

IEEE 1500, https://standards.ieee.org/ieee/1500/2238/  

IEEE 1532, https://standards.ieee.org/ieee/1532/3366/   

IEEE 1581, https://standards.ieee.org/ieee/1581/4212/  

IEEE 1687, IJTAG, https://standards.ieee.org/ieee/1687/3931/  

IEEE 1838, https://standards.ieee.org/ieee/1838/5073/  

IEEE 5001, Nexus, http://www.nexus5001.org/  

SJTAG, http://sjtag.org/ copies of approved IEEE Standards can be obtained from: 

http://standards.ieee.org/ or http://www.techstreet.com/info/ieee.html 

http://www.techstreet.com/info/ieee.html or http://global.ihs.com/ 

http://global.ihs.com/
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Chapter 11: Conclusion 

Widespread adoption of IEEE 1149.1 Standard for boundary-scan architecture reflects an 

industry-wide need to simplify the complex problem of testing boards and systems for a range of 

manufacturing defects and performing other design debug tasks. This standard provides a unique 

opportunity to simplify the design debug and test processes by enabling a simple and standard 

means of automatically creating and applying tests at the device, board, and system levels. 

Several companies have responded with boundary-scan-based software tools that take advantage 

of the access and control provided by boundary-scan architecture to ease the testing process. 

In this tutorial, we have discussed the motivation for the standard, the architecture of an IEEE 

1149.1-compliant device, and presented a simple introduction to the use of the IEEE 1149.1 

features at the board level — both to detect and locate manufacturing defects. We have reviewed 

applicable data standards and discussed the issues associated with choosing boundary-scan tools. 

For further details on boundary-scan — at the device level, board level, or system level — see 

the references listed in the Bibliography.
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