

ASSET System Trace Library -

User Guide (update 2144)

October 24, 2021

For use with SourcePoint® debugger by

ASSET InterTech Inc.

2

TABLE OF CONTENTS
Overview ... 4

General Description .. 4

Kit Contents ... 4

Implementation Overview .. 5

DEBUG .. 5

ASSERT_EFI_ERROR .. 6

MRCPRINTF ... 6

DEBUG_GPR_A, DEBUG_GPR_B, DEBUG_GPR_C, DEBUG_GPR_D .. 7

DEBUG_GPRS .. 7

DEBUG_RIP ... 8

EDKII Integration Steps ... 9

Extract and copy files .. 9

Amend Edk2 Source Tree ... 9

Target Specific Package .. 10

Option 1. Replace Existing Debug Library .. 11

Option 2. Compiler Option to include Trace Library .. 11

Pre-Memory Initialization ... 12

SourcePoint Integration Overview .. 13

Configure SourcePoint for Trace Hub ... 13

Setting Trace for Trace Hub .. 13

Configure Trace Hub Options ... 13

Validate Debug Output ... 17

Glossary ... 19

Related Documents ... 19

ASSET Contacts: .. 19

Appendix B – Example Status MetaData .. 21

3

TABLE OF FIGURES
Figure 1: Modules Package EDKII Source Tree Layout ... 9

Figure 2: Modules Package Description Modification ... 10

Figure 3: Existing Debug Library Entry. .. 11

Figure 4: SourcePoint System Trace Debug Library Entry. ... 11

Figure 5: Existing FSP Debug Library Entry. .. 11

Figure 6: SourcePoint FSP System Trace Debug Library Entry. .. 11

Figure 7: Conditional Compilation of Library Example. ... 12

Figure 8: Conditional FSP Compilation of Library Example. ... 12

Figure 9: Compiler Build Flags. ... 12

Figure 10: Include Trace Library for Pre-Memory. ... 12

Figure 11: Trace Icon. ... 13

Figure 12: Show SW/FW Trace Option. .. 13

Figure 13: Configure Trace Hub Options. ... 14

Figure 14: Trace Hub Configuration Tab. ... 14

Figure 15: Selecting Masters to Trace. ... 15

Figure 16: Viewing Master Names. .. 15

Figure 17: Trace Buffer Settings. .. 16

Figure 18: Metadata File Browse Icon. .. 16

Figure 19: Metadata File Selection. ... 16

Figure 20: Trace Hub Trace Output. ... 18

4

Overview
This document will outline the procedure for enabling the SourcePoint System Trace Library modules to
be utilized within an EDKII build tree. It is assumed the end user has a full working knowledge of the EDKII
build process and modification of files. This document does not cover integration of the Intel® silicon
specific files into the EDKII build tree. Contact your local Intel® FAE for these files and integration
instructions.

The SourcePoint System Trace Library takes advantage of a new feature available within Intel silicon,
named Trace Hub.

The SourcePoint System Trace Library will allow re-direction of multiple debug sources (console output,
management engine, UEFI debug messages, etc.) to be routed via the Trace Hub, eliminating the need of
a console or serial debug port.

General Description
The Zip archive included with this document contains the files necessary to allow the integration of the
SourcePoint System Trace Library. Some files are ©Copyright ASSET InterTech Inc. and are distributed
under license.

Kit Contents
The ASSET System Trace Library kit has an existing folder structure to match the current EDKII source tree.
At the time of writing, this is located on GitHub in a private repository as CCG-Generic-EDK2Platforms
(contact your Intel® FAE for further details and access), and on the ASSET websote at www.asset-
intertech.com/sourcepoint-academy/at-speed-printf. The ASSET System Trace Library kit includes the
following files:

MdePkg\Include\Library\BaseLib.h.merge**
MdePkg\Include\Library\DebugLibSystemTrace.h
MdePkg\Include\Library\DebugLibSystemTraceSmm.h
MdePkg\Include\Library\SerialPortLibSystemTrace.h
MdePkg\Library\BaseDebugLibSystemTrace\BaseDebugLibSystemTrace.inf
MdePkg\Library\BaseDebugLibSystemTrace\DebugLib.c
MdePkg\Library\BaseDebugLibSystemTraceSmm\BaseDebugLibSystemTraceSmm.inf
MdePkg\Library\BaseDebugLibSystemTraceSmm\DebugLib.c
MdePkg\Library\BaseLib\BaseLib.inf.merge**
MdePkg\Library\BaseLib\Ia32\ReadGprA.asm
MdePkg\Library\BaseLib\Ia32\ReadGprA.c
MdePkg\Library\BaseLib\Ia32\ReadGprA.nasm
MdePkg\Library\BaseLib\Ia32\ReadGprB.asm
MdePkg\Library\BaseLib\Ia32\ReadGprB.c
MdePkg\Library\BaseLib\Ia32\ReadGprB.nasm
MdePkg\Library\BaseLib\Ia32\ReadGprC.asm
MdePkg\Library\BaseLib\Ia32\ReadGprC.c
MdePkg\Library\BaseLib\Ia32\ReadGprC.nasm
MdePkg\Library\BaseLib\Ia32\ReadGprD.asm
MdePkg\Library\BaseLib\Ia32\ReadGprD.c

http://www.asset-intertech.com/sourcepoint-academy/at-speed-printf
http://www.asset-intertech.com/sourcepoint-academy/at-speed-printf

5

MdePkg\Library\BaseLib\Ia32\ReadGprD.nasm
MdePkg\Library\BaseLib\Ia32\ReadRip.asm
MdePkg\Library\BaseLib\Ia32\ReadRip.c
MdePkg\Library\BaseLib\Ia32\ReadRip.nasm
MdePkg\Library\BaseLib\X64\ReadGprA.asm
MdePkg\Library\BaseLib\X64\ReadGprA.nasm
MdePkg\Library\BaseLib\X64\ReadGprB.asm
MdePkg\Library\BaseLib\X64\ReadGprB.nasm
MdePkg\Library\BaseLib\X64\ReadGprC.asm
MdePkg\Library\BaseLib\X64\ReadGprC.nasm
MdePkg\Library\BaseLib\X64\ReadGprD.asm
MdePkg\Library\BaseLib\X64\ReadGprD.nasm
MdePkg\Library\BaseLib\X64\ReadRip.asm
MdePkg\Library\BaseLib\X64\ReadRip.nasm

** These files are provided to allow ‘copy and paste’ of the text from their respective sections, into
the original file located in the source tree.

Implementation Overview
The EDKII framework has many debug hooks for displaying progress throughout the boot process. These
hooks can direct the debug information via different interfaces, namely USB, UART (Serial Port) or
Memory. Most debug information is defined using an inline macro that can format the output based on
type or section of the EDKII code base.

With the current EDKII framework, three debug hooks have been identified, DEBUG, MRCPRINTF (Intel®
specific), and ASSERT_EFI_ERROR. DEBUG and ASSERT_EFI_ERROR have a root-debug hook that calls
SerialPortWrite(). The SourcePoint System Trace Library can utilize these hooks to route debug
information via STM instead of the default path.

Each hook type is discussed in the following text:

DEBUG
Is used primarily to provide boot status information whilst running/executing the EDKII source. These
include entry/exit to/from SEC, PEIMs, DXE, and various other source branches. Some typical entries are
shown:

• DEBUG((EFI_D_ERROR, "Microcode not found.\n"));

• DEBUG((EFI_D_INFO,"BIOS Prog: lanePwrMask %05x\n", lanemask));

• DEBUG((EFI_D_ERROR, "IndexNumber:%d MemoryDataNumber%d \n", IndexNumber,DataSize/
sizeof (EFI_MEMORY_TYPE_INFORMATION)));

Although the EDKII framework has defined the DEBUG hook as a macro, it performs a function call to
“DebugPrint”. Currently this uses the serial port and presents a significant increase in the execution time
of the boot process.

6

ASSERT_EFI_ERROR
ASSERT_EFI_ERROR is very similar to DEBUG, however, this hook is used for dual purposes.

Firstly, a comparison is performed based on the input parameters of the structure (Status). If the Status
level parameter has its most significant bit (MSB) bit clear, then code execution returns to the calling
procedure.

Secondly, if the MSB bit is set, a call to DEBUG is executed with the string “ASSERT_EFI_ERROR”, and then
using the Platform Build Flag for Debug (PCD) options in the build process, the code would either cause a
processor breakpoint, or a while(1) loop will be entered.

A typical entry is shown with Status as the only parameter. This parameter is of type EFI_STATUS:

• ASSERT_EFI_ERROR (Status);

MRCPRINTF
MRCPRINTF is used at a very early stage of the boot process before most of the EDKII infrastructure has
been configured. This is primarily used in the Memory Reference Code (MRC) section of the pre-EFI phase.
The MRCPRINTF is very similar to a standard printf function call, and as such, can be easily substituted
with the desired At-Scale printf.

Some typical entries are shown:

• mrcPrintf (CurrentMrcData->ModMrcData.MrcDebugMsgLevel, SDBG_MAX, "C%dD%dR%d
RTT_WR_60\n", Channel, Dimm, Rank);

• mrcPrintf (ModMrcData->MrcDebugMsgLevel, SDBG_MAX, "%03d:%d ", Center[Strobe],
Test1[Strobe]);

• mrcPrintf (ModMrcData->MrcDebugMsgLevel, SDBG_MAX, " %03d ", TempValue);

Unlike the other hooks, mrcPrintf is not a macro. To allow use with the Trace Hub, the function call
needs to be changed to match with the SourcePoint System Trace Library. The equivalent entries are
shown:

• mrcHprintf3 (CurrentMrcData->ModMrcData.MrcDebugMsgLevel, SDBG_MAX, "C%dD%dR%d
RTT_WR_60\n", Channel, Dimm, Rank);

• mrcHprintf2 (ModMrcData->MrcDebugMsgLevel, SDBG_MAX, "%03d:%d ", Center[Strobe],
Test1[Strobe]);

• mrcHprintf1 (ModMrcData->MrcDebugMsgLevel, SDBG_MAX, " %03d ", TempValue);

7

DEBUG_GPR_A, DEBUG_GPR_B, DEBUG_GPR_C, DEBUG_GPR_D
This set of macros are not part of the EDKII framework. They are provided as part of the SourcePoint
System Trace Library. These macros are used to provide the data associated with a general purpose
processor register at a specific time in the code execution. These macros allow inspection of the GPRs to
co-inside with any other trace data that may be targeted at the Trace Hub.

Very similar to DEBUG, these macros can be inserted at any point in the source tree to allow debugging
of code with data.

Some typical entries are shown using general purpose registers. This code assumes that variables regAddr
and regData have been placed into GPR_A and GPR_D respectively by the compiler. This can be confirmed
by using SourcePoint to view the GPR’s at the relevant section of the code. The macro does not have any
parameters:

uint32_t *regAddr = 0x10000000;
uint32_t regData= 0;

for (n = 0; n < 0x100; n++)
{

*(volatile UINT32 *) regAddr = regData++;

// display current values for GPR A and D via System Trace Library
DEBUG_GPR_A();
DEBUG_GPR_D();

}

DEBUG_GPRS
This macro is not part of the EDKII framework. It is provided as part of the SourcePoint System Trace
Library. This macro is used to provide the data associated with the general-purpose processor registers A
through D at a specific time in the code execution.

A typical entry is shown using the macro for the general-purpose registers A to D. This code will allow
GPRs A through D for a 32 and 16 bit write, but not an 8 bit write. Again, this code assumes that variables
are mapped to GPRs A through D respectively by the compiler. This can be confirmed by using SourcePoint
to view the GPR’s at the relevant section of the code. The macro does not have any parameters:

Size = (uint8_t)RegOffset.Bits.size;
RegAddr = GetCpuPciCfgAddress (host, SocId, BoxInst, Offset, &Size);

//
// Check register size and write data
//
switch (Size) {
case sizeof (uint32_t):

*(volatile uint32_t *) RegAddr = Data;
DEBUG_GPRS();
break;

8

case sizeof (uint16_t):

*(volatile uint16_t *) RegAddr = (UINT16) Data;
DEBUG_GPRS();
break;

case sizeof (uint8_t):

*(volatile uint8_t *) RegAddr = (UINT8) Data;
break;

default: Stop;
}

DEBUG_RIP
This macro is not part of the EDKII framework. It is provided as part of the SourcePoint System Trace
Library. This macro is used to provide the data associated with the instruction pointer at a specific time in
the code execution.

A typical entry is shown using the macro for the Instruction Pointer (RIP). This code will allow displaying
of the Instruction Pointer via the System Trace Library for a 16 bit write only. The macro does not have
any parameters:

Size = (uint8_t)RegOffset.Bits.size;
RegAddr = GetCpuPciCfgAddress (host, SocId, BoxInst, Offset, &Size);

//
// Check register size and write data
//
switch (Size) {
case sizeof (uint32_t):

*(volatile uint32_t *) RegAddr = Data;
break;

case sizeof (uint16_t):

*(volatile uint16_t *) RegAddr = (uint16_t) Data;
DEBUG_RIP();
break;

case sizeof (uint8_t):

*(volatile uint8_t *) RegAddr = (uint8_t) Data;
break;

default: Stop;
}

9

EDKII Integration Steps
It is assumed the end user has a full working knowledge of the EDKII build process and modification of
files. The following steps allow the integration of the SourcePoint System Trace Library; however, they
do not cover the building of the source tree for specific Intel® silicon. Contact your local Intel® FAE for
instructions on how to include silicon specific files.

Extract and copy files

1. Extract the Kit contents into a temporary folder of your choice.

2. Copy the Edk2\MdePkg folder to the <root>\Edk2 folder of the source tree where you will be

building the target image. The EDKII source tree should have a sub-folder from the <root> called

Edk2 of which the MdePkg folder should be available (as seen in Figure 1).

Figure 1: Modules Package EDKII Source Tree Layout

Note: The supplied Kit has a merge file included that can be used to copy the content.

3. Copy the Intel\IceLakeFspPkg folder and Intel\IceLakePlatSamplePkg to the <root>\Intel folder

of the source tree. The Intel folder contained with the Kit, contains the following files:

IceLakeFspPkg\IceLakeFspPkg.dsc.merge
IceLakePlatSamplePkg\PlatformPkg.dsc.merge

Amend Edk2 Source Tree

1. Within the Edk2\MdePkg folder, the MdePkg.dsc file needs to be edited to allow inclusion of the
SourcePoint System Trace Library. Search for the section heading [Components] and add two
entries as shown in Figure 2 (use the MdePkg.dsc.merge, if required)

10

Figure 2: Modules Package Description Modification

2. Edit <root>\Edk2\MdePkg\Include\Library\BaseLib.h

Insert the support ASM files (use the BaseLib.h.merge, if required)

3. The Trace Library can now be included in the build.

Target Specific Package
Target specific packages will differ from platform to platform. Choose the target package required for your
build and edit the associated DSC file. The SourcePoint System Trace Library can be used with any EDKII
source tree, however, for the library to function correctly, the target hardware must support the trace
feature. This document was created using a IceLake Client target therefore, the following file needs to be
edited:

<root>\Intel\IceLakePlatSamplePkg\PlatformPkg.dsc

11

There are multiple ways of including the SourcePoint System Trace Library in the build process. Two of
these options are described in this document.

Option 1. Replace Existing Debug Library

1. Search for any occurrence of BaseDebugLibDebugPort.inf in the description file. A typical entry

would be as shown in Figure 3

Figure 3: Existing Debug Library Entry.

2. Replace each entry with the SourcePoint System Trace Library as shown in Figure 4 (use

PlatformPkg.dsc.merge if required)

Figure 4: SourcePoint System Trace Debug Library Entry.

3. Edit the file: <root>\Intel\IceLakeFspPkg\IceLakeFspPkg.dsc

4. Search for any occurrence of BaseDebugLibSerialPort.inf. A typical entry would be as follows:

Figure 5: Existing FSP Debug Library Entry.

5. Replace each entry with the SourcePoint System Trace Library as shown in Figure 6 (use

IceLakeFspPkg.dsc.merge if required):

Figure 6: SourcePoint FSP System Trace Debug Library Entry.

Option 2. Compiler Option to include Trace Library
Condition code can be used to allow compiler options for inclusion/exclusion in the build process. This has
the advantage of allowing certain modules within the EDKII source tree to use the SourcePoint System
Trace Library or not. A typical conditional code example is shown in Figure 7.

DebugLib|ClientCommonPkg/Library/BaseDebugLibDebugPort/BaseDebugLibDebugPort.inf

DebugLib|MdePkg/Library/BaseDebugLibSystemTrace/BaseDebugLibSystemTrace.inf

DebugLib|MdePkg/Library/BaseDebugLibSerialPort/BaseDebugLibSerialPort.inf

DebugLib|MdePkg/Library/BaseDebugLibSystemTrace/BaseDebugLibSystemTrace.inf

12

1. Edit the file <root>\Intel\IceLakePlatSamplePkg\PlatformPkg.dsc

Figure 7: Conditional Compilation of Library Example.

2. Edit the file: <root>\Intel\IceLakeFspPkg\IceLakeFspPkg.dsc

Figure 8: Conditional FSP Compilation of Library Example.

Note: If conditional code has been used to include the SourcePoint System Trace Library, modify the
VAR_BUILD_FLAGS= option in the build file provided by your BIOS vendor.

In the case of IceLake, edit the file <root>\Intel\IceLakePlatformPkg\BasicBuild.bat (or if it exists,

<root>\Intel\IceLakePlatformPkg\BinBuild.bat, as shown in Figure 9

Figure 9: Compiler Build Flags.

Pre-Memory Initialization
As mrcPrintf is essentially printf, a simplified trace library can easily be utilized. However, as the pre-EFI
phase has not initialized all modules, the SourcePoint System Trace Library will not be available. To
circumvent this restriction, a modification to the EDK2 printf.c definition will be required see Figure 10.

Figure 10: Include Trace Library for Pre-Memory.

This completes the section on EDKII modifications required to use the SourcePoint System Trace Library

VAR_BUILD_FLAGS= …….. -DASSET_SYSTEM_TRACE=TRUE
.inf

#include <Library\DebugLibSystemTrace.h>

13

SourcePoint Integration Overview
SourcePoint has many features that are described in more detail in the accompanying documentation of
the debugger software installation (help files and SourcePoint.pdf). These include hardware descriptions
of the run-control hardware provided by ASSET, and all software aspects of SourcePoint, from GUI
operation to command line options and macros.

This user guide targets the Trace Hub feature of the SourcePoint environment to provide an example for
use within a project for a Skylake reference platform

Configure SourcePoint for Trace Hub

Setting Trace for Trace Hub
To enable the viewing of the SourcePoint System Trace Library output via the Trace Hub, click on the trace
icon in the main window. See Figure 11

Figure 11: Trace Icon.

Depending on how SourcePoint has been used in this session, if a window popup does not display “Trace
Hub”, right-click on the window and select “Show SW/FW Trace” as shown in Figure 12.

Figure 12: Show SW/FW Trace Option.

Configure Trace Hub Options
Once the Trace Hub view is displayed, the settings need to be configured to match the SourcePoint System
Trace Library integrated into the build process. The Trace Hub is complex, and beyond the remit of this
user guide. Please contact your local Intel® FAE if you require more information.

14

To change the settings, click on the “Configure” button as shown in Figure 13.

Figure 13: Configure Trace Hub Options.

Select the “Trace Hub” tab from the available options at the top of the window. This will display the
settings for the Trace Hub. See Figure 14.

Figure 14: Trace Hub Configuration Tab.

The current Trace Hub implementation supports FW Masters 0x08 to 0x1F, SW Masters from 0x20 to 0xFF
and 128 Channels per Master. This allows the Trace Hub to relay information across many different
channels. These can be separated for individual processes or combined into a single channel for simplicity.
The SourcePoint System Trace Library uses Master number 0x75 for communication with the Trace Hub.

Source Point can be used to take advantage of the multi-source capability of the Trace Hub. This could be
used to not only display messages from the BIOS (UEFI enabled SourcePoint System Trace Library), but
possible system event sources such as the Management Engine (ME). The ME uses Masters 0x10, 0x11
and 0x12.
If individual Masters are required, select “LIST” and type in the required Master numbers. To view the
Master numbers and their associated names, click on the Master icon (see Figure 15).

15

Figure 15: Selecting Masters to Trace.

Each Master that is defined in the MetaData will have an associated name against it (see Figure 16). For
details of the metadata please refer to Appendix A – Example MetaData.

Figure 16: Viewing Master Names.

Using Trace Hub to memory requires the configuration of the buffer address. If the BIOS has configured
this, then the “Use BIOS settings” can be selected. If however, you wish to override the default address,
select the “Use SourcePoint settings” option and type the buffer address (see Figure 17).
Note: To use target memory, the memory controller must have been configured before attempting any
Trace Hub output.

16

Figure 17: Trace Buffer Settings.

The Trace Hub uses the STPv2 protocol as a transport for the different trace sources. SourcePoint needs
to be configured to allow the trace data to be displayed in a human readable format. By selecting the
metadata file the Masters and Channels can be defined, along with display options (data type, colors, and
use leading zero’s etc.) To select the metadata file, click the browse icon next to the Filename box, as
shown in Figure 18.

Figure 18: Metadata File Browse Icon.

Navigate to the folder location that the metadata file is located and select from the available XML file
types (see Figure 19).This file is provided by ASSET upon request. However, a sample XML file is shown in
Appendix A – Example MetaData.

Figure 19: Metadata File Selection.

The example metadata file also includes another file to decode and display UEFI status messages. This is
“included” by the <files> tag. The UEFI status decode metadata file is provided by ASSET upon request,
however, an example is shown in Appendix B – Example Status MetaData

17

Validate Debug Output
To verify that the build process has completed successfully, and the SourcePoint System Trace Library
has been included correctly, the following steps need to be performed.

1. Build the source tree with the appropriate tools (Visual Studio)

2. Program the resultant binary onto the target platform with a SPI/Flash programming tool.

3. Using the targets BIOS setup screen, enable the Trace Hub output via the BIOS settings (if not
enabled by default in the build process)

4. Using SourcePoint, power on and run the target to the EFI shell

5. Using SourcePoint, load the EFI macro set (Macro->Load->”Macros\EFI\EFI.mac”). This will add

macro buttons to the SourcePoint GUI.

6. Click on the button “PEIMs”, wait for completion, and then click on “DXEs”, and wait for
completion. This will load all symbols for all modules in the build tree.

7. Use SourcePoint to add a breakpoint at DXEMAIN

8. Power cycle or reset the target platform

9. Use SourcePoint to run to the breakpoint where the memory controller has been configured. Use

the breakpoint setup in (7.)

10. Follow the steps in the section: Configure Trace Hub Options

11. Run the target and stop at an appropriate location (possibly another breakpoint if desired), or the
user can configure a macro to perform this step automatically.

12. SourcePoint will display a window similar to Figure 20

©2021 ASSET InterTech, Inc. 18

Figure 20: Trace Hub Trace Output.

19

Glossary

Abbreviation Meaning

STM System Trace Macrocell

STPv2 System Trace Protocol Version 2

SoC System-on-a-Chip

EDKII Embedded Development Kit

UEFI Unified Extensible Firmware Interface

Related Documents

The following documents may be of interest in using the Trace Hub.

• System Trace Protocol (STP), v2.00.01, MIPI Alliance
http://mipi.org/specifications/debug#STP

• STM Metadata Functional Specification, ASSET (Available upon request)

• Intel Trace Hub Developers Manual
https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf

ASSET Contacts:

Please contact your SourcePoint tools sales representative for more information.

ASSET InterTech, Inc.
7161 Bishop Road, Suite 250

Plano, TX USA 75024
+1 888 694-6250 or +1 972 437-2800

http://asset-intertech.com

http://mipi.org/specifications/debug%23STP
https://software.intel.com/sites/default/files/managed/d3/3c/intel-th-developer-manual.pdf
http://asset-intertech.com/
http://www.asset-intertech.com/
http://blog.asset-intertech.com/
http://www.facebook.com/ASSETInterTech
http://www.linkedin.com/company/asset-intertech-inc.
http://twitter.com/ASSETInterTech
http://www.youtube.com/ASSETInterTech

Appendix A – Example MetaData

Appendix B – Example Status MetaData

