SourcePoint for AMD 1.0

Table of Contents

Contacting ASSET INTEITECN ... e e s e rr e e e e aans 1
INtrOdUCHION T0 SOUICEPOINTeiiiiiitiieiee ettt b et e s e e e snneesnreenne e 3
What's New in SourcePoint for AMD 1.0c.oiiiiiiiiieiiiiiee et 3
SOUrCEPOINT ENVIFONMENT.....ooiiiiiiiii ittt e e s et e e e et e e e e enbre e e eneee 5
SourcePoint Parent Window INtrOAUCTIONcooviiiiiiiniieieie e 5
SOUrCEPOINE ICON TOOIDAeiiiiiieiiie ettt sbn e e snneesnee 8

FIIE IMBINU . ..ot e e e bt e e ek et e e e s bt e e e n b e e e e anbe e e anreas 10

File Menu - ProjeCt MENU TTEIMoouiiiiiiieee e 11

File Menu - Layout MENU [TEIM.........ueiiiie i e e e e e e s s e e e e e e e s nnnnneees 12

File Menu - Program MENU IEM........ceiiiiiiiiiiiiieiee e et e e e e e st e e e e e e e e snarnre e e e e e e e e s annneees 13

File Menu - Macro MENU ITEIMcoiiiiiiiiiiii ettt 18

File Menu - Print MENU TTEIMSooiiiiiiiieie ettt 22

File Menu - Update Emulator Flash Menu Itemceviviiiiie i 24

File Menu - Program Target Devices Menu Mc.uueviveeeiiiiiiiieeece e 25

File Menu - Other MENU ITEIMIS.ccoi ittt e e 26
o 111V =T o T PP PRPPUPTOP 28
VIBW IMEBINU ...ttt ettt s e et e s e e e nn e s n e e nn e e sne e e s e e ne e e e 31
PrOCESSOI IMENU .ottt 34

(0] 01110 0 I3 1Y/ [T o 11 [P T PR PPP PRSP 35
Options Menu - Preferences MenU IteMeiii it 36
Options Menu - Target Configuration MeNU [HEM...........coiiiiiiiiree e 46
Options Menu - Load Target Configuration File Menu &Mcocccviieeeee i 53
Options Menu - Save Target Configuration File Menu ltem.............cccoiiiis 54
Options Menu - Emulator Configuration Menu ecocciiiiiiiiiiiiiie e 55

SourcePoint for AMD 1.0

Options Menu - Emulator Connection Menu eMcccviiiiiiie e 65
Options Menu - Emulator Reset Menu ItEMueeiiiiiiiiiiiiiiiie e 67
Options Menu - Confidence TestS MeNU IteM.........coiiiiiiiiiiiiiei e 68
WINOOW IMEBNU ...ttt e skttt e s ettt e e s bt e e sabb e e e e anb e e e e s neeas 69

[1= o TN 1Y 1= o U SRR 70
How to Add EmMUIAtOr CONNECHIONSeeiiiieiiiieiiiie ettt e e nneeennneas 71
How to Configure CuStom MaCIO ICONSuuiiiiiiiieii ittt a e e eeeee e 79
How to Configure AUtoloading MaCIOS.ccciiuiiieiiiiiie ettt 80
How to Display Text on the 1CON TOOIDATcovviiiiiiiecc e 81
How to Edit Icon Groups to Customize Your TOOIDArscccccccvivieeee v, 82
How to Modify a Defined Memory REGION.........couii it 83
How to Refresh SourcePoint WINAOWSoocuiiioiiiiiieiiiee et 85
HOW 10 SAVE @ PrOQIamM ... 86
How To Start SourcePoint With Command Line Argumentsccccceeeevveviiiiieeeeeeeeeesvvnneens 87
How to Use the New Project Wizardeeeieiiiiiiieee e 88
How to Verify Emulator Network CONNECHIONSocuuiiiiiiiiieeiiiee e 91
3= T2 1 0T T T 53441 s o o 11 SRR 93
Breakpoints Window INtrOUCTION..........cooiiiiiiiiieee et e e e et e e e e e e e s e nnnnees 93
Yo [0 1] o 10 DI T= oo VR USTURRORIN 96
Breakpoint TYPeS and RESOUICEScccoiiiiiiiiiiiie ettt e 98

[[0 1A I T £ Y= 14 oL £ S 100
Set Breakpoints From Other SourcePoint WINAOWSccvveeeeeeiinicciiieeeee e 100
10700 [V1Yo To [0 P PSP U P PP PUPP PPN 103
Code WINdow INErOAUCTIONciiiiiiiiiiiieie et 103
Code WiIindow 1coNn DEfINItIONSocviiiiiiiiee e 106

Table of Contents

COdE WINAOW MENU ...ttt ettt e e sn e e e e snne e nnee e 107
Code WINAOW PreferenCeS.......coiiiiiiiie ettt esnee e 111
HOW t0 Open @ COdE WINUOWuiiiiiieiiiiiiiei ittt a e ettt e e e e e e e s eibabe e e e e e e e e s annneeees 111
How to Disassemble Code at a Specific LOCALION............ceeeiiiiiiiiiiiiieeeieece e 112
How to Save Code WINAOW SEtlNGScoocviiiiiiiee e e s e e e e e 113
How to Save Code WINAOW CONENESveiiiieiieeiiee ettt 114
COMMANT WINAOW ...ttt sttt s e ek e e e s asb b et e s asb e et e s aabn e e e e nnneee s 115
Command WiIiNndow INTFOAUCTIONcoiuuiiiiiiiiie it 115
Confidence TESES WINAOW........couviiiiieiiie ettt 121
Confidence Tests WIindow INtrOdUCHION.ooviiiiiiiiiiic e 121
COoNfIdENCE TESES TADSeiiiiiiiieieii et e s s e e 124
Table of Confidence Test Failures and SYMPtOMSc..oveiiiiiiiiiiiie e 127
Descriptors Tables WINAOWuiiiii et e e e e e e s s e e e e e e s sn e reeeeeeaan 129
Descriptors Window INtrodUCTION.oiiiiiiiiiie e e e e e e e e 129
Descriptors WINAOW MENUuuiiiiiieiiiiiiieeee ettt e et e e e e e et b b e e e e e e e e e s ennnaeeeeas 132
How to Replace a DeSCrPLOr ENIYcooiiiiiiiiiiiiee ettt ettt e 133
DEVICES WINTOW ...ttt ettt se e st nn e n et e s e s ne e e s e e e nneennee s 135
Devices WINAOW INtrOOUCTIONciuviiiiiieiiie ettt 135
DeVICES WINUOW IMENU........oeiiiiiiiii ittt ettt e et e e e st et e e st e e e s anbe e e e s snreeeeens 146
Accessing Devices Window Cells in the Command WIiNAOW.............coccvvieiieeeeeiiiiiiiiieeeeennn 148
How to Create a Simple DeViCes WINAOW...........cccuiiiuiiiiiiiee it e e s sevene e e e e e 149
[o Yo YA/ T2 T 01 RSP 151
LOg WINAOW INrOAUCTIONcciiiiiiiiiiie ettt e e et e e e e e e e e aneeees 151
Log WiINdow 10N DEefiNItiONScoiiiriiieiiiiiee ittt e e e 153
I Yo TV T Vo [0 1V A =T o T SRR 154

SourcePoint for AMD 1.0

LT T T YA T (o RS 157
Memory WIindow INTrOAUCHIONeiiiii e e e e e e e e e e s e anraees 157
MEMOIY WINUOW MEBNUL. ...ceiiiiiiiiiiiiit ittt e e e e e e st e e e e e e e e e abnb e e e e e e e e e e aannneeees 159
Memory WIiNAOW PreferEnCeScooiiiiiiiiiieee ettt 161
How to Open a MemOry WINGAOW.cceiiiiieiiieieeee e e s cciiieeee e e e e e s s e e e e e e s snnnnnaneeeaeeessnnnsenes 161
How to View Memory at an AdAreSSccuveeiiie et e e e e e e nnenraees 163
How To Change MemOry VAIUESooo it 164

Page Translation WINGOW.uiii ittt sttt et e e s sba e e e sbaeeessbneeenaes 165
Page Translation WIindow INtrOAUCHIONeevvieiiiiiiiiiiiice e 165

PCl DEVICES WINTOW ...ttt ettt ettt ettt st e st e st b e e s be e e snb e e s be e e snbe e e nnneennee s 167
PCI Devices WINdOW INTrOAUCTIONccoiiiiiiiiiiiiie ettt 167
PCIl DeVices WINAOW IMENU.........uuiiiiiiiiie ittt et e e siba e e e s sbneeeeans 171
How to Open the PCI Registers View From the PCI Devices Windowcccceeevvvvcvvvnnnnn. 172
How to Refresh a PCI Devices DIialog BOXcuiiiiiiiiiiiiiiieie ettt e e 173

REQGISTEIS WINTOW ...ttt ettt e e e e e s bbbttt e e e e e s et bbeeeeaaaeeeannbseeeeaesaannnes 175
Registers WINAdOW INtrOQUCTION.uuiiiiiiiiee ittt e e sbneee e 175

L [0 1T I T =T o 1S =T £SO 179
Customize the RegiSters WINGOWuuviiiiiiiiiiiiiiiieice e rr e e sanrrane e e 179
PrNE @ REQISIET LISt ...ttt e e e e e et b e e e e e e e e s nnanee s 180

SYMDOIS WINAOWS ...ttt ettt et e e e s b et e e sbb e e e e s eeeae s 181
Symbols WIindow INtrOAUCHION ..o reee e e e s 181
Symbols WIindow 1CoN DEfINItIONSuuiiiiiieiiiiiiiieiice e e e e aae e e 184
SYMDBDOIS WINAOW IMENUS ...ttt ettt e e e e e ettt e e e e e e e e s sannbnaeeeeeas 185
ClASSES TAD....eeiie it 187
GIODAIS TAD ..o 188

Vi

Table of Contents

LOCAIS TAD ...ttt 190

3 1= (o G - |« IO OO P PP PP PUPPPRROPRTN 191
How to Change Values in the Symbols WINAOWciiiiiiiiiiiiie e 191
VIEWPOINT WINGOW ..ttt ettt st e ettt e e st e e s e st e e e e e nbe e e e annneas 193
Viewpoint WIindow INtrOAUCTIONocuiiiiiiiiee e e e e e nne e e e 193
VieWwpOoIiNt WINAOW MENUuuiiiiiiie ittt e e e e s e st e e e e e e s e s ba e e e e e e e e s e sanreaneeeeeas 194
WALCH WINOOW ...ttt ekt e e st e e e s st e e e e aab e e e e e b e e e s e nbe e e ennneas 195
Watch WINdow INTrOAUCTION.cooiiiiiiiiiiie e 195
WaLCh WINAOW MENUooiiiiiiiiic ettt 198
How to Add and Expand Registers in @ WatCh VIEWcccoociiiiieii i 199
How to Add Symbols to a Watch or Quick WatCh VIiew ... 202
TECHNICAI NOLES ...ttt e st e et e e s ettt e s e bt e e e e e e e s e neeas 203
Descriptor Cache: Revealing Hidden REQISIEISc..uuuiiiieeiiiiiiiieeee e e e 203
UEFI Framework DEDUGQINGuuviiiiieiii it e et e e e e e e e st ree e e e e e e e s snnanaeeeeeas 205
OVBIVIEW. ..ttt ettt ettt oot e ket e e 4 s et e 4 st e o4 e a b et e e e a b et e e e s b et e e e anbbe e e e ennb e e e s s 205

(0] =y IV = T £ 0L PP PR PP PRPTPRPRPRPPIN 205

[I 7= o T8 o o 1 o S 206
(D) =R = o1 T [1 o SRR 207
HOBS .. 208
System Configuration TaDIEeiiiiiii e 209
INOLES .ttt ettt ettt e e s e e e e st e e e e s e e e e e R e e e e e R e e e e e n e e e e e ann e e e e e anne e e e s nreeeeeaan 209
[T g g To YA O 1= 1] o PP 211
Defining Debug Variables of a Symbol Type as Defined in a Loaded Program 211
Casting Blocks of Target Memory as a Symbol Type as Defined in a Loaded Program..... 211
Microsoft® PE Format Support in SOUrCEPOINTovviviie e 212

Vii

SourcePoint for AMD 1.0

OVBIVIBW. ..ttt ettt e et e Rt e m e e st e ne e e s e e e n et e s ne e e nmn e e s e e e nn e ennee e 212
FAQS .ottt ettt ettt ettt ettt ettt e ettt ettt ettt 213
Known restrictions of PE/PDB support in SOUrcePointocccuuiiiiiiiiiiiiiiiiieeee e 214
Registers KeYWOrd TabIEoouiiiiiieii e 215
Yo TUTfot= o] T o) o =T 0 1] 1o Vo [P 218
Perpetual MOELuviiieiie e e e e e s e e e e e e e e e s anrae s 218
SUDSCHPLON MOUE ...ttt e e e e et e e e e e e s e eaabsreeeaaeeaas 218
MODIIE LICENSING ...ttt ettt ettt e ettt e e st e e e st b e e e sbbeeeesanbeeeenees 219
Installing the SourcePoint Vendor DAGMONcoocuvuiiiiieeeie it e e e e e s sseereeee e e e e 219
Current License File INfOrMationcocuveiiiiiiie et 219
Y =] o] o] 1 o TP RT TP 220
Strategies for Source Level SIEPPING.......uui it 220
Symbolic TeXt FOrmMat (TEXISYM)uuieeeieeeisiiiiiieee e e e e e s st e e e e e e s s s e e e e e e e s snnanreeeeeeeeesnnnnenees 223
FHIE FOMMAL ...t e et e s b e e sbr e e b e e b e e e be e e nneennnes 223
=T 0 0] o] = PP PRRPT PP 224
Target CONFIQUIALIONoiiiiiiii ettt ettt e e e st e e e st b e e e sbbe e e e s nnbeeesaaes 225
OVBIVIBW. ..ttt ettt ettt e e e e n e e m e e st e ae e e s ne e e an et e nn et e nn e e nnre e e nn e ennee e 225
1001 0] (ST =T o = SR 225
(07e] 101 0] 1= Q= T {0 =] £ TR UUP T UPPPPPPRRP 225
Configuration COMMANT OVEIVIEWueiiiiiiiieeiiiiiee ettt e e e e enene 225
W0 AV To =Y o I o] o] o= R 226
USING BOOKMAIKSuiiiiiiiii it e e e s s e e e e e s e et e e e e e e e e e saatbaaeeeeeeesesnnraneeeenean 229
Adding/Removing BOOKMAIKSeiiiiiiiiiiiiiii ettt e e e 229
Navigating BOOKIMAIKSoiiiiiiiiii ittt e e abreee e 229
Clearing BOOKMAIKScoiiiiiieiiiee e sttt e e s st e e e e e s s e e e e e e s e snan e e e e e e e e sennnnreneeeaeeas 229

viii

Table of Contents

BOOKMAIK INAICALIONSeiiieieiiei et 229
Which Processor IS WHICH ..o e 230
a1 o [N Tei 1 o] o PR PP P PP PUPPPPPPPPRN 230
What Does "Last on the Chain, First on the Chain" Mean?cccceeiviieieeiiiie e 230
How Is This Related to the PROCESSORCONTROL Variable in SourcePoint? 231
What Does It Mean to Control More Than ONne ProCESSOI?cccveiveeinieeriieessiieesieeenineas 231
SourcePoint ComMMaNd LANQUAGEcceiaiiiiiiiiieiiiaaa ettt e e e e e et ee e e e e e s s sanbeeeeeeaeaesaannnreeeeeas 233
T a1 0T [T 1o) o 1 SRR 233
)Y 1= a1\ o) = o) o SO 234
L0 0] 10104 T=T o 113 PP TP 235
LO70] 3 151> o1 £ PP P PP 236
D= L= R Y/ 01 PP PO PRPPR PP 238

[Tq] 1TSS [0] SR 240
[D7=T o100 I =TT o] L= U 242
Debug Variable AITAYScoooi ittt ettt e e e e et e e e e e e e e annanreeas 243
DEDUQG PrOCEUUIESeiiiiiiiie ettt st e et e e e sbn e e e e sbneeaeanes 245
CONEIOl VArIADIES ... 249
COMMANA FIlES ..ottt ettt e e st et e sab e e e sbeeesareesreeas 251
FIIENAIMES ...t e e st e e e st e e e e st b e e e sk b et e e e anbe e e e s anreeeaaes 252
Viewpoint Processor and Processor OVEITIAES.uieiiiiiie ettt 253
SYMDBOIIC REFEIENCES ...t e e e e e e e e s s nrreeeeaeeean 254
Qualified SYMDBOI NAIMES........ouiiiiiiiei e e e e s e s r e e e e s e e sanreaeeeeeas 259
Commands and Control Variables...............ooiiiiiiiiii e 261
2o To (1] 1] o T PP PP PTRPP 261

= oo ¢ A OO PRPURUPRPR 262

SourcePoint for AMD 1.0

o 01 PP PR PPRTR 263
5T 1= PP 265
2 T0 A V2T o (o =T [T PP PP PPTPPPPP P 266
L= L] | o PP PP TTPP PP 267
= 1 0 PP 268
o 1010 L0 Lo [OOSR PP P PPPPPPRTPRTN 276
=L £=] o DO PO PP PR 277
= = 1 /TR 278
= LU (o ToTo] 1o |1] = S 279
01 L] OO T PP P R PPPPPPPTPPR 280
1] [(o T=TCT o) PP PPT 283
o] 1 S PRPRR 284
DIEAK. ... 286
DPEAKAILo 287
CACNEIMEIMOIY ...ttt e e e e e et e e e e e e e e e e sanbbraeeeaaeaans 289
CAUSE .t ettt ettt e e e e et ettt e e e et ettt e b oo e e e et e e Ehh et oot e et EE R R e e e e et e ee b et e e et et ean b e e e e et eenbenraan s 291
Character FUNCLIONSooiii ittt e e nnne s 293
(ol [o) QT OO PP P PPPPUPRTRPR 300
(o100 11110 [PSP P PU PP PRPPR P 301
(010 ST P UPPPPTPPP PP 302
cpubreak, cpuremove, cpudisable, cpuenable..........cccccovi i 303
o7 010 1o [Y- OGRS 305
(o3 011110 =T o) QPP TU TP 307
(o] o100 [=T GO TP PP P PP TPPP O 309
o3 01U T [=T bGP SO 311

Table of Contents

Lo (== 1= 0 00 == 313
(011101 PP 314
o3 1o [P UTT TR 315
dbgbreak, dbgremove, dbgdisable, dbgenable............cccooiiiii 317
AefaURPALN......cc e 319
2o L] {10 PO TSP PT ST PPRR 321
(0[] T T PO PP P PP PP P PPPR P 322
(oS 1T =70 0 = o] o USSR 324
(oY1t =Yoo o U] =S 326
o[V Tol =T | o PO PP PUPP PRSPPI 327
(0K oTo] o] o L= ot AP TP P PP PP PP PPPPPP 328
ISPIAYTIAG . ¢t 329
O WHIIE .ot e e 331
0 01 TSSO PP PP PP PP PPPPPPRI 333
(o] o] ¢ AU PRTT TR 334
Lo =071 o TSR 336
=T | PSP PP PP PRSP 338
<o 1 1o] SO PP PP PUPRPPPTPRI 339
EIMUIATOISTALE ...ttt s e e e s e e s e b e e s e s et e e e b n e e e eanreas 340
LT 10 Y/ 0 341
L= (o] PP 342
Lo | PO TRP PP PP PP PPPPPPPRPR 343
evalprogramsSyMBDOL e a e 344
EXECULION POINT (B) .rreeeeiiriii ettt s e e s e e s et te e e e et e e e s aataeaesaatbeeeeasbeeeeares 346
L2 RSP RR P 348

Xi

SourcePoint for AMD 1.0

2 (o 349
(o PRSPPI 350
(0 (017 = TP EUTT PR 351
L1210) PR 353
L0 =2 oS 355
L0 =21 USRS 357
L1 AL =T T [V ol PP UTT TP 359
1] SRR 360
L1 [8E] IEPPPPPRTPRP 362
L) 0= 0 PR SSET 363
(0] S PP 365
L0 071722 1 o SRR 367
L1011 SRS 369
L1010 (o ST 370
L] 010 LS PP 371
L5 T TSR 372
LES=T= PP 374
L1 PSRRI 376
L LT P ETT TP 378
0 o 380
[0 =3] -V SR 381
getnearestprogramsyMbOL............iii i 382
getprogramsyMBDOIAAUIESSueeiiii ettt e e e e e eeaeaeas 384
013 386
Lo][] 0 T= 1T 0 0T od =T o T- L 1 SO 387

Xii

Table of Contents

0 389
= 1 PR RTR 392
I ettt ettt e ettt ettt en et n et en e 393
(gT0] 0 g L= o= 11 T PP PP PRI 394
oot o = OO PURPRPPR 395
] SRR 397
1 Tod 18 o =P PO RS PUPRPPIP 399
] 1Y/ USSP URRRR 401
1o Lo P TP P PRSPPI 402
(10 [T o180 £=3 Y 101 o Yo | TP 404
ISEIMBAL ... ittt e e e e e e e e e e et e e e s e e e 405
ISPrOGraMSYMDIOcciiiiiiiiiiiie et e et e e e s bb e e e s arbee e 406
157 (0111 o PR 408
1S3 [=1=7 o1 o RS 410
515 111 10 PP PP PPPPPPPRTP 412
1210 [g = U1 o O SRR PPPPRPPPP 414
=T oo) o 11] =PRSS 416
2= T To LAY Tox T To Lo [N U PERRRt 417
JEAGUBVICECIBATeeiiiiee ettt e ettt et e e e s e e et e e e e e e e e e e e sanbbaneeaaaeeaannnes 418
JLE=Te [0 [ot T OO UPPPPTRTTPP 419
2= T o o SRS 420
L= 0 L= PPt 421
K Y S ettt ettt e oo b bt e et e e e e e e o h bbbt e et e e e e e eaabebeeeeaaeaeaanbareeeeeeaannane 423
=] OO PP UPPPPPIP 424
=S A | = Yo TR0 (=Y o= T PRER 426

Xiii

SourcePoint for AMD 1.0

Xiv

= OO PR PRSP 427
ToT=T g T OO U PP PP PPPPTPPROPRT 428
1]=T= | PP PP PPPPPPIP 429
11 TR 0] 11 P 431
Lo Lo OO PP PP PRRPTR 433
ToT=To | o] £=T= 124 0 Lo 1| €U PPRRROS 435
ToT=To | F= 1Y 01U | SRR PP PP 436
[oF=To [o] (o] =1 ot ST PP PU PR OPPRRPPIP 437
To =T) - o = o PSR 438
[OAAWALCNES. ...t b et e et e sare e nnn e nneen 439
ToTo TR o o] (o o T PR T PR PPT 440
o7 L0 PR PP PP R UPRTPPIPN 441
oo S RRRRS 442
ToTo 3 0 L=TTSY= Uo = U RRPROS 443
(g F= T (0] 0= 11 P PP PPRR 444
IMIEIMOIY ACCESS ...ttt ettt ettt e e e e e ettt e e e s e s s e ettt e e e s e e n e e e e e e s s s ssnnreneees 445
L TSESEST= (o = o 0) S PRSRS 450
10T PSRRI 452
Yool (01T PP T RO PPRRR 453
(01T [0 F= 1= F PO PP PP PUPRRPPIPN 454
IS0 0 L= = SRS 456
01T o [RS 457
[0 ESTo o [0 0o o H PP PPPRRR 459
01T || PP PP PRUPRTPPIP 461
00 T 1= o PP 463

Table of Contents

R ESTo T (U Lo F= T = L v = SRR 464
(0510 ES0r= 1 o [SRR 466
01 PP PP TP PPPPRPPPR 468
NUIM_ACHIVEPIOCESSOIS ..ceiiitiiteiiutiiee e ittt e sttt e sttt e e e asbb et e s st e et e e st be e e e sbbe et e s sbn e e e s aabbeeeeannnnees 470
LT T = 10 (=T PR 471
10T g T (=2 o= PRt 472
NUM_JEAG CRAINS ...oeii ettt e e e e e e e e e s e et e e e e e e e e e e e e 474
NUM_JEAG_ AEVICES ..tiiieeiiiiee ettt ettt ettt ettt ettt e e e skt et e e s sttt e e e snbb e e e e snbeeeeeabnneeens 475
DU PIOCESSONS .ttt ieeeeeeeettiaa e e e et eeetasas s e e et eeetata s e e e e eeees b e e e e e e eee bbb s e e e e eeebeba s eeeeeeeenbanaeens 476
0= 10 1S SRR 477
PRYSICAL ...ttt et e e e e e e e e e e e e e e e anbreeeeaa e s aanane 479
L0 4 ST PP PP P PP PP PP PP PP PP PP PPPRTRPTRPPPPPIR 481
0 PSP 483
L1 Y7o 1= USRS 484
1110 T PP PR OUPPPPT 485
L Lo PP P PP PP PP PP PP PP PP PP PPPPTRPPPPPPPPIR 488
] foTod =TT o {01 o1 1o S PP 489
o] oot =YX Yo T = o 11 Y/ U SERRRS 491
o] foTed STt To] 1 4 [0 o [= TR TP PPPRTP 492
PIOCESSONS ...ttt ettt ettt et ettt et et et et e e et ee e et ee e e e e e e e s e s e s s e e s e e e s e e s s e e et e e e aeseaenennneneneberennraraneeeee 493
0L (0T 2= 0] g 3 o = PSSP 494
T (o] [=Tox o - L1 o PSR 495
101 (o T TP T T TROUPPRPTR 496
LU PP PP P P PP PP PP P PP P PP PP PP PPPPPPPPPPPPPPPR 497
2= 0T PP PUR PSPPI 498

XV

SourcePoint for AMD 1.0

XVi

(= 1o 5= 11 o PSS 499
[=TeTo] o] 0 [T ST PO P PTPPPPRPT 500
REGISIEI ACCESS ...ttt ettt e oo ettt e e e e e e e e b bbb et e e e e e e s e e aabbeeeaaaeesaannbaneeens 501
1= (0= To 1 RO RRPR 503
L]0 To | 0] (0 = X SRR 504
=T 06T PP P T PPPPPTPRR 505
LTS SO P PP PPPRRPPR 507
(23] €= L PP PPPPPPTP PP 509
L1 0 o PRSPPI 510
1T S UPRPRS 511
(0 aeTo] a1 0] 1Y o= PP PPPRPTR 512
SATEIMOUE ...ttt b e 513
T2 1Y <P 515
e AV L] o1 (=T- 1o 0]) SRS 516
SAVEIAYOUL ...ttt ettt e e e e e e et e e e e e e e e e aa b b e e e e e e e e e e e annbraae e e e s 517
SAVEWALCNIES ...ttt ettt a e e e e e b e e nnreas 518
RS L=t o =T (o] Y 519
SEIBCHIE ...t e e nnne e 520
] 31| PSSR 521
£ 10 T RRER 522
] PP PTRRP 524
ST P4 =10 OO TP P PP PP PP PPPPUPPTRTR 525
S [=T T o TP TT TR 526
softbreak, softremove, softdisable, softenable...............ccccoiii 527
] 0 (11 S 529

Table of Contents

S0 | 530
] = 1 [0 FER T TSP RUPR O P PP PUPPUPPPRPR 532
] (=] 0 TR 533
5] (0] 0 535
] (o7 | PSR 536
] Lo | SO OO P PP PUPRPPRTPRT 537
] (03 0] o TP 539
5] 107 0) 541

RS0 P (PP PP 543
String [] (iINAEX INtO SEHNG) «.vvvveiiei et e e e e s s e e e e e e e s s e snnrraaeeeeeeaans 545
11 =T o D PO P PP PP PPPPPP P 546

] 11 11/ SRR 547
] 11 [| PSR 548
S 1 016] 1 0] o S PP UPTPTPTPPT T 549
SEIIC Y -ttt e 551
5] 1100 1 552
] 1] 1 PP 554

ST ettt h e e ah e b e b r e e r e e r e e nn e nnnes 555
] 11 (o o [O PP PP P P PP PP PPPPPP P 557
] 11 (0 S PSP PPP PP OUPRP P 559
S Lo U | PO PP PRRTR 561

LS (] o] PSP 563
SWIFEAK ...t 564
R3] (o o TSR 566
SWICIMIOVEveeeeeieeeeee sttt ee e ettt e e sttt e e e e e e e s et e et e e e s st e e s ns e e e e e an et e s e nn e e e e e nree e e e nnneeenanreas 568

XVili

SourcePoint for AMD 1.0

XViii

BB e 569
€2 1 PP PP 570
TAPAALASNITL ...t e e e et e e e e e s aa e e e an 571
TAPSTALESEL ... 573
[E2 10 | 01011 = PP PP TPPPPPINY 575
[€210 1S €= L0 £ PPN 576
TASKALLACK ... 578
taskbreak, taskremove, taskdisable, taskenable..........cccooooiiiiiiiiiiiii e 579
TASKENT ... 581
L6215 1 [=1 10 o IS SRS 582
€] 1 = L PP PP PPPPPPP P 583
Lo SRR 585
L1 PP 587
U0 To = ST O TP PP PP PPR PR 588
(8101 (o= Lo ISP P PP PPPRPPIP 589
(BT a1 (o= o[o] o] [=Tox USSP PUPRTPTIP 591
0 o] o > Vo IR 592
U] PP PPPPTRR PP 594
(VL] €1 TP U TR 595
VerifydeViCECONTIGUIALIONueiii ettt 597
(LS 1Y) L= To [oe]) o U =1 o] o R 598
1Y L=T =T] o [P P PP PPPRPPPPP 599
(V1231 o Lo o | TP TT TP RIRTP 600
1Y 0 L= LT L PP P PP PP VPR 602
122 L PP P O PPUR PRI 604

Table of Contents

WIINVA Lot 605
WHITE bbbt b e bt st e bbbt b bt b e e e e b neee e 606
WINAOWIETTESI ...t e st e et e e s b e e e e 608
WWPOIE . 609
AT (== 1] o R 611
1YL= [o O STPR PRSP 613
[Y2L= (0 1= To TR PP 614
1o = G SR PPERRR 615

XiX

Contacting ASSET InterTech

Phone: 888-694-6250 toll free in the U.S.
972-437-2800 outside the U.S.

For Sales and Info Contact emails and telephone numbers:
http//www.asset-intertech.com/About-Us/Contact-Us

For Support Contact emails and telephone numbers:
http://www.asset-intertech.com/Support/Contact-Details

http://www.asset-intertech.com/About-Us/Contact-Us
http://www.asset-intertech.com/Support/Contact-Details

Introduction to SourcePoint

What's New in SourcePoint for AMD 1.0

Rome Support - Support for AMD Rome and Castle Peak processors. Includes 1P and 2P
support.

SourcePoint Environment

SourcePoint Parent Window Introduction

SourcePoint is the software interface to all Arium emulator systems. The program is dedicated to
providing non-intrusive, hardware-assisted debug support for Intel 32- and 64-bit processors and
AMDG64 processors. Applications include debugging hardware, BIOS, kernel, drivers, and
embedded software.

When SourcePoint opens, in many ways it looks like any standard Microsoft® Windows® screen.
Menu and icon bars at the top and a single screen fills much of your display. Various menu/icon
options let you open other windows (or views), as needed, to debug your code.

This topic includes information on:

Docking/floating menu items

Menu toolbar

Icon toolbar

Status bar

Docking/Floating Menu Items

SourcePoint windows can float (the default behavior) or be docked. To dock a window, right-click
on its title bar to display a context menu.

Docked
Floating

v B0 Child
Dockedta #
kDI Child 2z »

Docked/floating context menu

Docked/Floating menu items. Use these menu items to toggle between docking and floating
windows. A view that is set for Floating can me moved outside of SourcePoint (onto another
display, for example).

MDI Child menu item. This menu item causes the windows to be neither floating nor docked.

Docked to menu item. Options include Top, Left, Bottom, and Right. Use these options to tuck
a view into a corner of the SourcePoint window.

MDI Child as menu item. Options include Minimized, Maximized, and Restored. These let you
minimize a window, maximize it, and restore it to its previous size.

Toolbar Menu

SourcePoint for AMD 1.0

There are two kinds of toolbar menus, the menu toolbar and the icon toolbar. The menu items
associated with the text menul/icons are described in separate topics.

Menu Toolbar
File Menu

Edit Menu
View Menu

Processor Menu

Options Menu

Window Menu
Help Menu
Icon Toolbar

SourcePoint Icon Toolbar

Status Bar

The status bar contains information about the focus processor and the communication to the
emulator.

Function Keys and Field Information

As SourcePoint is running, this text changes to describe what is happening. As you move the
mouse over a detectable area, the text gives helpful information about that area. When errors
occur, the text gives information about the error. When the application has no other information to
give, the active function key combinations display.

Current Focus Processor Name

In a single-processor target system, this field does not display. In multi-processor target systems,
one of the processors is selected as the current focus of display by SourcePoint, and that
processor number is output in this status field.

Focus Processor Run State

This field gives the state of the current focus processor. The following are valid processor states:
Stopped. The processor is not executing instructions.

Running. The processor is currently executing instructions.

Stepping. SourcePoint is currently stepping the processor through instructions.

SourcePoint Environment

Sleeping. The processor is not in one of the above states.

Emulator display status indicator. The status number on the LED on the emulator displays on
the taskbar here, too. This is designed for those of you working with a remote emulator.

Focus Processor Mode

This field displays the current focus processor mode.

Focus Processor Run State

Processor Description

Mode

Real The processor is emulating the addressing required for programs written for the
8086, 8088, 80186 or 80188 processor. This is the mode used after reset.

BigReal The processor is emulating the addressing as though it were in Real mode, but
addresses aren't limited to 20 bits.

Virtual86 The processor is emulating the programming environment of an 8086
processor.

Protected The processor is enabled for addressing protection.

Special The processor is in a special addressing mode such as that entered when in
SMM (System Management Mode).

Switching This represents the time between Real and Protected mode when the code is
setting up for Protected mode.

Communications Status Indicator Lights

Connectivity. This field is solid green when there is an active connection to the emulator.
Otherwise it is gray. A double-click on this field displays more information in the status field.

Send in progress. This field is solid purple when there is information going to the emulator.
Otherwise it is gray. A double-click on this field displays more information in the status field.

Receive in progress. This field is solid blue when there is information coming from the emulator.
Otherwise it is gray. A double-click on this field displays more information in the status field.

Error detected. This field is solid red when information has been lost or corrupted going to or
coming from the emulator. Otherwise it is gray. A double-click on this field displays more
information in the status field.

SourcePoint for AMD 1.0

SourcePoint Icon Toolbar

The SourcePoint toolbar displayed on the SourcePoint main window directly links toolbar buttons
to menu items. Clicking on a desired toolbar button executes a procedure in the same manner as
selecting that same menu item from its corresponding menu.

Icons are organized into several groups. They are listed below along with information on the
attendant context menu.

Icon Groups

J EETDY | I ﬁ| ﬁ'| W| @ File Load Project, Reload Project, Save

Project, Save Project As, Load Program,
Reload Program, Load Macro, Update
Emulator Flash, Program Target Flash

0 1 2 3 Macro Execute Macro 0, Execute Macro 1,
J % % % % Execute Macro 2, Macro 3*
J g) | i M Edit Cut, Copy, Paste, Search, Replace

J e M g | m o = = Processor Go, Stop, Step Into, Step Over, Step Out
Of, Reset, Connect**, Disconnect**,
Snapshot

|J i € G o Q B PL @y Viewl Breakpoints window, Code window,
Command window, Log window,

Symbols window, Trace window, Watch
window, Devices window, Memory
window, Registers window, Viewpoint
window

|J BN E View 2 Dgscriptors Table windpw, D_evices
window, Page Translation window, PCI
Devices window

J - =Ngy i Window Close, Cascade, Tile Windows
Horizontally, Tile Windows Vertically,
Arrange Icons, Close All

J =N Print Print, Print Preview
| ® Help Help!

* You can customize the toolbar to include as many as 10 macros.
** Connects or disconnects emulator from target

Context Menus

Right clicking on any icon brings up a context menu displaying the icon groups, icon displays
with or without text options, and a toolbar customization option. You can choose to display text
next to all icons or next to a single icon group.

SourcePoint Environment

Filz

b acro
Edit
Frocessor
Wit
Wi
Frirt

Help

L T T L .1

* |cons Only
lcong & Test

Customize. ..

File, Macro, etc. menu items. The menu items in the top section of the menu let you choose
which groups of icons you want to display. All icons are displayed by default.

Icons Only and Icons & Text menu items. You can choose to display text next to all icons or
next to a single icon group. You can also choose to display the icons without text via the context
menu.

File Edit “iew Processor Option: ‘Window Help
B loadPR) T savePR) T SavePRIA: | CPPRG Load EE¥PRG Reload | (FloadMaco G St
.:',"o B Eu:up_l,l E.F'aste | dhFind M Feplace J s=Go M Stop @ Step Into @Step Ower
% Breakpoints Code E*JCommand [&)Descrptors [dLlog Memony [E2lPage=lat [=dRegister
E (= % [Fascade E Hiariz D]Vertical |zomiEe

Portion of toolbar showing all icons with text

File Edit “iew Proceszor Option: Window Help
EEHEH 2 aaE @
J Y Breakpoint: FEdCode EX]Command [EZlDeszcrptors [[Llog EdMemory [EolPage Xlat [CdRegister

Portion of toolbar showing a single icon group with text
Customize Menu Item

If you click on the Customize menu item, you are taken to a Customize Toolbar dialog box.
From there you can customize your toolbar to best meet your needs. For more information, go to
the topic, "Edit Icon Groups to Customize Your Toolbars" found under "How To - SourcePoint
Environment,” part of the SourcePoint Overview.

SourcePoint for AMD 1.0

File Menu

For easier navigation, we have broken the subjects covered in this menu into several topics.
Please click on the hyperlinked text below for documentation on a specific File menu item.

Project Menu Item - Options are New Project, Load Project, Reload Project, Save Project, Save
Project As, and Unload Project.

Layout Menu Item - Options are Load Layout and Save Layout.

Program Menu Item - Options are Load Program, Reload Program, Remove All Programs,
and Save Program.

Macro Menu Item - Options are Load Macro and Configure Macros.

Print Menu Items - Options are Print, Print Preview, and Print Setup.

Update Emulator Flash Menu Item - There are no other options with this menu item.

Program Target Devices Menu Item - Options are Program Flash and Program PLD.

Other Menu Items - Save As, Recent Projects, Recent Layouts, Recent Programs, Recent
Macros, Exit menu items.

10

SourcePoint Environment

File Menu - Project Menu Item

Select File|Project on the menu bar to access the following options: New Project, Load Project,
Reload Project, Save Project, Save Project As, and Unload Project.

New Project Option

Select New Project to create a new project file. The wizard allows you to select a name for the
project file, load a target configuration from the Target Configuration Database, edit emulator
configuration parameters, and edit target configuration parameters.

For additional information on the New Project Wizard, see, "How to Use the New Project
Wizard," part of "How To - SourcePoint Environment,” found under SourcePoint Environment.

Reload Project Option

Select Reload Project to reload the current project.

Save Project Option

Select Save Project to save the activated project settings file under its current file name.
Save Project As Option

Select Save Project As to open a Save As dialog box. The Save As dialog box is used to save
information relevant to a window or group of windows in a project ("prj") file. The information
saved includes the position, size, and parameter settings of each window. (Displayed data are not
saved as they are governed by processor activity.)

Enter a file name with a "prj" extension, type in a name in the File Name text box, and click the
Save button to save a window or group of windows in a project file.

« Note: When SourcePoint is reopened for subsequent debugging sessions, the last window or
group of windows saved as a project file is loaded automatically.

Unload Project Option

Select Unload Project to unload the current project. All windows are closed. If you have not
saved the project, or if you have not saved a particular portion, you lose it when you use this
option.

ICaution: If you have disabled Save settings on exit under the General tab of the Preferences
dialog box and you wish to retain the data and settings in a currently active window or window
group, you must save the project ("prj") file before exiting SourcePoint. Select File|Save Project
on the menu bar to save the file using the current name and location, or File|Save Project As to
save it as another file name or location.

11

SourcePoint for AMD 1.0

File Menu - Layout Menu Item

A layout is the set of open SourcePoint windows along with their locations, sizes, docking type,
etc. The default file extension is .LYT. You can develop a set of layout files, each with a specific
debugging purpose in mind, and can quickly access one when needed. Although you can just use
multiple project files to accomplish this same functionality, loading a layout is less disruptive
because it only affects the windows in the View menu that are open, including their locations, and
sizes. Whereas loading a project file completely resets SourcePoint's entire state. Select the
Layout menu item to load or save a layout file that you have generated.

Load Layout Menu Item

To load a user-generated SourcePoint layout that has been saved, click on Load Layout menu
item in the File menu. Select the file you want to load.

Save Layout Menu Item

To save a user-generated SourcePoint layout, click on Save Layout option in the File menu.
Select the file you want to save.

12

SourcePoint Environment

File Menu - Program Menu Item

Select File]Program on the menu bar to access the following options: Load Program, Reload
Program, Remove All Programs, and Save Program. The Program Load and Reload
Program options are also available as icons on the icon toolbar.

Load Program Option

The Load Program option allows you to load programs into target memory and/or load debug
(symbol) information for symbolic or source-level debugging.

Program Load |

Laoak: in: Ia C_Sample j - I-:-_ai(-
Flat. ornf

File name: Flat. am Load I
Filez of type: IEIMFSEE.-’EBE B ootloadable [*.omf) j Cancel |

— OMF386/286 Bootloadable

Pre-Load macro: I Browse... |
Fozt-Load macro: I Browse... |
Source F'ath...l

Load type

¥ Code and symbolz ¥ Initislize processor
i~ Code only v Werify

i~ Sumbalz anly

Program Load dialog box

The option supports a number of file formats, as listed in the table below. The format of the file
affects the options available in the Program Load dialog box.

File Format Type

Initialize
processor(1)
File format Macros(2) Offset(3) Address(4)

13

SourcePoint for AMD 1.0

type

OMF386/286
Bootable
(*.omf)

ELF executable
(*.elf)

initializes EIP
only

Intel OMF86
files (*.omf)

AOUT
Executable
(*.out)

PE32/PE32+
(*.exe)

initializes EIP
only

PE32/PE32+
(*.dll)

initializes EIP
only

EFI(PE) format
(*.efi)

initializes EIP
only

MS-DOS EXE X X
(*.exe)

PDB format X X
(*.pdb)

Intel HEX files X X
(*.hex)

Intel TEXTSYM X X
symbol file

(*.sym)

Binary files X X
(*.bin)

(1) Provides initialization of processor registers

(2) Pre- and/or post-load macro

(3) Numeric offset added to load address of code/debug information to form new load address
(4) Allows placement of file in user-selected memory location via address

Lower Half of Dialog Box

Depending on the format of the file you chose in the List of files of type, you have various
options available.

Offset: This option lets you place the file in memory some place other than at the default setting.

e For the Binary format; enter the load address into the Address box.
e For relocatable formats, enter the signed relocation value into the Offset box (typically 0).

< Note: Any file whose signature is not recognized by the loader is treated as binary format.

Pre-Load Macro. The Browse button allows you to select a macro file that runs prior to the
loading of code or symbols. The primary use of this macro is to automate initialization of your
target to a known state prior to the actual program load. If this feature is not desired, then leave
the field blank. If the text entered in this box begins with a "#" character, then it is considered to
be a command and is executed directly.

14

SourcePoint Environment

Post-Load Macro. The Browse button allows you to select a macro file that will run after the
loading of code and/or symbols. Some file formats contain information for initializing the
processor state after the program is loaded. A file of this format does not require a post-load
macro. Other file formats do not contain this initialization information and require further
initialization of the processor state after the code has been loaded. The post-load macro is useful
for automating this processor state initialization process. If the text entered in this box begins with
a "#" character, then it is considered to be a command and is executed directly.

Source path button. Click the Source path button to open the Source Path dialog box. In it you
can specify where the loader should locate source files and what file extensions it should look for.
The Source Path dialog box now supports both path maps and search paths (for OMF). A path
map requires entries under both the Build directory and Debug directory, while a search path
requires only a Debug directory entry.

Source Path Dialog

Source Path |

Drefault file extenzions:

Source directaries; | | | XI ‘I‘l +
B uild directony | Debug directony

¥ Prompt for files not found in search path

k. I Cancel Help

Source Path dialog box

If you enable the Prompt for files not found in search path. The Find Source dialog box
displays, giving you access to your source files via this easy-to-use GUI.

15

SourcePoint for AMD 1.0

Find Source csample |
File narne: Folders:
Icsample b hzamplezhomfbc_sample

Flat.bid - = o — _ Cancel |
Flat.crnd [=> Program Files . |
Flat. map i i Skip
Flat amf [=> American Arium
Intztubs. azm [= SourcePaint-l4_3 .
load_zarnple.mac ;I = Samples ll —IS e
Source Path |
Lizt files af type: Dirives: Help |
| &1 Files =) MR eI =
Metwork... |

Find Source dialog box

Load type section
You have three options: Load Code and symbols, Code only, or Symbols only.

e Code and symbols option: Use this option to write the program (code) into target
memory to load symbolic and source file information into SourcePoint. This allows
program addresses to be referenced symbolically, and disassembly to show source code
and symbol names.

e Code only option: Use this option to write the program into target memory.

e Symbols only option: Use this option to load source and symbol information into
SourcePoint. Select this option when the program is already in the target (in ROM or
Flash). This results in shorter load times.

Initialize processor. Enable this option to set the PC to the entry point location specified in the
file you are loading.

Verify. When this option is enabled, SourcePoint verifies that the program you selected to load is
the one being loaded.

Reload Program Option

Select Program Reload to initiate a load operation using the parameters from the prior program
load in the current project without any further intervention. If no program has yet been loaded, the
Program Load dialog box is displayed.

Remove All Programs Option

This option removes all source or symbol information from the Symbols window. It is the same
as the Remove All Programs option in the Symbols window.

Save Program Option

16

SourcePoint Environment

The Save Program option lets you save your program. For details on how to save a program,
see "How to Save a Program," part of "How To - SourcePoint Environment," found under
SourcePoint Environment.

17

SourcePoint for AMD 1.0

File Menu - Macro Menu ltem

Select the Macro menu item from the File menu to access the following options: Load Macro and
Configure Macros.

Load Macro Option

Select the Load Macro option to load an existing macro file.

1.

4,

Select the Load Macro option.
A standard Open file dialog box displays.
Select the desired macro by clicking on it to highlight it or browse for it.

Click the Open button. The macro loads, and the Open file dialog box closes.

Configure Macros Option

Select Configure Macros to open the Configure Macros dialog. There are two types of macros:
User-defined macros and Event macros. User-defined macros are macros that you create and
link to the buttons in the Macro toolbar. Event macros are macros that run when a specific event
occurs (e.g., target reset, project load, etc.).

User-Defined Macros Tab

18

SourcePoint Environment

Configure Macros P§|

U zer-defined M acros | Event Macros

Select macra: | tacro 4 L |

Crnd/macra file: | Himpart c:ternphao.py [Browse.. |
E cha file to cormmand window Clear Al

Buttan bewt: | qa

Drezcription

Select a uzer defined macro

k. H Cancel H Help

Configure Macros dialog box

Select macro. Use this drop down list to select a user-defined macro number. Up to 20 user-
defined macros can be specified.

+» Note: You must add the macro icons to the icon toolbar prior to adding user-defined macros 4 -
19. If you do not, the select macros drop down text box shows only Macros 0 - 3. To add macros
to the toolbar, right-click on the Macro toolbar and select Customize.

Cmd/macro file. Use this box to specify the macro file to execute. Select the Browse button to
find the file. Clearing this field removes the macro definition.

Alternatively, you can specify a command to execute. If the text entered in this box begins with a
"#" character, then it is considered to be a command and is executed directly. Multiple
commands can be separated by semicolons.

Echo file to command window. Enabling this option causes the contents of the macro file to be
echoed to the Command window.

Button text. By default user-defined macro buttons are labeled "Macro 0,” "Macro 1,” etc. This
field can be used to display more descriptive text. The text is visible on the toolbar only when you
choose to display both the icon and text.

Clear All. Use this button to remove all macros definitions.

19

SourcePoint for AMD 1.0

+» Note: User-defined macros are saved in target configuration files. See Option Menu - Save
Target configuration File Menu Item in SourcePoint Environment for more information.

Event Macros Tab

Configure Macros E|

User-defined Macroz | Event Macros

Select event: Target configure W

Cmddmacra file: |HOMEPATH + "T argetz\hconfigure. mac” Brovese. ..

] Echa file to command window Clear &l

[] Dizable macra

Dezcrption

Thiz event rung after target powered and before project load. This macro
provides the dizcover/configure functions and any custom target securnity
unlocking procedures. SourcePaoint provides an implementation for
standards-conforming targets in the configure(] procedure found in file

b acroz/config-utilz. mac

ak. H Cancel H Help

Event Macros dialog box

Select event. Choose the event to link a macro with. When the event occurs, the macro file will
be executed. See Event descriptions below.

Cmd/macro filename. Use this box to specify the macro file to execute. Select the Browse
button to find the file.

Alternatively, you can specify a command to execute. If the text entered in this box begins with a
"#" character, then it is considered to be a command and is executed directly. Multiple
commands can be separated by semicolons.

Echo file to command window. Enabling this option causes the contents of the macro file to be
echoed to the Command window.

Disable macro. Enabling this option temporarily disables an event macro from running.

Clear All. Use this button to remove all macros definitions.

20

SourcePoint Environment

+ Note: Event macros are saved in target configuration files. See Option Menu - Save Target
configuration File Menu Item in SourcePoint Environment for more information.

Event Description
Breakpoint Macro executes after any breakpoint is hit. This macro is in addition to any
(any) individual breakpoint macros that have been set.
Emulator Macro executes after SourcePoint connects to the emulator, but before
Connected target configuration occurs.

Go

Macro executes just prior to sending the Go command to the emulator.

Project Load

Macro executes immediately after loading or reloading a project.

Project Unload

Macro executes immediately after unloading a project (which includes
closing SourcePoint).

Reset (before)

Macro executes just prior to sending the Reset command to the emulator.

Reset detected

Macro executes when the emulator detects a target reset initiated by either
SourcePoint or the target. If the target requires security unlocking, this
event can be used to run an unlock macro.

Reset complete

Macro executes immediately after target reset has completed.

Reset (after)

Macro executes after a user-initiated reset completes. This event does not
occur if Run after reset is enabled.

Startup

Macro executes when SourcePoint starts.

Stop (user)

Macro executes after the Stop button is pressed, and the emulator signals
the target has stopped

Target
configure

Macro executes after target power on and before project load. This macro
provides the discover/configure functions and any custom target security
unlocking procedures (when required). See the Target Configuration
Technical note for more information.

Target power
on detected

Macro executes when the emulator detects a power on transition. If the
target requires security unlocking, this event can be used to run an unlock
macro.

Target power
on complete

Macro executes when the emulator signals that the target power cycle is
complete.

Target stop

Macro executes whenever the target stops (either because of a breakpoint
or the stop key being pressed). Macro executes before SourcePoint does
any automatic memory or register reads to refresh state.

21

SourcePoint for AMD 1.0

File Menu - Print Menu Items

There are three print menu items in the File menu: Print, Print Preview, and Print Setup.
To go directly to the description of one of these menu items, click below:

Print Menu Item

Print Preview Menu ltem

Print Setup Menu ltem

Print Menu Item
1. Select File|Print on the menu bar to print. A Range dialog box displays.

2. Choose to print all or a portion of a selection. The range may be of one of the following
types:

All All of the data, both visible and not visible, from the currently selected
window.

Current Display |The data from the lines currently displayed in the selected window. This is
the default unless text has been selected.

Selection The data that has already been highlighted in a window. Text selection can
be accomplished via the keyboard (e.g., shifting the right arrow) or via the
mouse (e.g., dragging the mouse over the region while holding down the left
mouse button). This is the default when text has been selected. Otherwise,
the current display is the default.

"Special” Specific data can be identified via beginning and ending range information.
The unit of measure will vary, depending on the window.

< Note: Many of the windows in SourcePoint (but not all) have the capability to print their
contents. You are prompted for a range to print. You may want to limit the range of print because
the total potentially could be huge.

3. Click on the OK button. The Range dialog box closes. A standard Windows®© Print dialog
box displays.

4. Determine print options.

5. Click the OK button.

Print Preview Menu Item

Select File|Print Preview on the menu bar to view the selected window as it will appear when
printed. Once displayed, print setup options are available from the preview screen.

Print Preview initially shows data from the beginning. By using the range selection dialog box at
print time, you can start at another location. In the Print Preview window, use the Next Page and
Prev Page buttons or the scroll bars to see other potential pages of print.

Print Setup Menu Item

22

SourcePoint Environment

Select File|Print Setup on the menu bar to access printer options. Printer selection and other
default printer options are specified from this screen.

The print setup varies depending on the print capabilities at your site. Each printer has a number
of capabilities that may be used to configure a print environment. The two most common items to
change in Print Setup dialog box are the printer and the orientation of the image (profile or
landscape). While SourcePoint supports many printing devices, the colored window displays and
windows that have contents that are wide may not print well on your printer. High resolution PS-
capable printers have been found to provide the best output. For wide displays, consider using a
landscape orientation.

By changing the print setup parameters, you can change those parameters for all applications
that print on that device (not just SourcePoint). If this is a problem, change the parameters each
time you print something from within SourcePoint rather than changing the print setup.
Modifications made during a particular print job aren't persistent like those made during the print
setup.

23

SourcePoint for AMD 1.0

File Menu - Update Emulator Flash Menu Item

Select File]Update Emulator Flash on the menu bar to update the firmware stored in the flash
memory of the emulator. A standard file Open dialog box displays. The file (with an ".fls"
extension) resides in the SourcePoint root directory. This menu item is also available via the icon
toolbar.

This step usually is required when upgrading to a newer version of SourcePoint.

24

SourcePoint Environment

File Menu - Program Target Devices Menu Item
Program Flash Option

This option takes you to the Target Configuration dialog box. However, programming the target
flash is currently not available.

Program PLD Option

Not functional.

25

SourcePoint for AMD 1.0

File Menu - Other Menu ltems

The file menu also contains these menu items: Save As, Recent Projects, Recent Programs,
Recent Macros, and Exit. They are described in more detail below.

Save As Menu ltem

Recent Layouts Menu Item
Recent Projects Menu ltem
Recent Programs Menu ltem
Recent Macros Menu Item

Exit Menu Item
Save As Menu ltem

Many of the windows in SourcePoint have the capability to save their content display as text to a
file. This capability is invoked via File|Save As on the menu bar. The Save As dialog box
displays.

The dialog box, which works much like any Microsoft® Windows® Save As screen, also has the
ability to save specific ranges of contents. In addition, you can save specific ranges of contents. It
is necessary to limit the range of output in many cases because the time it takes to save the data
can be well into the minutes.

The range may be of one of the following types:

All All of the data from the currently selected window.

Current Display | The data from the lines currently displayed in the selected window. This is
the default setting unless text has been selected.

Selection If you highlight certain data from a window, the Selection field is enabled.
Text selection can be accomplished via the keyboard (e.g., shifting the Right
Arrow key) or via the mouse (e.g., dragging the mouse over the region while
holding down the left mouse button). This is the default when text has been
selected. Otherwise, the current display is the default.

"Special” Specific data can be identified via beginning and ending range information.
The unit of measure will vary, depending on the window.

To help ensure the output text file does not overwrite a file already present, a confirmation dialog
box displays.

As the output may take some time, a progress window is shown. The Cancel button is available
at any time to stop the output at the shown percentage of the range. The output data up to the
time of the cancellation can be saved, thus enabling you to start the output of a large range and
then change your mind and stop it at any time.

Recent Projects Menu Item

Select File|Recent Projects on the menu toolbar. The last nine files ("prj") you most recently
loaded display. This list is persistent and cumulative between invocations of SourcePoint. The full
path displays if the current directory is not the same as that of the file. If the file path is the same
as the current directory, only the name and extension of the file display.

26

SourcePoint Environment

Recent Layouts Menu Item

Select File|Recent Layouts for a list of SourcePoint layouts you have developed. The last nine
files ("lyt") you most recently loaded display. This list is persistent and cumulative between
invocations of SourcePoint. The full path displays if the current directory is not the same as that of
the file. If the file path is the same as the current directory, only the name and extension of the file
display.

Recent Programs Menu ltem

Select File]Recent Programs on the menu toolbar. The last nine files you most recently loaded
display. This list is persistent and cumulative between invocations of SourcePoint. The full path
displays if the current directory is not the same as that of the file. If the file path is the same as the
current directory, only the name and extension of the file display.

Recent Macros Menu ltem

Select File]Recent Macros on the menu toolbar. The last nine files you most recently loaded
display. This list is persistent and cumulative between invocations of SourcePoint. The full path
displays if the current directory is not the same as that of the file. If the file path is the same as the
current directory, only the name and extension of the file display.

Exit Menu Item

Select File|Exit on the menu bar to exit SourcePoint.

ICAUTION: If you have disabled Save Settings on Exit under the General tab of the
Preferences dialog box and you wish to retain the data and settings in a currently active window
or window group, you must save the Project (".prj") file before exiting SourcePoint. Select
File|Save Project on the menu bar to save the file using the current name and location, or
File|Save Project As to save it as another file name or location.

27

SourcePoint for AMD 1.0

Edit Menu

The Edit menu contains Undo, Redo, Cut, Copy, Paste, Find, Replace, and Find Symbol
menu items.

Undo

Redo

Cut, Copy, Paste
Find

Replace
Find Symbol

Undo Menu ltem

The Undo menu item "undoes" anything you have done immediately before and has numerous
uses. For example, if you have added something and you wish you hadn't, you may want to use
the Undo menu item. If you want to bring back something you have just deleted, use this item.
You can "undo" something only once.

Redo Menu Item

The Redo menu item lets you "undo" what you have just "undone.” For example, if you have
deleted something with the Undo menu item, you can bring it back in with the Redo menu item.

Cut, Copy, Paste Menu Items

The ability to access the Cut, Copy, and/or Paste menu items is conditional on many
parameters: you have selected an editable area, the active window can accept the edit, the data
selected to cut or paste is compatible with what is being solicited, etc. When the ability to cut,
copy, and/or paste is inhibited because it violates one of the above conditions, the corresponding
menu item is grayed out, indicating that it is currently not available.

To select a single word of text, place the blinking cursor in the word and double-click the left
mouse button. This highlights it. To select a region of text, hold down the left mouse button and
drag the mouse across the desired area. When the desired region has been highlighted, release
the mouse button.

The selected area appears with the colors inverted (white goes to black, blue goes to yellow,
etc.). Additionally, most standard Microsoft Windows selection modes are available.

The SourcePoint Cut, Copy, and Paste operations use the standard Microsoft Windows
clipboard so that text can be transferred between SourcePoint windows and dialog boxes as well
as between SourcePoint and other applications and editors. Once the selected area has been cut
or copied, it can then be pasted in the desired location.

Find Menu Item

Use the Find menu item to enter the text to be found and then clicking the Find Next button.
Options may be selected prior to the search to set the direction of search and set case sensitive
constraints.

28

SourcePoint Environment

Replace Menu Item

Use the Replace menu item to enter both the text to be found and the replacement text. Case-
sensitive constraints are optional and can be selected by clicking the Match case check box. The
Replace and Replace All buttons may be used to replace the first occurrence or all occurrences
of the find text, respectively.

Find Symbol Menu Item

The Find Symbol menu item opens a dialog box that allows you to quickly maneuver and find
any program symbol and its memory address. This dialog can be summoned in two additional
ways: by selecting a program from within a Symbols window Global tab and pressing CTRL-F,
or by pressing CTRL-S from anywhere within SourcePoint. When it is invoked from the Symbols
window, the dialog also serves as a finder for symbol tree items in the view.

Find Symbol - XScaleFlat30200_axf |

Syrbal M ame Addrezs =
| use zemihosting swi CO000443
_ 32 rt_ahart Coon0zza
_ 32 rh_ewit Coonoz1a
| _uze_zemihosting_swi COo00445
__fplib_confio_pureend_doubles Coo0o4cc

__main Cooooooo
__1t_abart COo0022a
__1t_abort1 COooooz2C
__1t_entry CO000Z03
__1t_ewit Coono1a
1k fp_status_addr COo0o4ac
__1t_heap_gxtend COo0o30 4
__1k_lib_imit Coonoz4a

__tt_lib_shutdown COo0032c
barl e an_ni CnAn244 T
A [v | Code fData’y Modules |1 ' F

cocs|

Find Symbol dialog box

The Dialog Box
The dialog box displays three tabs: Code, Data, and Modules.

Right-clicking on a symbol in the Code or Modules view brings up a context menu with the
following menu items: Open Code Window, Open Memory Window, Set Breakpoint, Go Until,
and Add Performance Analysis Range.

e Open Code Window/Open Memory Window menu item. Clicking on these menu items
opens a Code or Memory window at the address of the symbol highlighted in the Find
Symbol dialog box.

29

SourcePoint for AMD 1.0

e Set Breakpoint menu item. This menu item lets you set a breakpoint at the address of a
highlighted symbol.

e Go Until menu item. This menu item sets a temporary breakpoint at the symbol and lets
the target run.

The context menu that opens from the Data view includes two menu items: Open Memory
Window and QuickWatch.

e Open Memory Window menu item. Clicking on this menu item opens a Memory
window at the address of the symbol highlighted in the Find Symbol dialog box.

e QuickWatch menu item. Clicking on this menu item drops the symbol into a
QuickWatch view, which then displays the value of the symbol, as well. Keep in mind
that a value placed in the QuickWatch view is lost at the next Step or Go command; it is
just a handy way to get a quick view of that value.

If you are running a single program, the white text box below the tabs displays the current

program. When more than one program is running, the text box is replaced by a drop down list
box from which you can select the program you want to view.

30

SourcePoint Environment

View Menu

The View menu contains Toolbars, Dialog Bar, Breakpoints, Code, Command, Descriptors,
Devices, Log, Memory, Page Translation, PCI Devices, Registers, Symbols, Trace,
Viewpoint, and Watch menu items. Those items that open a window also are available as icons
on the icon toolbar.

Toolbars Menu ltem

Select View|Toolbars on the menu bar to enable/disable the display of the icon toolbars
available in SourcePoint's main window. They are: File, Macro, Edit, Processor, View, Window,
Print, and Help. SourcePoint allows you to customize the toolbars. All icons are enabled by
default. (To customize the toolbars, see the "Edit Icon Groups to Customize Your Toolbars" topic
in "How To - SourcePoint Environment" under SourcePoint Environment.) Each icon directly
corresponds to a menu item located within a menu from the SourcePoint menu bar.

Dialog Bar Menu Item

Several windows (such as Code and Memory windows) contain an optional dialog bar that allows
you to control the range and format of the data displayed in that view. To enable the dialog bar,
select View|Dialog Bar on the menu bar and enable or disable the option by clicking on it. A
check mark by it indicates the option is enabled.

Breakpoints Menu Item

Select View|Breakpoints on the menu bar to access the Breakpoints window. The Breakpoints
window displays a list of current breakpoints or events, including their location, sequence, and all
specified attributes. The Breakpoints window is used to add, edit, disable, enable, and remove
breakpoints.

For additional information on breakpoints, begin with the topic, "Breakpoints Window
Introduction."

Code Menu ltem

Select View|Code on the menu bar to access the Code window and display the Code menu. The
Code window menu duplicates the dialog bar and contains additional menu items that aid in the
examination and tracking of program code. The Code window is used to view code at a specific
address, set breakpoints, run the processor, and track program execution.

For additional information on the Code window, begin with the topic, "Code Window Introduction."

Command Menu ltem

Select View|Command on the menu bar to open the Command window and to display a
Command menu.

For additional information regarding the Command window, begin with the topic, "Command
Window Introduction."

Descriptors Menu Item

31

SourcePoint for AMD 1.0

Go to View|Descriptors on the menu bar to open a window displaying the processor descriptor
tables.

+« Note: The target must be in Protected mode in order for the Descriptors command to display
valid information.

For additional information on the Descriptors window, begin with the topic, "Descriptors Window
Introduction."

Devices Menu ltem

Select View|Devices on the menu bar to open the Devices window. The Devices window allows
you to define a grid to view memory-mapped I/O devices and related registers.

For additional information on the Devices window, begin with the topic, "Devices Window
Introduction."

Log Menu Item

Select View|Log on the menu bar to access the Log window and display the Log menu. The Log
window tracks and logs SourcePoint events such as warnings and errors. The Log menu allows
for the selection of specific information or events to be logged.

For additional information regarding the Log window or the Log menu, begin with the topic, "Log
Window Introduction."

Memory Menu Item

Select View|Memory on the menu bar to open the Memory Address dialog box. This dialog box
prompts you to enter an address with a choice of styles. After an address is entered, a Memory
menu dialog bar is activated on the Memory window, and the Memory menu appears on the
SourcePoint menu bar. The Memory window menu contains menu items to aid in the
examination and modification of memory; it also duplicates the dialog bar.

For additional information on the Memory window, begin with the topic, "Memory Window
Introduction."

PCI Devices Menu ltem

Select View|PCI Devices on the menu bar or click on the PCI Devices icon on the icon toolbar to
access the PCI Devices window. The PCI Devices window displays basic information for the PCI
devices on the target. It scans the PCI buses you specify using a process called PCI device
enumeration and displays a summary of each PCI device found, ordered by its bus, device, and
function numbers.

For additional information on the PCI Devices window, begin with the topic, PCI Devices Window
Introduction."

Page Translation Menu Item

Select View|Page Translation on the menu bar to open a window displaying the processor page
translation tables. Page translation tables are used to look at the memory paging features.

32

SourcePoint Environment

For additional information on the Page Translation window, begin with the topic, "Page
Translation Window Introduction."

Registers Menu Item

Select View|Registers on the menu bar to pen a window that displays the hexadecimal values of
the general registers.

For more information about the Registers window, begin with the topic, "Registers Window
Introduction."

Symbols Menu Item

Select View|Symbols on the menu bar to access the Symbols window. The Symbols window
displays all symbols and their values by default. You can also choose to display their types and
addresses.

For additional information on the Symbols window, begin with the topic, "Symbols Window
Introduction."

Viewpoint Menu Item

Select View|Viewpoint on the menu bar to open a window showing the state of each processor
in the target system. The window opened also allows viewpoint selection among the target
processors. The command is available on multi-processing targets.

Watch Menu Item

Select the Watch menu item to open a window into which you can put user-selected symbols.
Once placed in the window, their values are displayed. Symbol values change in the Watch
window as the values themselves change.

For more information on the Watch window, start with the topic, "Watch Window Introduction,"
part of "Watch Window Overview," found under Watch Window.

33

SourcePoint for AMD 1.0

Processor Menu

Items in the Processor menu let you "step through" source or assembly code in various ways.
The menu contains Go, Stop, Step Into, Step Over, Step Out Of, Reset, and Snapshot menu
items. These are described in detail below.

« Note: For more information on stepping, see the topic entitled, "Stepping" found under
Technical Notes.

Go Menu ltem

Select Processor|Go on the menu bar to start program execution at the current instruction
pointer (IP). The processor stops when a breakpoint is encountered. If no breakpoints are set, the
processor is stopped by executing the Stop menu item.

Stop Menu Item
Select Processor|Stop on the menu bar to halt the processor.
Step Into Menu Item

This single-steps the next instruction in the program and enters each function call that is
encountered. This is useful for detailed analysis of all execution paths in a program.

Step Over Menu Item

This single-steps the next instruction in the program and runs through each function call that is
encountered without showing the steps in the function. This is useful for analysis of the current
routine while skipping the details of called routines.

Step Out Of Menu Item

Step Out Of causes the processor to run until it comes to the end of the current subroutine and
returns to the next high level of the call stack. This is useful as a quick way to get back to the
parent routine.

Reset Menu Item
Select the Reset menu item to reset the processor(s).
Snapshot Menu Item

Select Snapshot on the menu bar or icon bar to enable this menu item. When this item is
enabled and the target is running, the target is stopped, all windows are refreshed, and the target
is restarted. If the target is not running, no action occurs.

34

SourcePoint Environment

Options Menu

For easier navigation, we have broken the subjects covered in this menu into several topics.
Please click on the hyperlinked text below for documentation on a specific Options menu item.

Preferences

Target Configuration

Load Target Configuration File

Save Target Configuration File

Emulator Configuration

Emulator Connection

Emulator Reset

Confidence Tests

35

SourcePoint for AMD 1.0

Options Menu - Preferences Menu Item

To set, change, or modify SourcePoint preferences, select Options|Preferences on the menu
bar. The Preferences dialog box displays with the following tabs displayed: General, Emulator,
Breakpoints, Code, Memory, Program, and Colors.

To go directly to a tab, click on the link below.

General tab
Emulator tab

Breakpoints tab
Code tab

Memory tab

Program tab
Colors tab

General Tab

The section under the General tab contains options that apply to all of SourcePoint.

General | Emulator | Erealkpointz | Code I Memorny I Frogram | Colors |
Project
Load last project on startup

[Prompt before automatically saving project

Save project on exit

Izer interface
Show advanced configuration settings

[] Show tooltips
[] Timed window refresh

Intereal |1 —| zeconds

Prefemed editor; W3

General tab under Options|Preferences

Load last project on startup. This option determines whether the project you worked on last is
automatically loaded again at startup. By default, the option is enabled.

36

SourcePoint Environment

Prompt before automatically saving project. When enabled, SourcePoint checks if any key

configuration settings have changed prior to writing these settings to the project file. If there are
changes, SourcePoint will display a dialog, and prompt the user whether these changes should
be saved. The default for this option is enabled.

Save project on exit. This option determines whether or not to save all settings when
SourcePoint terminates. By default, it is enabled.

ICAUTION: If you have disabled Save Project on Exit and you wish to retain the data and
settings in a currently active window or window group, you must save the Project ("prj") file before
exiting SourcePoint. Select File|Save Project on the menu bar to save the file using the current
name and location, or File|Save Project As to save it as another file name or location.

Show advanced configuration settings. When enabled, all configuration options are displayed
including seldom-used advanced options. When disabled, only the most common configuration
settings are displayed. The default for this option is enabled.

Settings affected include emulator configuration settings, memory map settings, certain trace
configuration settings, and processor control mask settings in the Viewpoint view.

The Advanced control variable can be used to change this setting from the Command window.

Show Tooltips. This option enables flyover help in the Code, Trace and Memory windows and is
enabled by default.

Timed window refresh. When this option is enabled, all windows are refreshed every n seconds.
In the Interval text box, you can specify values between 1-999 seconds. The default value is 10
seconds.

Emulator Tab

The Emulator tab offers three options: Restore processor breaks on reset and Branch Trace
Messages always enabled.

37

SourcePoint for AMD 1.0

(Preferences |i|ﬁ
General | Emulator | Breakpoints | Code I Memory I Program | Colors |
[7] Restore hardware breaks on reset
Multicluster support enabled
| oK || cancel || Hep

Emulator tab under Options|Preferences
Restore hardware breaks on reset. Select this option to restore, upon target reset, the
hardware breakpoints and then start the processor. Clearing this option results in a loss of all
hardware breakpoints if a target reset occurs while the processor is running.
< Note: A break on a reset breakpoint performs a similar function, stopping the processor upon
reset and restoring its breakpoints when started. However, it does not automatically restart the
processor.

Multicluster support enabled. Put a check mark beside this option if you want to enable
multicluster support.

Breakpoints Tab

The Breakpoints tab displays settings related to breakpoints.

38

SourcePoint Environment

= ™

| | General | Emulaturl Breakpoints |Cude I Memany I Program | Colors |

Wam on address translation failure

[Wam on software breakpoints and page translation

Break on user code debug register write

Address translation defaults

Translate virtuals: @ Once® (7) Everygo

Translate linears: (7 Once* @ Everygo

* Prefermed default

Code breakpoirt type default Hardware breakpoirt processor default
@ Auto (7 All processors
(™) Hardware (@ Cument viewpoirt

() Software

Breakpoints tab under Options|Preferences

Warn on address translation failure. When this option is enabled, a warning message is
displayed whenever a breakpoint address cannot be translated.

Warn on soft breaks and page translations. The use of soft breaks in a system with Page
Translation enabled is not guaranteed to work. Prior to starting the processor, SourcePoint
writes any soft breaks into target memory. When Page Translation is enabled, the page
containing the soft break may get swapped out and then back in, thus losing the soft break. When
this option is selected, a warning message is displayed whenever the processor is started, at
least one soft break has been set, and the processor has Page Translation enabled.

Break on user code debug register write. When this option is enabled, SourcePoint will stop
execution whenever user code attempts to modify a processor debug register. This prevents
conflicts between user code and SourcePoint use of these registers to implement Hardware
breakpoints

Address translation defaults section. There are two types of breakpoint address translation
options: Translate virtuals and Translate linears. You can choose Once, where the breakpoint
address is translated immediately using the current processor context, or Every Go, where the
address is re-translated every time the processor is started. By default, SourcePoint translates
virtual and linear addresses once. This Address translation defaults section allows these
defaults to be overridden. In addition, individual breakpoints can have their translation types
changed from within the Breakpoints window.

Code breakpoint type default. The default is Auto. When Auto is selected, for a breakpoint
explicitly set in code (such as through the Code window), a software breakpoint is used if one is

39

SourcePoint for AMD 1.0

available; otherwise, a processor breakpoint is used if one is available. For temporary breakpoints
implicitly set in code (as on a go til address or source level step), a processor breakpoint is used
if one is available; otherwise, a software breakpoint is used if one is available. Selecting the
Processor option specifies the setting of only processor breakpoints. Selecting the Processor
option specifies the setting of only processor breakpoints. When using a processor breakpoint
type, you can only set two breakpoints. Where appropriate, however, you may wish to set the
Software option as your default since you can set unlimited software breakpoints. Note that when
the target is running in Monitor mode, software breakpoints are not available. For all cases, when
no resources are available to set a breakpoint, an error message results.

Hardware breakpoint processor default. These controls are only visible when connected to a
multiprocessor, homogeneous target (all processors are of the same type). When All processors
is selected, setting a hardware breakpoint in SourcePoint will cause the breakpoint to be set on
every processor. When Current viewpoint is selected, setting a hardware breakpoint in
SourcePoint will cause the breakpoint to be set on a single processor. The All processors
setting is useful for symmetric multiprocessing environments, where code with the breakpoint set
could be dispatched on a different processor at a later time.

Code Tab
The section under the Code tab contains options that apply to the Code window.

Preferences | x| |

Generall Emulatu:-rl Breakpoints Code IMemDr_I,II F'ru:ugraml I:::ulu:ursl

¥ Guarantee a racking window on target stop

¥ PFeuse code windows when possible

— Dizplay defaults
Preferred made: IS::-un:e j R adix: IHe:-:adeu:imaI j
Line highlights: INDne j Radix indicators: IN::-ne j
Dizazzembly case: IMi:-;ed j T ab zpacing: |4 j
¥ Code bytes ¥ Pseudo-Ops
¥ Line number # address ¥ Symbols ¥ Annotation

Default viewpoint: | Track Wiewpoint j

ak. I Cancel Help

40

SourcePoint Environment

Code tab under Options|Preferences (multi-processor target)

Guarantee a tracking window on target stop. If this option is enabled, every time the target
system stops, SourcePoint guarantees that a tracking Code window opens for the focus
processor. SourcePoint may reuse either an existing Code window or create a new one. This is
the default behavior.

Reuse code windows when possible. If this option is enabled, SourcePoint attempts to reuse
existing Code windows rather than create new ones. This applies to Code windows that may be
generated by the following: Open Code Window from the context menu of the Symbols, Trace,
or Breakpoints windows, or by Guarantee a tracking window on target stop, the option
described just above. This option is enabled by default.

Display Defaults. There are a number of options you can set in this field. They are described
briefly below.

Preferred mode. Choices are Disassembly, Mixed, and Source.

Line highlights. Options are Group, Current IP, and None.

Disassembly case. Options are Mixed, Upper, and Lower.

Radix. Options are Hexadecimal, Octal, Decimal.

Radix indicators. Options are Prefix, Suffix, None.

Tab spacing. Allows you to modify tab spacing in the Code window.

Line number/address. Displays line number and/or address of code.

Code bytes. Display raw data values of code.

Symbols. Display symbols, also known as labels.

Pseudo-Ops. Pseudo-Ops are mnemonics such as register or instruction names.
Annotation. Enables display of source code comments. All annotated lines have a line of
underscores before and after the annotated text.

Default viewpoint. Lets you choose the default processor you want to track. This option displays
only when you are connected to a multi-processor system.

Memory Tab

The Memory tab provides default display options for the Memory window.

41

SourcePoint for AMD 1.0

Preferences

| General | Emulator | Breakpoints | Code | Memary | Pragram | Colors |

Prefered display unit

Dizplay unit defaultz

bt Hesadecimal | 16 bytes wide v |MoASCI v |

16bit | Hexadecimal v | 16 bytes wide v |NoASCI |

32bit | Hesadecimal | 16 bytes wide v |NoaSCIl |

B4 bi: | Hewadecimal v | 16 bytes wide v |NosSCI v |

Default viewpaint: |Tran::k Wigwpaint vl

Feuse memarny windows when possible

L OF.][Caricel][Help

Memory tab under Options|Preferences

Preferred display unit. Determines the default units for display of memory data (8-, 16-, 32-, or
64-bit).

Display unit defaults section. This section allows you to set the preferences for each Display
mode. The options for each are for the Radix (hex, sign, unsign), Display width (in bytes) and
ASCII/No ASCII.

Default viewpoint. Lets you display the default viewpoint you want to track if you are in a multi-
processor configuration. In a single processor configuration, the default is Track Viewpoint.

Reuse memory windows when possible. If this option is enabled, SourcePoint attempts to
reuse existing Memory windows rather than create new ones. This applies to Memory windows
that may be opened from he context menus of the Symbols, Trace, or Breakpoints windows.

Program Tab

The Program tab offers options that control the display of code (source and disassembly),
including source code type and view, demangling of symbol names, and program caching.

42

SourcePoint Environment

eneral Emulatn:n;é -Ereakpn:nints | I:n:u:Ie. -Memn:nr_l,-li Pragram | Calars

Source code C++ symbal name demangler
(%) Auto detect [] Demangled symbol names
OC Compiler;

() C++ I.-’-‘-.utu:u Select W

Hide C++ internal symbalz

Smart spmbol analysis

Load from temporary copy of program

[] Intemal globals are public

[k. J[Cancel H Help

Program tab under Options|Preferences

< Note: Many of the options in this dialog box do not take effect until you have reloaded the
symbols portion of the file. To do this, select File|Reload Program. In the lower right quadrant of
the dialog box is the option Symbols only. Enable the check box and click on the Load button to
reload the symbols with the new setting in effect.

Source code section. For correct symbol analysis, SourcePoint needs to know the language in
which the source code has been written. This usually can be determined automatically, but you
may want to specify the language. This field offers three options: Autodetect, C, or C++. The
default setting is Autodetect. However, you may specify whether you want to view your symbols
as if the source code was C or C++ . This may be useful, say, if your source code was written in
C but compiled using a C++ compiler.

C++ symbol name demangler section. As the name implies, this section addresses symbol
name demangling.

e Demangled symbol names. When enabled, this option demangles symbol names.
When working in C++, enable this option.

« Note: The Demangled symbol names option, when enabled, is available immediately. You
do not have to reload the symbols portion of the file before it becomes active.

43

SourcePoint for AMD 1.0

e Compiler. SourcePoint needs to know the compiler used to create your binary. You may
choose Auto Select or one of a list of compilers from the drop down text box.

Hide C++ internal symbols. This option is self-explanatory. Enabling the box hides C++ internal
symbols.

Smart symbol analysis. When this option is enabled, SourcePoint loads program symbols as
they are required ("just-in-time" symbol loading). This prevents the long delays that would
otherwise occur if SourcePoint attempted to load all symbols at once. With Smart Symbol
Analysis enabled, some SourcePoint views (such as the tree view of the Symbols window)
occasionally may show less symbolic information because SourcePoint has not yet analyzed all
symbol data. If you want to ensure that all symbolic information is always available, disable
Smart Symbol Analysis. This forces SourcePoint to load all symbolic information at program
load time. While disabling Smart Symbol Analysis may provide more complete symbolic
information, this setting can increase significantly program load time.

Load from temporary copy of program. Enabling this option lets you view Code windows,
including disassembly and source code, while the target is running. If the option is disabled, the
loader uses the original file you specified. This file is held open until the program is removed or
the project is unloaded. The tradeoff is the ability for you to rebuild the program while it is loaded
in the debugger in exchange for the time and space required to make the copy.

Internal globals are public. C and C++ "static” keyword provides support for function and
variable definitions that are not visible outside of the containing module. These symbols are
ignored by the linker for resolving external symbol references. Since these symbols are private to
a module, their names are not required to be globally unique. Sometimes developers use module
symbols as an encapsulation mechanism, but make it a practice to assign unique names to them.
In this case, it is safe to enable Internal globals are public so that SourcePoint will publish module
symbols in the global space.

Array expansion limit. If your program has very large arrays, you may not want SourcePoint to
expand them fully. The Array expansion limit option lets you set a threshold.

Colors Tab
The Colors tab allows you to change the display colors for various SourcePoint windows.

< Note: It is recommended that you be consistent with the choice of background colors.

44

SourcePoint Environment

Preferences | x| |

Generall Emulatu:url Breakpnintsl Code I Memu:ur_l.ll Program Calors |

Wi — Elementz
Breakpoint Edit 'afindow -
Code Window — Dan't Care Bits
Command Ywindaw
Drevice Window
Log window
b emon Windaw
Page Tranzlation Wwindow
Profiling *indoa
Register Window |-
Symbal & W atch Windows
Wiewpaint YWindaw LI
Fareground B ackaground
SAMPLE TEXT - vl vl
Rezet
Reset Al o Apply
0k, I Cancel Help

Colors tab under Options|Preferences

Window text box. Allows you to select the window in which you want to change the colors.

Elements text box. Allows you to select the element in the window whose color you want to

change.

Foreground button. Allows you to select a new foreground color for the currently selected

element.

Background button. Allows you to select a new background color for the currently selected

element.

Reset All button. This button allows you to reset all the windows' colors back to the SourcePoint

default colors.

Reset Window button. Allows you to reset all the colors for the currently selected window back

to the SourcePoint default colors.

Apply button. Allows you to apply the colors to any window currently displayed.

45

SourcePoint for AMD 1.0

Options Menu - Target Configuration Menu Item
Select Options|Target Configuration to open the target configuration dialog.
To move directly to a particular tab, click here:

Memory Map Tab
Program Flash Tab
Target Devices Tab

Memory Map Tab

The Memory Map tab allows you to define regions of memory and control how those regions are
accessed by SourcePoint.

Target Configuration [$_<|

Memary Map | Program Flazh | Operating Svstern | Target Devices

Starting Address Ending Address Access Size | Type
O0FF7FFFFFF
QOFFa00oo00p O0FFEFFFFFF 32 bits Fla=sh
QOFFCO0O0O00F O0FFFFFFFFF 32 bits Fla=sh
sdd. || Edt. || Remove || Removesl
Safe Mode [ho automatic DRAM memary reads) Target tMermary
[] Enabled Symmetric Multi-Processing [SMP)

[] Enable on target reset or SourcePoint invocation

[] Disable after first Go

[k. H Caricel H Help

Memory Map tab under Options|Target Configuration

46

SourcePoint Environment

Memory Map text box. The upper half of this tab displays already defined memory map ranges,
providing four columns of data labeled Starting Address, Ending Address, Access Size, and
Type. These columns are described briefly below:

e Starting address column. This column lists the physical address where the memory
range begins.

e Ending address column. This column lists the physical address where the memory
range ends.

e Access Size column. This column lists the physical memory width (8, 16, or 32 bits) that
is used when memory within this range is read or written to.

e Type column. This column lists the type of memory: SRAM, DRAM, ROM, or Flash.

Buttons. The four buttons beneath the text box let you add, modify, or delete the data in the
Memory Map text box.

e Add button. Opens an Add Memory Map Entry dialog box for use in adding a memory
range.

e Edit button. Opens an Edit Memory Map Entry dialog box for use in editing a memory
range.

e Remove button. Removes a highlighted memory range.

e Remove All button. Removes all memory ranges.

For more information on how to create or edit these data, see "How to Modify a Defined Memory
Region," part of "How To - SourcePoint Environment," found under SourcePoint Environment.

Safe Mode (no automatic memory reads) section. The options in this section let you determine
the parameters for entering Safe Mode.

+» Note: Normally, SourcePoint automatically refreshes memory-based windows by re-reading
target memory after the target stops, steps, or resets. In some targets, however, reading memory
immediately following a reset hangs the target processor. For instance, if a Memory window is
open and the memory displayed is in an area that is unavailable until the chipset is initialized,
then clicking the Reset icon hangs the target. This is also a potential problem with the Code,
Memory, Trace, Page Translation, and Devices windows (all windows that can cause target
memory reads).

e Enabled. If the Enabled option is checked, then Safe mode is enabled and automatic
refresh of memory-based windows is disabled. When Safe mode is enabled, SourcePoint
displays the text "(Safe mode)” in the SourcePoint title bar.

e Enable on target reset or SourcePoint invocation. If this option is checked, Safe mode
is enabled automatically on target reset or SourcePoint invocation, and automatic refresh
of memory reads is disabled.

o Disable after first Go. This option automatically disables Safe mode following a target
run.

If all three check boxes are checked, Safe mode is enabled upon target reset, but it is disabled
again when the next Go command is issued by the user. This gives you a convenient way to
avoid the hazard of windows that cannot be refreshed safely immediately following a target list.

If Safe mode is in effect for a memory range, and that range currently is displayed in a window,
the following occurs:

e A Code window displays a No data available message.

47

SourcePoint for AMD 1.0

¢ A Memory window displays question marks instead of data.
e Other memory-based windows display old data.

The Refresh button of a window always forces memory reads to occur for the data range in that
window.

Target Memory section. If you are working in a multi-processing setup, a Target Memory
section displays to the right of the Safe Mode section. The section contains the option
Symmetric Multi-Processing (SMP). A Symmetric Multi-Processing (SMP) system is a multi-
processor system in which the memory maps of all processors are identical. In other words, all
memory is available to all processors at exactly the same address. Check this box if your target is
an SMP system.

If the SMP box is not checked, SourcePoint adds a Processor ID column to the Memory Map text
box so that you can declare memory ranges for each processor independently. A memory range
may belong to a single processor or all processors. The concept of a range of memory being
shared by some processors, but not all processors, is not supported.

In single processor systems, the SMP check box does not display.
Program Flash Tab

The Program Flash feature allows you to program the flash device(s) on a target platform. You
must specify a binary file containing the data to be programmed and can also specify a target
initialization macro to perform any target initialization that may be required before programming
the flash device.

48

SourcePoint Environment

Target Configuration f'5_<|

temary Map | Program Flash | Operating System || Target Devices

Flazh dewice(z)

Device address; | DOFFB00000F [Al) » | :
Device type: | T1: Lower device v|
[] Swap endian
Flazh image(z]

Start address: | FFE00000P w | [Define...]

Filename: |c:acustnmersx|nte| Flash\EFI Trace #1 '\Hu:umEIEIBEI.I:uin| B

Target initialization

Rur initialization crmd/macro

Crnd/macre file: |HEIMEF'MH + "MacroshaahSPlrtelFlash. mac' | []

5

[k.][Cancel][Help

Program Flash tab under Options|Target Configuration
Flash Device(s) Section

Device address. Select the correct device address from the drop down list populated from the
memory map.

Device type. The Device type drop down box contains a list of all supported devices. Use the
drop down box to select one.

Swap Endian. The purpose of this check box is to allow you to program an image that is
backwards in endianness relative to the target. If you have a big endian target and wish to use a
little endian image or visa verse, you can enable the Swap endian option. You may want to swap
endianness, depending on how your target processor handles byte storage.

Flash Image(s) Section

49

SourcePoint for AMD 1.0

Start address. If you want to select a previously defined address, use the drop down box to
select one. If you want to define a new start address, click the Define button. This opens the
Define Flash Image Start Address dialog box. Key in the address there.

< Note: The start address is NOT a relative offset. This option allows you to program a specific
block/sector within the flash device.

Filename. Enter the flash image file name or click on the Browse button to select a stored file.
Target Initialization Section
Run initialization/cmd macro. Enable this option to run the initialization macro.

Cmd/Macro File. Enter the name of the macro to be executed before a flash operation occurs or
click on the Browse button to find it.

Buttons

Write, Verify, Erase, Stop buttons. To execute the macro, click on one of the first three buttons.
The Write button programs the selected flash device.

The Verify button verifies that the selected flash device is programmed correctly.

The Erase button erases the selected flash device.

Use the Stop button to terminate any operation that is currently in process.

Target Devices Tab

This tab displays information about the target JTAG chain.

50

SourcePoint Environment

Target Configuration |

b ermany Mapl Frogram Flash ~ Target Devices I

—JTAG device properties

==, JTAG chain

» 0 %0 Farily 6 Model F (M) D' escription: I:-:BE Farmily & kodel F
.4y wBE Family & Madel F M)
M arne; IF"D

Aliaz name; I

JTAG ID: IEIEIEIEEEI'IE
IR lenath: I? 5‘ btz
b ax JTAG rate: |1E 5‘ kMHz

Status: IF"HDY

k. I Cancel Help

Target Devices tab under Options|Target Configuration. Note the JTAG chain properties
section.

Selecting an item in the tree on the left displays its properties on the right. For the most part, the

information is read-only and cannot be modified. However, if SourcePoint does not recognize the

JTAG ID of the device, the JTAG properties section includes a Description with a drop-down text
box from which you can select a processor type. An IR length and Max JTAG rate spin controls
also become editable. Aliases can be added here. If an alias has already been created, it can be

edited here.

e Description. Specifies the target's core/processor.

e Name. This is SourcePoint's "name" for the processor (PO, P1, P2, etc.).

e Alias name. Specifies an alias for the device. For instance, PO could be aliased as
BOOT. This alias can then be used throughout SourcePoint where PO would normally be
used.

JTAG ID. Specifies the JTAG ID.

IR length. Specifies the JTAG instruction register in bits.

Max JTAG rate. Indicates the maximum JTAG clock rate.

Status. Specifies the status of the device.

51

SourcePoint for AMD 1.0

< Note: Not all controls in the properties section are displayed, depending on the device.

52

SourcePoint Environment

Options Menu - Load Target Configuration File Menu Item

To load a target configuration file, click on the Load Target Configuration File menu item in the
Options menu. Select the file you want to load.

Open
Laak ir: |] Targets j = ¢ Ef-
|1 Device_View COG-CSB226.tc SH-KEY79520.tc
1 Flash COG-CSB33.tc SH-KEY7A40x b

|1 Reference_Boards COG-CSB337 .t
ARIUMKCEE37t: [a] COG-CSBE3T e
ARIUM-RERAdte [] freescale_ms21.to
ARM-EVTT te INT-IXDPGA4Z5 te

File name: | | Open I
Filez of type: ITarget Configuration Files [.tc) j Cancel |
i

Use this dialog box to load a target configuration file

53

SourcePoint for AMD 1.0

Options Menu - Save Target Configuration File Menu Item

To save a target configuration file, click on the Save Target Configuration File menu item in the
Options menu. Save the file.

Save Az
Save i I‘a Targets j = ¢ Ef-
|1 Device_View COG-CSB226.tc SH-KEY79520.tc
1 Flash COG-CSB33.tc SH-KEY7A40x b

|1 Reference_Boards COG-CSB337 .t
ARIUMKCEE37t: [a] COG-CSBE3T e
ARIUM-RERAdte [] freescale_ms21.to
ARM-EVTT te INT-IXDPGA4Z5 te

File narme: | | Save I
Save as type: ITarget Configuration Files [tc) j Cancel |
i

Use this dialog box to save a target configuration file

54

SourcePoint Environment

Options Menu - Emulator Configuration Menu Item

The initial host/emulator/target setup is managed by the emulator. Certain defaults are pre-set for
optimum communications with the target. You may find, however, that these settings may not be
optimum for your setup. One of the ways to make changes is through the Emulator
Configuration menu item, which allows you to change certain signaling parameters. Once
SourcePoint is running, you can access this menu item and make your changes; after the
emulator is reset, it remembers the changes and use them as defaults.

Select Options|Emulator Configuration on the menu bar. One of two Emulator Configuration
dialog boxes displays, depending on the attached emulator.

If you are configuring an emulator that supports an ethernet connection, an Emulator
Configuration dialog box displaying several tabs appears.

« Note: All dialog boxes include a Description field at the bottom. If no particular field is
selected in a dialog box, the Description field gives you a brief description of the dialog box itself.
If a particular field is selected, the Description field gives you a brief description of that field.

General Tab
JTAG Tab

JTAG Clock Tab
Target Reset Tab
XDP Pins Tab
Switches Tab
Network Tab
Information Tab

General Tab

The General tab lets you delay target acquisition or disable breakpoints while stepping.

55

SourcePoint for AMD 1.0

Emulator Configuratic Iﬂ ﬂu I

General |JTAG | JTAG Clock | Target Reset | XDP Pins | Switches | Network | Information |

[| Disable breakpoints on step
Disable intemupts on step
Cache control

() Never touch cache

i@ Clear entire cache when necessary

Description
Breakpoints disabled when low level step pedormed.

OK || Cancel || Defauts || Help

General tab under Options|Emulator Configuration

Disable breakpoints on step. When this option is enabled, breakpoints are disabled when low
level stepping is performed. The option is designed to prevent breakpoints in SMM or interrupt
code from halting the processor during a single step.

Disable interrupts on step. When this option is enabled, interrupts are disabled when low level
stepping is performed. The option is designed to prevent pending interrupt handlers from
executing during a single step.

JTAG Tab

The JTAG tab lets you change preset options associated with the JTAG scan chain.

56

SourcePoint Environment

' . = 1
Emulator Configuration =i ﬂu

| | General | JTAG | JTAG Clock | Target Reset | XDF Pins | Switches | Network | Information |

TCKD edge rate: [Fast (2 ns) v] TCK1 edge rate: [Fast {2 ns) v]

JTAG votage: [Track VIT_AB v |

Auto map PREQ to JTAG
Intialize JTAG state with TRSTH or Test-Logic-Reset
Enable power up TRSTH
Mo zeroes on TMS at reset

Mo Test-Logic-Reset

Description

Set the TCK Edge Rate to the fastest setting which will provide reliable JTAG communications.
|Use Options/Confidence Tests to determine reliability.

|| Cancel || Defauts || Help

JTAG Tab dialog box

TCKO edge rate. This option sets the TCK edge rate for the first JTAG chain. Set the TCK edge
rate to the fastest setting which will provide reliable JTAG communications. Use
Options/Confidence Tests to determine reliability. The choices are: slow (10ns), medium (5 ns),
fast (2 ns). The default setting is fast

TCK1 edge rate. This option sets the TCK edge rate for the second JTAG chain. Set the TCK
edge rate to the fastest setting which will provide reliable JTAG communications. Use
Options/Confidence Tests to determine reliability. The choices are: slow (10ns), medium (5 ns),
fast (2 ns). The default setting is fast.

JTAG voltage. Set to the voltage that the pull-ups on the processor(s) TDI and TDO are
connected to on target. If that voltage is also connected to pin 43 of the XDP connector, you may
choose 'Track VTT_AB'. If in doubt about a suitable level, use 1.2 V. The choices are: Track
VTT_AB, 0.9V, 1.0V, 1.1V, 1.2V, 1.3V, 1.4V and 1.5V. The defaultis 1.2V.

Auto map PREQ to JTAG. This option applies to PBD-S2x personality modules only. When
enabled, the emulator automatically determines how PREQ and PRDY pairs are associated with
the JTAG order. (JTAG order = Viewpoint.) If not enabled, the emulator assumes PREQ and
PRDY Pair 0 is associated with Viewpoint 0, Pair 1 with Viewpoint 1, and so on.

57

SourcePoint for AMD 1.0

Initialize JTAG state with TRST# or Test-Logic-Reset. This causes the emulator to assert
TRST on setup to ensure the target's JTAG chain is initialized. This may cause certain targets to
execute a few instructions from reset (including the Intel® Pentium® 4 and Xeon™ processors).

Enable power up TRST#. This option causes the target to be transitioned from TLR state to RTI
state as soon as possible after power up. This may be useful in preventing execution of a few
instructions from reset.

No zeroes on TMS at reset. This option determines whether zeroes are pumped out on TMS at
reset.

No Test-Logic-Reset. Do not drive target through Test-Logic-Reset state during operation.

ICaution: For S2Vs, set the strength to 4 or greater if the target without 39 Ohm termination
resisters on TCK and TMS. Otherwise, then set the strength to 3 or less.

JTAG Clock Tab

The options on the JTAG Clock tab let you modify JTAG clock settings.

S e)
Emulator Configuratio g =

| General | JTAG | JTAG Clock | Target Reset | XDP Pins | Switches | Network | Information | |
Source
@ Intemal (71 BCLK synchronous
Irtemal
JTAG clock rate: | 160MHz -
BCLK synchronous
BCLE rate:

JTAG clock rate;

JTAG timeout: 2 = seconds

Description
IUse TCK frequency based on intemal 24 MHz emulator oscillator.

| oK || cCancel || Defauts || Heb

JTAG Clock Tab dialog box

58

SourcePoint Environment
Source field: Internal source. When enabled, this button tells the emulator to derive the TCK
rate from its 24 MHz clock source.
Source field: BCLK synchronous. When enabled, this button tells the emulator to derive the
TCK rate from the target BCLK signal (BCLK divided by 4 or 8, depending on the type of

processor).

« Note: BCLK synchronous TCK should not be used with emulators using PBD-S2x personality
modules. Click on the Internal source button and use a jumper on the personality module to
select BCLK synchronous TCK if desired.

Internal field: JTAG clock rate. This field allows you to specify a clock rate from among the
choices provided in the text drop down box.

BCLK synchronous field: BCLK rate/JTAG clock rate. This field allows you to specify a BCLK
rate and JTAG clock rate from among choices provided in attendant text drop down boxes.

JTAG timeout. Specifies how long the emulator waits for a response from the target when
shifting commands or data on the JTAG chain.

Target Reset Tab

As the name indicates, the options on the Target Reset tab deal with target reset. The options
you choose on this tab affect the way the Reset button works on the SourcePoint icon toolbar.

59

SourcePoint for AMD 1.0

' B = 1
Emulator Configuration =i ﬂu

| General | JTAG | JTAG Clock | Target Reset | XDP Pins | Switches | Network | Information |

Target reset signal is:
@ Bidirectional

(7 Dutput only {driven by emulator)

(73 Input only {sensed by emulator)

SourcePoirt reset causes the emulatorto: After SourcePaint reset:

Actian: [.ﬁssert reset for 000 ms, then wait for target to respond @ Stop the target

Resettime: 60 —==|ms () Run the target

Aftertarget reset, emulator will wat 200 == msto ensure stability

Description
Target reset signal bidirectional

|| Cancel || Defauts || Help

Target Reset Tab dialog box

« Note: The options you select below should be determined by the way your target handles
reset. For example, some targets may require that you manually toggle a switch to reset it while
others reset when a debugger pulls on them. How this works for your target is based on how it
was designed to behave. You need to understand that behavior to make appropriate use of this
tab.

Target reset signal is section. The options in this section let you select a target operation mode.

Target reset is Bidirectional, where the emulator can assert and sense reset
Target reset is Output only (driven by emulator), where the emulator can assert reset,
but does not sense reset

e Targetresetis Input only (sensed by emulator, where the emulator can sense reset,
but not assert reset.

SourcePoint reset causes the emulator to section.

e Action. There are four options: Wait on manual (external) target reset, Assert reset
until target responds, Assert reset for xx ms, then wait for target to respond, or
Assert reset for xx ms, don't wait for target to respond.

e Reset time. Allows you to choose the length of time you want the emulator to wait.
(Some targets need longer pulses than others.)

60

SourcePoint Environment

After SourcePoint reset section. There are two options in this section: Stop the target and
Run the target.

After target reset, emulator will wait xx ms to ensure stability. Allows you to set a time, in
milliseconds, for the emulator to wait after the deassertion of target reset before JTAG
communication is attempted.

XDP Pins Tab

This tab displays when you are connected to an ECM-XDP3e emulator.

Emulator Configuration

Switches Metwork Information
General ITAG JTAG Clock Target Reset XDP Pins BKPT IN/OUT
Pin R/C| Reset Mot reset | Threshold | |
DEREQ
FUROEK Yez 7 il n.720v
EESET IH Ye= Z il n.720v
EESET OUT Yes Z il -

Description
DBREQ (HDT pin 16}

Cancel Defaults... Help

XDP Pins dialog box

These advanced settings control the hardware-level connection to the target. The target
configuration file for a specific target will select the correct settings for this tab.

The columns in the pins control identifies each pin’'s name and allows low level setup. See the
Description field for more details.

Switches Tab
You should use this tab under the direction of Arium technical support personnel.

61

SourcePoint for AMD 1.0

Network Tab

The Network tab provides a GUI for changing the emulator network settings. This only changes
the network settings; it does not affect the entries in the Emulator Connections dialog box.

)
Emulator Configuratio | &

| General | JTAG | JTAG Clock | Target Reset | XDP Pins | Switches | Network | information |

=

MAC address: 00:D0:AS:00:0B:EF

MName: h2Zo-phone arum.com

|P address setup

(71 Specify address i@ Obtain from a DHCP server
|F address: 0 . 10 . 10 . 105
Subnet mask: 2585 . 255 . 255 0

Default gateway: 0 . 10 . 10

Foud
o
%}

Description
The Metwork tab description.

| oK || cCancel || Defauts || Help

Network dialog box

MAC address and Name. These text boxes identify the emulator on the network. The Name text
box may be blank.

IP address setup section

Specify address. If you want to use a fixed IP address, you need to select this button
and fill in the IP address, Subnet mask, and Default gateway fields in this section.
Contact your network administrator if you are unsure what information to use in these
fields.

Obtain from a DHCP server. Enabling this button automatically fills in the IP address,
assuming you have a DHCP server.

< Note: Arium recommends you check with your Network Administrator before enabling this
option.

62

SourcePoint Environment

e |P address, Subnet mask, Default gateway. These are the network settings of the
emulator.

«» Note: You can change these settings via this tab. You must reset the emulator for changes to
take effect. The changes made here do not modify the emulator connection; you should update
that to match. For more information on using the Emulator Connections dialog box, see,
"Options Menu - Emulator Connections Menu Item," part of "SourcePoint Overview," found under
SourcePoint Environment.

Information Tab

The Information tab gives you information on the configured system you are running currently.
The fields are read only and are usually used if you are having problems getting the emulator to
work.

Emulator text box. This field gives you the name of the emulator to which you are attached.

Firmware text box. This field displays the revision level (vn.nn) for the two portions of emulator
flash memory: boot and flash. Boot memory is the factory programmable portion of flash memory.
Flash memory is the field programmable portion.

PBD text box. This field provides information on the type and revision number of the personality
module (JTAG).

Board text box. This field provides information on the board inside the emulator.

Serial No. text box. This field gives you the serial number of your emulator.

63

SourcePoint for AMD 1.0

| General | JTAG | JTAG Clock | Target Reset | XDP Pins | Switches | Network | Information

Emulator; L1000

Fimmware: Boot: v1.05.00, Fash: v7.10.221

FBL: Type: 68 Revision: 11

Board: Emulator: (00 Trace: B00

Seral No: 3047

Information Dialog Box

64

SourcePoint Environment

Options Menu - Emulator Connection Menu Item

An emulator connection is the communications link between SourcePoint software and hardware
(emulator) connected to a user's target system. You may choose from: TCP/IP (direct or network)
or USB.

The information below briefly describes each of the fields and buttons in the Emulator
Connection dialog box. Actual setup depends on a number of variables, including your choice of
connections and your network configuration. For this reason, a single set of connection
instructions is insufficient, and multiple instructions placed one after the other can be confusing.
For information on setting up a specific type of connection, see the last portion of this topic.

Select Options|Emulator Connection from the menu bar. The Emulator Connection dialog box
displays. It is used to view and modify emulator connections.

Emulator Connection

— Current connection

i

Mame: 231 ok
Froject: C:hProgram Files'Amenican AriumsntelwDE. PR Cancel |
— Connectionz
M arme: Attributes:
104 TCRAP, B5169.214.104 ;I Add ...
107 TCRAP, BE169.214.107
110 TCFAP, B5.169.214.110
16 TCRAR, 65.169.214.16 —lﬂemm
231 TCRAP, BR1E9.214.201 :
32 TCF/P, 65.1639.214 32 Properties ... |
B1 TCPAP, BE.189.214.61
ECHK-20 TCF/P, 65.169.214.106
TRC-20 TCR/AP, 65.169.214.109 TCPAP Setup... |
Select Az Current Caonnechion
Help |

Emulator Connection dialog box

Current Connection section. The Current Connection section displays the connection
currently in use.

Connections list box. The Connections list box displays the available emulator connections.
Connection names and selected attributes are displayed. To change the current emulator
connection, highlight the connection desired, and then click the Select As Current Connection
button and click the OK button. Alternatively, you can double-click the desired connection and
click then click the OK button.

e Add/Remove. These buttons are self explanatory.
e Properties. This button takes you to the connection properties box of the highlighted
connection.

65

SourcePoint for AMD 1.0

e TCP/IP Setup. This button takes you to a wizard that guides you through the TCP/IP
connection process. For more information, review the topic in "Installation Overview"
found under Installation that corresponds to your emulator.

For More Information

e Forinformation on how to set up an emulator connection for the first time, see the Getting
Started guide that shipped with your unit.

e For detailed information on how to add an emulator connection, select the topic, "Add
Emulator Connections” under the "How To - SourcePoint Environment,” part of
SourcePoint Environment.

66

SourcePoint Environment

Options Menu - Emulator Reset Menu Item

Select Options|Emulator Reset the menu bar. A reset is required to cause the emulator to begin
using any parameters you may have made via the Emulator Configuration menu item. Any
TCP/IP or USB connection is lost when this is done.

67

SourcePoint for AMD 1.0

Options Menu - Confidence Tests Menu Item

To set view test results and change test parameters, go to Options|Confidence Tests on the
menu bar. The Confidence Tests dialog box displays.

There are a number of confidence tests available in SourcePoint. Once enabled, additional setup
options are available by clicking corresponding options in the Test Setup section. All tests have
default setup configurations so that tests may be executed using the default test suite, skipping
additional setup steps.

As the requested tests run, the test status block near the bottom of the dialog box changes to
show the progress of the testing. At the end of the testing, Status buttons indicate test results.
Click on the corresponding button to display additional test details.

For additional information regarding Confidence Tests, begin with the topic, "Confidence Tests
Window Introduction."

68

SourcePoint Environment

Window Menu

Items in the Window menu are: Close, Cascade, Tile Horizontally, Tile Vertically, Arrange
Icons, Arrange Toolbars, and Close All. They are described in detail below.

Close Menu ltem

Select Close on the menu bar to close the current window. Repeat this as desired to close other
windows or double-click on the corresponding window control box.

Cascade Menu Item

Select Cascade on the menu bar to align the windows from the top left and layer the open
windows, making each title bar visible.

Tile Horizontally Menu Item

Select Tile Horizontally on the menu bar to resize and arrange the open windows in a top-to-
bottom layout. All the elements of a tiled window may not be visible.

Tile Vertically Menu Item

Select Tile Vertically on the menu bar to resize and arrange the open windows in a side-to-side
layout. All the elements of a tiled window may not be visible.

Arrange Icons Menu Item

Select Arrange Icons on the menu bar to align and evenly space any icon (minimized windows)
present in the main window.

Close All Menu Item

Select Close All on the menu bar to close all of the currently open windows.

69

SourcePoint for AMD 1.0

Help Menu

Select Help from the SourcePoint menu bar to access the following menu items: Index, Using
Help, License File, and About SourcePoint.

Index Menu Item

Select Help|Index on the menu bar to display an alphabetical list of help topics and related
information.

Using Help Menu item
Select Help|Using Help on the menu bar to access detailed information on how to use Help.
License File Menu Item

Select the License File menu item to display information about the current license file. There are
two types of licenses, Perpetual and Subscription. See SourcePoint Licensing for more
information.

s "

FLE¥Irm License File Infarmation @
Emulator s/ 18020 Certified: ves Starl: ves Date: 01-31-2020
Features: HOA Feature 1, MDA Feature 4, MDA Feature 5, Multi-Proceszing,
Ernulator licenze: T:EngineerngECMLicenses\ECM=DP 3w.cpB15020.hic

Licenze server:

b anage Licenze File F'aths...] tobile Licenzing...

| k. | | Cancel

FLEXIm Licence File Information dialog

Emulator s/n. Displays the currently connected emulator’s serial number. Emulator license files
allow SourcePoint to communicate to a particular emulator (by serial number).

Certified: Indicates whether a valid license file was found.

Starl: Indicates whether a valid Starl service contract is in effect. This field is only valid when a
Perpetual license is in use.

Date: If a Perpetual license is in use, indicates the Starl expiration date. If a Subscription
license is in use, indicates the subscription expiration date.

Features: Displays any additional licensed features. These are features that were purchased
separately from the emulator and SourcePoint.

70

SourcePoint Environment

Emulator License: Displays the emulator license file that is in use. Emulator license files allow
SourcePoint to communicate to a particular emulator (by serial number).

License Server: Used to specify the location of SourcePoint license file server
(port@servername). This field is only required when a Subscription license is in use. The
location of the license file server can also be specified by adding a key to the registry:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ASSET InterTech
Inc.\SourcePoint\LicenseServer, Type = REG_SZ, Data = location of server.

Manage License File Paths. Press this button to open the License File Search Paths dialog.
This dialog is used to specify where SourcePoint will look for emulator license files. Any changes
to the search paths take effect the next time SourcePoint is started.

i =

License File Zearch Paths

Lizenze File Pathsz:

T:AE ngineerning ECkLicen

Licenze Files:

cpE15020 lic
cpE15085. lic

[Ok] [Cancel

License File Search Paths Tab

Mobile Licensing. Allows a license to be borrowed from the SourcePoint license file server
(typically for offsite usage of a laptop). This button is only enabled when a Subscription license is
in use.

About SourcePoint Menu Item

Select Help|About SourcePoint on the menu bar to display the software version and copyright
information for SourcePoint.

How to Add Emulator Connections

Once you have successfully established the first communication connection between the
emulator and host system (as described in the Getting Started guide that shipped with your unit),
you can add emulator connections at any time. Two basic types of connections are described
below: USB and TCP/IP.

71

SourcePoint for AMD 1.0

USB Connections

If you are adding a USB connection (assuming you currently have a TCP/IP connection):

72

1.

agprwDd

© N

9.

Attach the USB cable. (This can be hot plugged; you do not need to disconnect your TCP/IP cable.)
A standard Microsoft® Windows® hardware installation wizard appear asking you to install the USB
driver.

Click on the Browse button in this dialog box and browse to your SourcePoint working directory.
Click on "AriumUsb.inf"

Complete the Microsoft installation wizard.

Select Options|Emulator Connection from the toolbar menu. The Emulator Connection dialog
box appears, and the USB connection automatically displays in the connection list.

Select the USB connection from the list.

Click on the button labeled Select As Current Connection or double click the connection.

Click the OK button.

Emulator Connection

— Current connection

i

Mame: 180 ok
Praject: C:\Proagram Filezhmencan Arurms Bk smypraject. pri Cancel |
— Connections

M ame | Aftributes -

106 TCFAP, BR.163.214.106 Add ..

174 TCRAP, BE1E69.214179 —

14 TCRAR, BR.1E9.214.18 Remave |

130 TCFAP, BR.1E9.214.180

211 TCFAP, B5.169.214. 211 Properties ... |

212 TCRAP, BEAE9.214.212

215 TCRAP, BR.1E9.214.215

23 . BR1ES. 214 23 TCPAR Setup.. |

4 3

Select Az Current Connection
Help |

Emulator Connection dialog box

Click the Add button. The Select Emulator Connection Type dialog box appears.

Select Emulator Connection Type |

Emulator connection type
]
p— ok |
"~ USE Cancel |
Help |

Select Emulator Connection Type dialog box

10.

11.

12.

13.

SourcePoint Environment

Enable USB.

Click the OK button. The Emulator USB Connection Properties dialog box opens with
all the text fields filled in.

Click the OK button. The dialog box closes, and the Emulator Connection dialog box
displays again.

Double click the now highlighted connection entry in the Connections text box or click on
the Select as Current Connection button and then the OK button.

The name of the current connection is displayed at the top of the Emulator Connection
dialog box under Current Connection section.

TCP/IP Connections

If you are adding a TCP/IP connection:

1.

If necessary, change the hardware cable. A non-network direct connection requires the
orange cable. A network connection requires the blue cable.

For a direct (non-network) connection between host computer and emulator, a crossover
cable is required. (An orange crossover cable is included with new emulators). To
connect the emulator to a network, a direct cable is required. (A blue direct cable is
included with new emulators.)

Go to Options|Emulator Connection on the menu bar. The Emulator Connection
dialog box opens with at least one IP address in the Connections section.

Emulator Connection

i

— Current connechion o
Mame: 180
Project: C:\Proagram FilestAmencan Arum AR smyvpraject. pri Cancel |
— Connectionz
I ame | Attributes -
106 TCRAP, 651693214106 Add ...
173 TCRAP, BB1E9.214.178 —
18 TCRAP, B5.169.214.18 Remaove |
180 TCRAP, B5.163.214.180
21 TCRAP, 65.169.214.211 Froperties .. |
212 TCRAP, BBAEA. 214,212
215 TCRAP, B5.169.214.215
TCR/P, B5.169.214.231 TCPAP Setup... |
Select Az Curment Connection
Help |

73

SourcePoint for AMD 1.0

Emulator Connection dialog box
3. Pressthe Add button. The Select Emulator Connection Type dialog box displays.

4. Select TCP/IP.

Select Emulator Connection Type |
Emulator connection bype
]
A ok |
SR Cancel |
Help |

Select Emulator Connection Type dialog box with TCP/IP selected

5. Click the OK button. The Emulator TCP/IP Connection Properties dialog box opens.

Emulator TCPAIP Connection Properties |
— TCF#IP connection
G|
Mame: ||
Cancel |
E rrulatior: I
Help |
Timeout; 10 = seconds G |

Emulator TCP/IP Connection Properties dialog box
6. Fillin the blanks.

e Name. The Name text box is a required entry. Create a hame that helps you recognize
the emulator.
e Emulator. The Emulator text box specifies the emulator IP address.
e For direct IP connections, use IP address 192.168.000.001
e For network IP connections, use the address given to you by your Network
Administrator.
e Timeout. The Timeout control specifies the number of seconds to add to SourcePoint's
internal communication timeout value for this emulator connection. The default value is
10 seconds.

7. Click the OK button. The Emulator Connection dialog box redisplays with the new
emulator connection information highlighted.

74

SourcePoint Environment

8. Double-click the highlighted entry or click on Select As Current Connection button and
then the OK button. The name of the current connection is displayed at the top of the
Emulator Connection dialog box in the Current Connection section.

Using Microsoft Windows 2000/2003/2008 DDNS for Addressing Emulators by Hostname

If your network includes a Microsoft Windows 2000/2003/2008 server that provides DHCP and
DDNS services, you can configure your emulator to request a dynamic IP address from the
server (DHCP) and then configure SourcePoint to address the emulator by name (e.g., serial
number) instead of by IP address.

+«» Note: This procedure works only if the DDNS and DHCP services on your Microsoft Windows
2000/003/2008 Server are configured appropriately.

To add a dynamic TCP/IP connection by using a hostname:

1. Make sure that the emulator is connected to the network with a direct cable (not a
crossover cable). A blue direct cable is included with every new emulator.

2. Go to Options|Emulator Connection on the menu bar. The Emulator Connection
dialog box displays.

Emulator Connection

— Curent connection

'

(]9
Mame: 180
Project: C:\Program FilestAmencan Anum' B smyproject. pr Cancel |
— Connections
M ame I Attributes -
106 TCRAP, BBAE3. 214106 Add ...
179 TCRAP, BR169.214.179 —
14 TCRAP, BR1E9.214.18 Remave |
180 TCRAP, BR169.214.180
21 TCRAP, BRB1E9.214.211 Froperties ... |
212 TCRAP, BR1E9.214.212
215 TCR/AP, BB 169214215
Tl_-FI."”:I_. |:|51 tl. . TI:Flu"llFl SEtup |
Select &g Current Connection
Help |

Emulator Connection dialog box
3. Pressthe Add button. The Select Emulator Connection Type dialog box displays.

4. Select TCP/IP.

75

SourcePoint for AMD 1.0

Select Emulator Connection Type |
Emulator connection bype
]
A ok |
SR Cancel |
Help |

Select Emulator Connection Type dialog box with TCP/IP selected

5. Click the OK button. The Emulator TCP/IP Connection Properties dialog box displays.

Emulator TCP/IP Connection Properties |

— TCPAP connection
ok |

Mame: ||
Cancel |

E rulatar; I
Help |
Tireaut: 10 _:I seconds Setup... |

Emulator TCP/IP Connection Properties dialog box
6. Fillin the blanks.

e Name. The Name text box is a required entry. Create a name that helps you
recognize the emulator.

e Emulator. In this configuration, the Emulator text box specifies the name of the
emulator as it is registered in the DDNS service. This is in the format ecm-<serial
number> (e.g., ecm-5123).

Depending on your network configuration, you may need either to register a DNS
suffix on the workstation where SourcePoint is installed (see "Registering a DNS
Suffix" below), or specify the emulator name as a Fully Qualified Domain Name
(FQDN), e.g., ecm-5123.abc.net. See your Network Administrator for more
information.

e [f using a standard hostname, type "ecm-<serial number>". without quotation
marks and inserting the actual serial number of the emulator in place of the
italicized words shown (i.e., ecm-5123).

e Timeout. The Timeout control specifies the number of seconds to add to
SourcePoint's internal communication timeout value for this emulator connection.
The default value is 10 seconds.

76

SourcePoint Environment

Click the OK button. The Emulator Connection dialog box redisplays. The new
emulator connection information is highlighted.

Double-click the highlighted entry or click on Select As Current Connection button and
then the OK button.

The name of the current connection is displayed at the top of the Emulator Connection
dialog box under Current Connection.

Registering a DNS Suffix

If you want to set up an emulator TCP/IP connection based on DNS name instead of IP address,
you may need to set up a DNS suffix on the workstation where SourcePoint is installed.

1.

2.

Get the DNS suffix from your Systems Administrator.
Go to your Control Panel and double click on Network and Dial-up Connections.

Double click on Local Area Connections. The Local Area Connections Status dialog
box displays.

On the General tab, click the Properties button. The Local Area Connection
Properties dialog box displays.

In the This connection uses the following items field, double-click on the Internet
Protocol (TCP/IP) option.

Click the Properties button. The Internet Protocol (TCP/IP) Properties dialog box
displays.

Click the Advanced button. The Advanced TCP/IP Settings dialog box displays.
Click on the DNS tab.

Do one of the following:

e To resolve an unqualified name by appending the primary DNS suffix and the DNS

suffix of each connection (if configured), enable Append primary and connection
specific DNS suffixes. If you also want to search the parent suffixes of the primary
DNS suffix up to the second-level domain, enable Append parent suffixes of the
primary DNS suffix.

e To resolve an unqualified name by appending the suffixes from the list of configured

suffixes, enable Append these DNS suffixes (in order), and then click the Add
button to add suffixes to the list.

e To configure a connection-specific DNS suffix, key in the DNS suffix in the DNS suffix

for this connection text box.

10. Click the OK button.

77

SourcePoint for AMD 1.0

Advanced TCP/IP Settings [7] |

IP Settings DNS |wiNg | Options |

DMS zerver addreszes, in arder of uze:

193226210

|
B

Add... Edit... Remove

The following three zettings are applied ko all connections with TCRAP
enabled. For rezalution of ungualified names;

¢ Append primary and connection specific DNS suffixes
™| ppendiparent sutfives afthe prman D S suffis
& Append these DNS suffixes (in order);

| 7
2

ad. | e | REme |

DMS zuffis for this connection: ||'2"3'3|-H}'2'3':'-'3':'n"

¥ Fegister this connection's addresses in DHS
[Use thiz connection's DMS suffis in DMS registration

] I Cancel

Advanced TCP/IP Settings dialog box showing the DNS tab

9. Inthe DNS suffix for this connection text box, type the domain suffix supplied by your
Systems Administrator.

10. Click the OK button.

78

SourcePoint Environment

How to Configure Custom Macro Icons

SourcePoint allows you to associate macro files with toolbar buttons.

Configuring SourcePoint

To configure SourcePoint to automatically load macro files:

1.

Select File]Macro|Configure Macros from the menu bar. The Configure Macros dialog
box displays.

In the Select Macro drop down text box in the User defined macros section of the
dialog box, select a macro icon number with which you want to associate your macro.
Type the macro file path and name in the Macro filename text box.

Enable the Echo file to command window option to display the macro commands when
loading.

Type a brief description in the Macro button text box. This is the text that appears next
to the icon on the toolbar if you have it enabled.

« Note: To display this text on the macro toolbar, right-click on the toolbar and select Icons &
Text from the context menu.

6.

Click the OK button.

Adding Macro Icons

To add more than the default three macro icons to the Macro icon toolbar:

1.
2.
3

4.
5.

Right-click on the Macro icon toolbar.

Select Customize from the context menu. The Customize Toolbar dialog box displays.
Select the icon to add from the Available toolbar buttons list. The selected icon
displays in the Current toolbar buttons text box.

Click the Add button.

Click the Close button.

Removing Macro Icons

To remove macro icons from the icon toolbar:

agrwONE

Right-click on the Macro icon toolbar.

Select Customize from the context menu. The Customize Toolbar dialog box displays.
Select the icon to remove from the Current toolbar buttons list.

Click the Remove button.

Click the Close button.

+» Note: The Reset icon on the toolbar restores default buttons (Execute Macro 0-3).

79

SourcePoint for AMD 1.0

How to Configure Autoloading Macros

SourcePoint allows you to specify macro files to be loaded when certain events occur. To
configure SourcePoint to automatically load macro files:

1.
2.

3.

80

Select File|Macro|Configure Macros from the menu bar.

Select the event from the Select Event drop down list in Event macros section of the
dialog box.

Type the macro file path and name in the Macro filename box.

Enable the Echo file to command window option to display the macro commands when
loading.

Click the OK button.

SourcePoint Environment

How to Display Text on the Icon Toolbar
To add text to a group of icons or to all of them, follow the directions below.
Display Text Next to All Icons

1. Right click anywhere on the toolbar to open the context menu.
2. Inthe menu enable the Icons & Text menu item. A dialog box labeled SourcePoint
displays.

3. Choose the Yes option to add text to all toolbar icons.
Display Text Next to a Group of Icons

1. Click specifically on the toolbar group against which you want to display text to open the
context sensitive menu.

2. Inthe menu, enable the Icons & Text menu item. A dialog box labeled SourcePoint
displays.

3. Choose the No option to add text to all toolbaricons. SourcePoint adds text only to the
icons in the group you have chosen.

81

SourcePoint for AMD 1.0

How to Edit Icon Groups to Customize Your Toolbars
1. Right-click the mouse on any icon group.

This opens the Customize Toolbar window.

Customize Toolbar

HE|
Awailable toolbar buttons: Current boolbar buttans: Clase |
Separatar ﬂ | Ereak. window = Rzt |
Eu:u:le Window EZ|Trace Window H_elp |
Eltummand Window 53 |Log ‘Window =
E=2)| D escriptor T able ‘window <-Bemove | kd o Window |
R egister Window ﬂlNavigatDr Window wl
[l e

3
_ILI ESl|Page Translation Windu:uw_lll Move D own
k1 3] I 3

Customize Toolbar window

N

To add icons, select the desired buttons from the Available toolbar buttons list. Click
the Add button. These icons are added to the Current toolbar buttons list and the icons
toolbar.

3. To remove icons, select the desired buttons from the Current toolbar buttons list. Click
the Remove button. These icons are removed form the Current toolbar buttons list and
the icons toolbar.

4. Click the Reset button to return the toolbar selections to the SourcePoint default toolbar.

5. Use the Move Up and Move Down buttons to rearrange the toolbar buttons.

82

SourcePoint Environment

How to Modify a Defined Memory Region

Adding or Modifying a Currently Defined Memory Region

1.

Select Options|Target Configuration from the menu bar. The Target Configuration
dialog box displays.

Click the Memory Map tab.

To add or modify a currently defined memory region, click on the Add or Edit button
beneath the Memory Map list box. The Add Memory Map Entry dialog box or Edit
Memory Map Entry dialog box displays.

Add Memory Map Entry |

Starting address: ||

Ending addrezs: I

Arccess size: 2 hits =

Type: SRaM ¥

EIEEEsEar

NN

s Cancel |

Add Memory Map Entry under the Memory Map tab of Options|Target Configuration

4.

Enter the physical address where the memory map range begins in the Starting address
field. Memory accesses to addresses not found within the memory map use the following
rules: Memory writes are always allowed, and Memory reads are allowed unless Safe
mode is enabled.

Enter the physical address where the memory map ends in the Ending address field.
Memory accesses to addresses not found within the memory map use the following rules:
Memory writes are always allowed, and Memory reads are allowed unless Safe mode is
enabled.

Select the physical memory width (8, 16, or 32 hits) via the Access size drop down box.
This is the access size that is used when memory within this range is read or written to.
Select a type of memory from the Type drop down list. Choices are: SRAM, DRAM,
ROM, or Flash.

Select an option from the Processor drop down list. This field is only available on non-
SMP targets. It allows you to select whether a memory range is local to a given processor
or is accessible to all processors. Entering a processor number indicates that the defined
range is only accessible by that processor. Entering ALL indicates that the memory range
is shared by all processors.

« Note: It is not possible to define a range shared by some, but not all, processors.

Removing a Currently Defined Memory Region

83

SourcePoint for AMD 1.0

Select the Remove or Remove All button on the Memory Map tab to remove a defined memory
region. The Remove button removes the currently selected memory map entry. The Remove All
button removes all memory map entries.

84

SourcePoint Environment

How to Refresh SourcePoint Windows

e To refresh a single window, click the Refresh button on the window dialog box. Not all
dialog boxes have this feature.

e To refresh all windows, click the Snapshot menu item on the Processors menu or the
Snapshot icon on the icon toolbar.

e To set atimed refresh of all windows:

Select Options|Preferences|General tab.

The General tab displays.

Check the box labeled Enabled in the Timed window refresh section.

In the Interval box, select the number of seconds between refreshes, a number
between 1-999 or leave it at the default of 10 seconds.

Click the OK button.

A

o

85

SourcePoint for AMD 1.0

How to Save a Program

86

1.
2.
3

Select Save Program to save the program. The Save Program dialog box displays.
Select the destination directory in the Folders tree window.

Select a file from the File name text box to replace an existing file, or enter the name of a
new file in the box above it. If the desired existing file is not visible, change the selected
filter in the List files of type drop down list.

Enter the beginning address and length of the target memory range to be saved in the
Target memory address and Length text boxes, respectively.

Press the Save button.

SourcePoint Environment

How To Start SourcePoint With Command Line Arguments

Command Line Arguments

The following command line arguments are available with SourcePoint

-ini file.ini Use file.ini rather than the default sp.ini

-p file.prj Load the project file file.prj

-m file.mac | Run the macro file.mac

-mc Enable multicluster support

-? Display the SourcePoint command line options

-safe Start SourcePoint in safe mode. Memory accesses to areas mapped DRAM

are restricted

87

SourcePoint for AMD 1.0

How to Use the New Project Wizard

Select File|Project|New Project to open the wizard. The New Project Wizard: Welcome screen
displays.

Use the existing emulator connection, or select Add/Edit to create a new emulator connection
(USB or TCP/IP).

Mew Project Wizard: Welcome [5_<|

Welcome to the New Project Wizard

;\, T Thiz wizard helpz you;

- Select or add an emulator connection.

- Create a new project file,

29, TCP/P, B5.169.214.29 v| | Add/Ed..

Select an emulator connection and click Mest.

f et > l[Cancel] [Help

New Project Wizard: Welcome dialog box.

Click the Next button. The New Project Wizard: Project File screen displays.

88

SourcePoint Environment

New Project Wizard: Project File

File path

File name: rnl,I roje |

Location; |E:'\wdb32'\ | [Ern:-wse...]

Settings bazis

(%) Usze target configuration file

| | [Brovese. ..]

{3 Usze current settings

) Use default settings [auto-dizcover target devices)

[< Back “ Meut >][Cancel J[Help J

L

New Project Wizard: Project File dialog box

File Path Section
Filename. Enter the name of the project file

Location. Enter the location for the project file, or press the Browse button to navigate to the
location

Settings Basis Section
Select a Settings basis:

Use target configuration file. Select this option to create a new project file from a target
configuration file, specify it's location.

Use current settings. Select this option to create a new project file from the current SourcePoint
settings. All window locations will be remembered in the new project file.

Use default settings (auto discover target devices). Select this option to create a new project
file with default settings. The emulator will automatically scan the target to determine the devices
on the JTAG chain.

Click the Next button. The New Project Wizard: Completing screen displays:

89

SourcePoint for AMD 1.0

Mew Project Wizard: Completing |

Completing the New Project Wizard

,l"r i 'our nes project file will be created. This file will contain yor
SourcePoint zettings.

[T Create new project file, but don't load it.

¢ Back I Finizh I Cancel Help

New Project Wizard: Completing dialog box

To exit the New Project Wizard and open the new project file, select Finish. If you wish to create
the new project file without automatically loading it, use the checkbox above.

90

SourcePoint Environment

How to Verify Emulator Network Connections
To verify emulator network connections:

o Verify that the proper cable is connected. For a direct connection from computer to
emulator, a crossover cable is required. For connection to a network, a direct cable is
required. Every new emulator ships with a blue direct cable and an orange crossover
cable.

e From a Command window, (i.e., DOS box), use a Ping command to test the connection
to the emulator. For example, type in "Ping 192.168.0.1" or "Ping ecm-5123" (without
guotation marks).

If the Ping command fails, you do not have a functioning emulator connection. You need to
troubleshoot your network connection or switch to a USB connection. For troubleshooting
information, refer to the Getting Started manual that shipped with your emulator (and is
available at www.arium.com/support/techdocs.html)

91

http://www.arium.com/support/techdocs.html

Breakpoints Window

Breakpoints Window Introduction
The Breakpoints window is the central location in SourcePoint for managing breakpoints.

The Breakpoints window is not the only window where breakpoints can be defined. Breakpoints
may also be defined in the Code window, the Trace window, the Symbols window, etc. For more
information, see Set Breakpoints From Other SourcePoint Windows.

Breakpoints Window

To open the Breakpoints window, select View|Breakpoints on the menu bar or click on the
Breakpoints icon on the toolbar.

=% Breakpoints E' E' E'

[dentifier Address Attributes
W eventiDl 1000 Execute (Hardware P&l

Edt. || 4dd. || Remove || Removedl | [Disable || Disablesl

Breakpoints Window
Breakpoints Window - Breakpoint List Section

The Breakpoints window displays the Breakpoint list, a list of currently defined breakpoints. This
includes hardware (processor) breakpoints, software (memory) breakpoints and task debugging
breakpoints.

+ Note: Double clicking in a column heading will sort the Breakpoint list in ascending order by
that column. Double clicking the column heading a second time will sort the list in descending
order.

Breakpoint List Columns
Enable / Disable (unlabeled). Displays the type of a breakpoint and whether it is enabled. The

type of breakpoint is indicated by its icon and color. The same icons used in the Breakpoints
window are also displayed in the Breakpoint column in the Code window.

Breakpoint Resource
Type

= Software

93

SourcePoint for AMD 1.0

Hardware
Processor
Task

P & |

Breakpoint Icons

Clicking in this column enables or disables a breakpoint. The enable/disable state is indicated by
the icon being solid or just an outline.

Identifier. Displays the symbolic name for a breakpoint.
Address. Displays the address of a breakpoint.

Attributes. Displays the other attributes of a breakpoint. The attributes displayed vary by the
breakpoint type. A long list of attributes clipped by the right-hand side of the window is available
in the tooltip for that field.

Breakpoint List Button Bar

The buttons below the Breakpoint list provide quick shortcuts for managing breakpoints. All of the
button actions are also available on the context menu. To reduce the size of the Breakpoints
window, the button bar can be hidden by selecting Hide Buttons on the context menu.

Edit. Opens the Edit Breakpoint dialog with the currently selected breakpoint displayed (double
left-clicking on the breakpoint performs the same action). See Add/Edit Dialog for more
information about editing breakpoints.

Add. Opens the Add Breakpoint dialog to define a new breakpoint. See Add/Edit Dialog for
more information about adding breakpoints.

If an existing breakpoint is selected when Add is pressed, the dialog will be initialized with that
breakpoint’s settings. This is useful when creating a breakpoint similar to one already defined.

Remove. Removes the currently selected breakpoint.

Remove All. Removes all breakpoints in the list.

Enable / Disable. Toggles the state of the currently selected breakpoint.
Disable All. Disables all breakpoints in the list.

The number of hardware breakpoints available varies based on processor type. The number of
software breakpoints available is always 512.

Breakpoint List Context Menu

The Breakpoint list context menu is available by right clicking anywhere in the Breakpoint list.
Edit. Provides the same functionality as the Edit button (above).

Add. Provides the same functionality as the Add button (above).

94

Breakpoints Window

Remove. Provides the same functionality as the Remove button (above).
Enable / Disable. Provides the same functionality as the Enable / Disable button (above).

Open Code. Opens a Code window displaying the location of the currently selected breakpoint.
This button is only enabled on execution breakpoints.

Open Memory. Opens a Memory window displaying the location of the currently selected
breakpoint. This button is only enabled on execution and data breakpoints.

Remove All. Removes all breakpoints from the Breakpoint list.
Enable All. Enables all breakpoints in the Breakpoint list.
Disable All. Disables all breakpoints in the Breakpoint list.

Hide / Show Buttons. Hides or shows the Breakpoint list button bar. Hiding the buttons makes
the Breakpoints windows smaller, but requires that all of the button actions be performed via the
context menu.

Load. Loads a group of breakpoints from a file. Provides a quick way to switch between different
breakpoint environments.

Save. Saves a group of breakpoints to a file. The file saved has a .brk extension by default.

Resources. Opens the Breakpoint Resources dialog. This read-only dialog displays the number
of hardware and software breakpoints available and currently in use.

95

SourcePoint for AMD 1.0

Add/Edit Dialog

x)

Add Breakpoint

| dentifier; |

Ereak on: Data Access v
Resource:

Proceszor. |PE A
Location: 30000 [E]
Translate: Ohce v
Length: Byte w

Crmddmacro;

ak. H Cancel H Help]

Add / Edit Breakpoint Dialog

The Add / Edit Breakpoint dialog opens whenever an add or edit action is requested. The fields
in the dialog vary based on the breakpoint resource (Hardware, Software, etc), and also based on
the type of breakpoint selected in the Break on field.

The following is a list of the possible breakpoint fields:

Identifier. Displays a user-defined name for the breakpoint. If this field is left blank, SourcePoint
will automatically create a name based on the following rules:

1. If a symbolic name was entered in the Address field, then the Identifier field will be set to
the symbolic name, and the Address field will be changed to the numeric address value.

2. If a numeric address was entered in the Address field, then the Identifier field will be set
to event #, where # is a unique number.

Break On. Defines the breakpoint type. The breakpoint type and resource are closely related. If
you select a new breakpoint type that is not available for a particular breakpoint resource, then
the resource type will change automatically. For more on breakpoint types and resources see
Breakpoint Types and Resources.

Resource. Defines the breakpoint resource (Hardware, Software, etc.). The choices in this
dropdown list vary based on the breakpoint type selected in the Break on field above. If only one

96

Breakpoints Window

breakpoint resource is available for a given breakpoint type, then that resource is automatically
selected.

Processor. In multiprocessor systems, selects the processor associated with the breakpoint.
For task breakpoints, this field is labeled Task, and contains the name of the task the breakpoint
is set in.

Address. Defines the breakpoint address. Both symbolic address expressions and numeric
addresses are supported.

If a symbolic address expression is entered without specifying a breakpoint identifier (name), then
the symbolic expression is copied to the Identifier field, and the numeric address is entered in the
Address field.

Find Symbol Button. Opens the Find Symbol dialog. This dialog allows quickly locating any
program symbol and its memory address.

For detailed information on the Find Symbol dialog box, see the Edit Menu topic under
"SourcePoint Overview," part of SourcePoint Environment.

Binary (1010) Buttons. Binary buttons are available for the Address and Data fields. These
buttons open a dialog that allows editing a field value in binary and, if the breakpoint type
supports it, specifying "Don’t Cares" for individual bits.

Translate. Specifies the address translation type of the breakpoint. This controls when virtual
addresses are translated to physical addresses. This control is only enabled for processors that
have an MMU, and only for breakpoint resource types where a physical address is specified (e.g.,
software breakpoints).

When Translate Once is selected, the virtual address is translated when the OK button is pressed
to dismiss the dialog.

When Translate Every Go is selected, the virtual address is re-translated prior to every Go
operation.

Cmd/macro. Specifies a macro to run when the breakpoint hits. There are two ways to specify a
macro:

1. Use the Browse button to find a macro file to be executed.
2. Enter a single command to execute prefaced by the '#' character.

This field is only available for hardware execution breakpoints, software breakpoints, task
breakpoints and power cycle breakpoints.

97

SourcePoint for AMD 1.0

Breakpoint Types and Resources

The breakpoint types and the resources required are listed in the following table.

Breakpoint Type Break
Resource
Data Access Hardware

Data Access in SMM |Hardware

Data Write Hardware
Data Write in SMM Hardware
Execute Hardware
Software
Execute in SMM Hardware
I/O Access Hardware
I/O Access in SMM Hardware
Reset Emulator
Init Emulator
SMM Entry Processor
SMM Exit Processor
Power Cycle Processor
BKPT IN Emulator
Machine Check Processor

Hardware (Debug Register) Breakpoints

Hardware breakpoints rely on processor-specific registers to recognize events, such as
instruction execution or data reads/writes at a memory or I/O address. Hardware breakpoints
cause the processor to stop immediately; there is little or no "slide" for non-execution breaks (i.e.,
breaks occurring on Data Access, Data Write, and 1/0 Access break on types). Pre-fetched but
unexecuted instructions do not cause the processor to stop. The code location of an execution
breakpoint can be in ROM. Each processor has a maximum of four hardware breakpoints. Data
values are not part of a breakpoint condition.

Hardware breakpoints can be set in the Add Breakpoint or Edit Breakpoint dialog boxes or, for
execution breaks (only), from the Code window.

+» Note: Hardware breakpoints do not accept physical addresses.
Software Breakpoints

Software breakpoints are implemented by placing a special instruction (such as a software
interrupt) in memory. Software breakpoints cause the processor to stop immediately (there is no
"slide"). Software breakpoints do not stop the processor on unexecuted pre-fetches.

98

Breakpoints Window

Software breakpoints are limited to execution breaks. The location of the instruction to be
executed must be writable (i.e., located in RAM). Code at the breakpoint location cannot be
loaded or modified on the fly. Care must be taken to insure breakpoints are set at the first byte of
an instruction.

After the Go command is issued, the instruction at the breakpoint location is replaced with a
special instruction. When the processor stops, the original instruction is written back to the
breakpoint location.

« Note: If the processor writes a different (new) value to the breakpoint location before executing
there, the breakpoint is ineffective until the processor is stopped and restarted with another Go
command.

Emulator Breakpoints

The Reset breakpoint uses a signal on the debug port to detect entry and exit from the reset
state. When the exit from reset state is detected the emulator will halt the target.

The Init breakpoint stops the target when the processor encounters an Init event.

The BKPT IN breakpoint utilizes an input signal on the emulator itself to allow stopping the target
via an external trigger signal. There may be a delay, or “slide”, from the BKPT IN signal edge to
the time the target is stopped by the emulator.

Processor Breakpoints

SMM Entry and SMM EXxit breakpoints stop the target when the processor is entering or exiting
System Management Mode, respectively.

The Power Cycle breakpoint stops the target when it detects the target has gone from the power
off state to the power on state.

The Machine Check breakpoint stops the target when a Machine Check exception occurs on the
target.

99

SourcePoint for AMD 1.0

How To - Breakpoints

Set Breakpoints From Other SourcePoint Windows

The Breakpoints window is the central location for managing breakpoints in SourcePoint, but
there are many shortcuts that provide easy ways to define breakpoints in other Windows.

Code Window

The Code window allows breakpoints to be manipulated from either the Breakpoint column, the
context menu, or with keyboard shortcuts.

Breakpoint Column

The Breakpoint column is the blank column at the far left of the Code window. Its primary
purpose is to show existing breakpoints, but it can also be used to set and clear breakpoints.

A left click in the Breakpoint column sets either a hardware or software breakpoint, depending on
the current default code break setting (Options|Preference|Breakpoint tab).

A double left click in the Breakpoint column sets an alternate breakpoint type. For instance, if the
default code break type is set to hardware, then a software breakpoint will be set. If the default
code break type is set to software, then a hardware breakpoint is set. This is convenient when
the default code break type is set to software, but a hardware breakpoint needs to be set in ROM
or Flash.

A double left click on a breakpoint icon in the Breakpoint column toggles the type from hardware
to software or vice-versa.

A left click on a breakpoint icon removes the breakpoint.
Context Menu

Set Breakpoint. Sets either a hardware or software breakpoint, depending on the current default
code break setting (Options|Preference|Breakpoint tab). The F9 shortcut key performs the same
function.

Clear Breakpoint. Clears an existing breakpoint.

Set Alternate Breakpoint. Performs the same action as a double left click in the Breakpoint
column (see above). Pressing Shift+F9 performs the same function.

Toggle Breakpoint Type. Toggles an existing breakpoint from hardware to software or vice
versa. Pressing Shift+F9 performs the same function.

Disable Breakpoint. Disables a currently enabled breakpoint. CTRL+F9 performs the same
function.

Enable Breakpoint. Enables a currently disabled breakpoint. CTRL+F9 performs the same
function.

100

Breakpoints Window

Add Breakpoint. Opens the Add Breakpoint dialog to add a breakpoint. This is used to add
something other than a hardware or software breakpoint (e.g., an emulator breakpoint).

Edit Breakpoint. Opens the Edit Breakpoint dialog to edit the current breakpoint. This is used to
change an existing breakpoint.

Go Until Cursor. Sets either a hardware or software breakpoint depending on the current default
code break setting (Options|Preference|Breakpoint tab). The breakpoint is temporary and is
automatically cleared after it hits. The F7 shortcut key performs the same function.

Trace Window
The following context menu items are available:

Set Breakpoint. Sets either a hardware or software breakpoint, depending on the current default
code break setting (Options|Preference|Breakpoint tab). The F9 shortcut key performs the same
function.

Add Breakpoint. Opens the Add Breakpoint dialog to add a breakpoint. This is used to add
something other than a Hardware or Software breakpoint (e.g., an emulator breakpoint).

Symbols Window
The following context menu items are available:

Set Breakpoint. Sets either a hardware or software breakpoint, depending on the current default
code break setting (Options|Preference|Breakpoint tab). The F9 shortcut key performs the same
function.

Go Until Cursor. Sets either a hardware or software breakpoint, depending on the current
default code break setting (Options|Preference|Breakpoint tab). The breakpoint is temporary and
is automatically cleared after it hits. The F7 shortcut key performs the same function.

Find Symbol Dialog
The following context menu items are available:

Set Breakpoint. Sets either a hardware or software breakpoint, depending on the current default
code break setting (Options|Preference|Breakpoint tab). The F9 shortcut key performs the same
function.

Go Until Cursor. Sets either a hardware or software breakpoint, depending on the current
default code break setting (Options|Preference|Breakpoint tab). The breakpoint is temporary and
is automatically cleared after it hits. The F7 shortcut key performs the same function.

Command Window

Breakpoints can be set, cleared, enabled and disabled from the Command window and from
macro files.

See dbgbreak commands for setting debug (Hardware) breakpoints.

101

SourcePoint for AMD 1.0

See softbreak commands for setting software breakpoints.

See cpubreak commands for setting processor breakpoints.

102

Code Window

Code Window Introduction

Select View|Code on the menu bar or click on the Code icon on the icon toolbar to access the
Code window. The Code window is used to view code at specific addresses, run the processor,
and track program execution. Various functions include setting and viewing breakpoints, viewing
Disassembly, Mixed, and Source modes, and viewing existing data values in registers and
memory locations. Multiple Code windows can be open simultaneously.

[€] Code PO= [32-bit) Tracking IP: 0018:00000000 - 0018:FFFFFFFF

Q018:00050207 2BCZ2 SUE EAY EDX -
N018:00050209 OFaSia000000 JHE near3? ptr main+79 _I
153 {
154 ztatic int =tatic_int0 = 0;
lLEE int bar = =static_int(;
=+0018:000502DF A1148A40000 Mo EAX . dword ptr [00008ald]
0018:000502E4 S945ES HOW dword ptr [EEF]-18 EAX
156 foo. _charPtr = even_odd_str[bar];
0018:000502E7 SE45ES HOW EAY dword ptr [EER]-18
0018:000502EA SEO485FS8890000 How EAX dword ptr [EAX#*d]+even_ode
N018:000502F1 894G5F4 Moy dword ptr [EEF]-0c.EAX
157 3
158 el=e
[p001s:000502F4 ES15000000 JHP near3? ptr maintle
1549 {
1a0 static int =static_intl = 1;
161 int bar2 = static intl: _I;l
1 »
[oove000s0zoF %] [Mied x| GoCusor | | SetBresk | B Track P WiewlP | | Rehesh |

Code window
< Note: You can cursor to addresses before the IP only if source code and/or symbols are

loaded.

Display Columns

The Code window has four line-oriented display fields: Address, Object Code, Mnemonic, and
Operand.

Address. The Address field contains the code segment (CS) selector and the code segment
offset (EIP) for each instruction's address.

Object Code. The Object Code field contains the instruction's object code as read from memory.
This field is toggled on and off using the Code Bytes menu item from Code|Display|Code Bytes
on the menu bar.

Mnemonic. The Mnemonic field contains the instruction mnemonic as disassembled from
memory.

Operand. The Operand field contains the operands involved in the instruction.

Dialog Bar

103

SourcePoint for AMD 1.0

Address text box. In the lower left-hand corner of the window, any valid code address can be
entered to disassemble that location in memory.

Code View drop down list box. In the box to the right of the Address text box is the Code View
drop down list box. Choices are Disassembly, Mixed, and Source. Disassembly simply reads
memory and displays the opcodes and data as mnemonics and operands. A Mixed selection
displays a mixed source code/memory disassembly. A Source selection displays the source code
only.

Go cursor button. This function sets a temporary breakpoint at the cursor location in the Code
window and starts a processor.

Set/Clear Break button. This button sets or clears the execution breakpoint at the cursor
location in the Code window.

Track IP check box. If Track IP is checked, the Code window always displays code at the
processor instruction pointer (IP). If the processor stops beyond the address range currently
visible in the Code window, the Code window is redrawn showing the code at the new IP. If
Track IP is not enabled, the Code window retains its contents and address range, and a new
Code window is opened when the processor stops if no other Code window with Track IP
enabled is already opened. In effect, if Track IP is enabled, the window always shows a range of
code that includes the IP. If it is disabled, you can step through code until the IP is not in the
range of code visible to the Code window without the display changing to the new IP location.

View IP button. This button displays the code at the current instruction pointer location.

Refresh button. Click on the Refresh button to update the Code window by re-reading from
target memory the instructions in the current address range. This menu item is useful when code
resides in RAM and may be subject to change.

Finding Source Code

If SourcePoint cannot find your source code, a Find Source dialog box displays that lets you
point SourcePoint to your source code.

Find Source csample |
File name: Falders:
Icsample ot Azampleshomfhc_sample

Flatbid - = o — _ Concel |
Flat.crd [= Program Files . |
Flat.map i i Skip
Flat amf [=> Armerican Arium
Intztubs. azm [=r SourcePaint-l4_3 . |
load_sample.mac ;I [Samples ;I e
Source Path |
List file=s af type: Drrivves: Help |
| & Filess [+ x| | = Diive |
Metwork. .. |

104

Code Window

Find Source dialog box

105

SourcePoint for AMD 1.0

Code Window Icon Definitions

Breakpoints

] Processor

L] Software

o Bus

Pointers

= Instruction pointer

I Pointer from another window (e.g., Trace)

+ Note: Pointers may appear on top of breakpoint icons when both apply at the same point. Only
one type of breakpoint icon is shown at a time for a particular point.

106

Code Window

Code Window Menu

Once a Code window is open, a Code menu displays on the SourcePoint menu bar. The same
menu can be accessed as a context menu by right-clicking within the Code window.

Source F11
Mixed F11
v Disassembly

Dpen Code Window
e Memors: Windaw
oy b i abch

Zick Y akch

Set Breakpoink Fa

Set Alternate Breakpoink Shift+F3
Enable Ereakpoint ZhrH+Fe

Add Ereakpoint, ..

@0 Lnkil Cursor F7
Set IP

Display k
Refresh

Disassembly Mode
Disassembly Lses
Address
Viewpoink

v v v v

Zopy

Add Code Profiling Funckion(s)

Code window menu

Source [Code] menu item. Select the Source menu item to enable you to view C or assembler
source code. Source functions the same way as the Source option on the Code View drop down
list on the dialog bar of the Code window.

Mixed [Code] menu item. Select Mixed to concurrently view both source code and the
associated processor instructions as disassembled from memory. The Mixed menu item
functions the same way as the Mixed option on the Code View drop down list on the dialog bar
of the Code window.

Disassembly [Code] menu item. Select Disassembly to view processor instructions as
disassembled from memory. The menu item functions the same way as the Disassembly option
on the Code View drop down list on the dialog bar of the Code window.

Open Code Window menu item. This menu item allows you to click on a function and open a
second Code window displaying its code.

107

SourcePoint for AMD 1.0

Open Memory Window menu item. When this menu item is selected, the field at the current
caret position in the Code window is evaluated as a data address, and a Memory window is
opened at that address. This includes addresses, symbols, operand values, register values, and
constants.

Copy to Watch menu item. This menu item allows you to copy a variable name, register name,
or expression to a Watch window.

Quick Watch menu item. This menu item allows you to copy a variable name, register name, or
expression to a Quick Watch window.

Set/Clear Breakpoint menu item. Select Set Breakpoint or Clear Breakpoint (the menu items
toggle) to set or clear a breakpoint quickly and easily.

Set Alternate Breakpoint menu item. In the Breakpoints tab of the Options|Preferences
dialog box, you selected a default type. Set Alternate Breakpoint lets you override that default
on a one-time basis without having to change the default in the Breakpoints tab.

Enable/Disable Breakpoint menu item. Select Enable Breakpoint or Disable Breakpoint (the
menu items toggle) to enable or disable processor register breakpoints at the caret position.

Add/Edit Breakpoint menu item. Place the caret at the position on the Code window where you
want to add or edit a breakpoint. From the options menu, click Add Breakpoint or Edit
Breakpoint (the menu items toggle) to bring up the Breakpoints window. Click on the Add or
Edit button to access the Add Breakpoint or Edit Breakpoint dialog box.

For more information on how to add or edit a breakpoint, see "Edit Breakpoint and Add
Breakpoint Dialog Boxes," part of "Breakpoints Window Overview," found under Breakpoints
Window.

Go Until Cursor menu item. Select Code|Go Until Cursor to set a temporary breakpoint at a
caret position and let the processor run (starting at the current instruction pointer) until it
encounters a breakpoint. The Go Until Cursor menu item functions the same way as the Go
Cursor button on the Code window dialog bar.

Set IP menu item. Select Set IP to change the EIP quickly and easily. The EIP value is modified
to reflect the selected instruction, and the yellow EIP icon is moved to the instruction, as well.
Applications for this feature include skipping over instructions (without executing them) or re-
executing previously executed instructions.

Display menu item. Select the Display menu item to access the following options:

e Line Number/Address. Changes the display of line numbers (Source or Mixed) and
instruction addresses (Mixed or Disassembly). When enabled, line numbers and/or
instruction addresses are shown. When disabled, the line number and/or instruction
addresses are not shown.

e Code Bytes. Toggles the display of an instruction object code field in the Code window.

e Symbols. Displays/hides symbols.

e Pseudo-Ops. Pseudo-ops are mnemonics that appear like register or instruction names
but are really shorthand for a more memorable name.

e Annotation. Indicates boundaries between source files and areas of memory that have
no corresponding source. All annotation lines have a line of underscores before and after
the annotation text.

108

Code Window

Line Highlights. Options are Current IP or None.

Disassembly Case. Options are Mixed, Upper, and Lower.

Radix. Options are Command Default, Binary, Octal, Decimal, and Hexadecimal.
Radix Indicators. Options are Prefix, Suffix, and None.

Tab Spacing. Options are 2, 3, 4,5, 6, 7, and 8.

Refresh menu item. Select Refresh to update the Code window by re-reading from target
memory the instructions in the current address range. This menu item is useful when code
resides in RAM and may be subject to change. The Refresh menu item found within the Code
menu functions the same way as the Refresh button on Code window dialog bar.

Disassembly Mode menu item. Select Disassembly Mode to select the 16- or 32-bit instruction
set for disassembly purposes. Options are Current Processor Default, 16-bit, and 32-bit.

Disassembly Uses menu item. Use this menu item to determine whether you want to view
target memory or cached memory associated with disassembly mode. Options are Target
Memory and Cached Program.

e Target Memory causes disassembly operations to read target memory. Use this mode if
there is a potential for the code space in target memory to be changing while the target is
running.

e Cached Program allows you to view disassembly without reading target memory. When
this option is enabled, SourcePoint reads target memory from a cached copy, thus
eliminating the need to refresh the Code window. Enabling this option minimizes the use
of resources and speeds up single stepping.

«» Note: Program caching only works for Elf/Dwarf files.

Address menu item. Select the Address menu item to modify the view within the Code window.
Options are Track IP , View Code at Address, and View Code at IP.

e Track IP. When this option is selected, it toggles the function of the Code window to
always show the address of the IP.

e View Code at Address. When this option is selected, the Address dialog box displays.
When an address is entered in the text box, it causes the Code window to bring this
address into view.

Address |

Enter an addrezs in one of the fallowing styles:

Linear &ddress exprl
Phuyzical Address exprF

Offzet Expr

Segment Walue : Offzet EXprENpr
Segment Register : Offzet HS:ewpr
LOTR : Selector : Offzet EXPI EXprERpr
Symbolic ABCTZ23

Cancel |

View Code at Address text box

109

SourcePoint for AMD 1.0

Address Style Description
Linear Address (exprL) Real or Protected mode.

Physical Address (exprP) |Real or Protected mode (same as the linear address if paging is
not in effect).

Offset (expr) Offset relative to selector CS.

Segment Value: Offset Value selected for segment plus value selected for offset.
(expr:expr)

Segment Register: Offset | Uppercase designation for CS, DS, ES, FS, GS, or SS register

(XS:expr) plus value selected for offset.

LDTR: Selector: Offset Value selected for LDTR plus values selected for selector

(expr:expr:expr) (segment register) and offset. (This style is used in Protected
mode only.)

Symbolic When symbols are loaded through SourcePoint, this option is
available.

o View Code at IP. When this option is selected, it causes the Code window to bring the IP
address into view if it is not currently showing.

Viewpoint menu item. This menu item indicates the status of the processor viewpoint. If you
have enabled one of the processor options, that processor is tracked. If you have enabled the
Track Viewpoint option, the current processor is tracked.

Copy menu item. This menu item allows you to copy data from the Code window to another
source (e.g., Notepad).

Add Code Profiling Function(s) menu item. Not functional.

110

Code Window

Code Window Preferences

To set preferences for the Code window, go to Options|Preferences and select the Code tab.
For details, go to the topic entitled, "Options Menu - Preferences Menu Item," found under
"SourcePoint Overview," part of SourcePoint Environment.

How to Open a Code Window
Opening the First Code Window

1. Reset your target by clicking the Reset button on the icon toolbar or go to
Processor|Reset on the menu bar. The Code window displays.

Opening Additional Code Windows With the Code Menu Item

Repeatedly go to View|Code on the menu bar or click on the Code icon on the icon toolbar
several times to open the desired number of Code windows.

Open a Code Window Corresponding to a Disassembled Instruction From the Trace
Window

1. Inthe Trace window, position the caret on the instruction in question.
2. Goto Trace|Open Code Window on the menu bar or right click in the Trace window to
access the context menu and click on the Open Code Window menu item..

+«» Note: If a program with source code has been loaded, the source code corresponding to the
disassembly is shown. The Code window becomes a tracking Code window that updates its
location every time the caret is repositioned in the Trace window.

Opening Additional Code Windows From the Symbols Window

1. Go to View|Symbols on the menu bar.
2. Select a function in the Symbols window and double-click the mouse.

A Code window displays.

3. Repeat steps 1 - 3 as necessary to open the desired number of Code windows.

111

SourcePoint for AMD 1.0

How to Disassemble Code at a Specific Location
Code disassembly can be viewed in the Command window or in the Code window.
Disassemble Code in the Command Window

1. Go to the Command window.
2. Atthe prompt, type "asm cs:ip length 3" (without the quotation marks).

This disassembles three instructions in memory at the current IP.
Disassemble Code Using the Code Window

1. Open a Code window.
2. Type in a valid address in the lower left-hand corner text box on the dialog bar.
3. Press Enter or Return on your keyboard.

OR

Right-click the mouse to use the Code context menu.
Select Address|View Code at Address.

Type in a valid address in the Address dialog box.
Click on the OK button.

Eal Sl

112

Code Window

How to Save Code Window Settings

To save the position, size, and parameter settings of the Code window (and any other open
window):

1. Go to File|Save As on the menu bar.
The Save As dialog box displays.

2. Enter afile name with a "prj" extension
3. Click the OK button.

« Note: Displayed data are not saved, as new data are read from the processor each time the
Code window is opened.

113

SourcePoint for AMD 1.0

How to Save Code Window Contents
1. Goto File|Save As on the menu bar.

The Save As dialog displays.

Save As E |

Savein; Ia C_Sample j = ﬁ{ v
| Mike's directory
File name: ode. kit Save I
Save az type: ITe:.:t j Cancel |
Range
[l |
£ Curent display ' Selection
 Addess Fru:um:|F|:||:||:|:|:||:||:|IJ TD:|FIZIIZIEI:FFFF

Save As dialog box
2. Specify File name and the Range of addresses to save.

< Note: Specifying a large range may take a significant amount of time saving to a file depending
on how large the range is.

114

Command Window

Command Window Introduction

The Command window provides a command line interface to SourcePoint. Commands may be
typed one at a time, or multiple commands can be executed from a command file.

The Command window displays a history of previously executed commands and their responses.

This section describes the Command window itself. For a detailed description of the SourcePoint
command language, refer to SourcePoint Command Language in the Table of Contents.

The Command Window

To open the Command window, select View | Command on the menu bar or click the Command
window icon on the toolbar.

Command M=
Loading Command Language Extensions: C:~Program Files“American Arium™~Sourcea

I

IR

PO _|
KN M 4

Command window
Entering Commands

Commands are entered at the prompt. In single processor systems the prompt is the ">’
character. In multi-processor systems the prompt is the current viewpoint processor name
followed by the ">’ character (e.g., P0>).

To execute a new command, type the command at the prompt and press Enter. If the command
generates a response (e.g., a memory read operation) it will be displayed on the next line.

Commands are colored black, response data is colored blue, and errors are colored red. These
colors can be changed by selecting Options | Preferences | Color.

Command History

The Command window displays a history of previously executed commands and their responses.
There are two ways to execute a previously executed command:

1. Scroll to the command, left click anywhere in it, and press Enter.

2. While at the command prompt, use the up and down arrow keys to scroll through the
command history. Pressing Enter will re-execute the displayed command.

115

SourcePoint for AMD 1.0

Previously executed commands can also be edited to create new commands. Simply find the
command, edit it, and press Enter. Command responses are not editable.

The Command window history can be cleared by selecting Clear Command Window from the

context menu.

Editing Commands

Following is a list of keys that can be used for editing or recalling commands.

Up Arrow At the command prompt moves back one command in the command history.
Anywhere else in the window, moves the caret up one line.

Down At the command prompt moves ahead one command in the command

Arrow history. Anywhere else in the window, moves the caret down one line.

Page Up At the command prompt recalls the oldest command in the command history.
Anywhere else in the window, scrolls back one page.

Page Down | Atthe command prompt recalls the newest command in the command
history. Anywhere else in the window, scrolls forward one page.

Right Arrow | Move one character to the right.

Left Arrow Move one character to the left

Ctrl+Right Move one word to the right

Ctrl+Left Move one word to the left

Home Move to the beginning of the current command

End Move to the end of the current command

Ctrl+Home Move to the beginning of the Command window

Ctrl+End Move to the end of the Command window

Esc Erases the current command

Enter Execute the current command

Backspace Erase the character prior to the caret

Del Erase the character at the caret

Ctrl+C Copy the currently selected text to the clipboard

Ctrl+X Delete the currently selected text and copy it to the clipboard

Ctrl+Vv Paste the contents of the clipboard at the caret location

Ctrl+Break Exit line continuation mode, or cancel a currently running command file

Line Continuation

Line continuation means that a command spans multiple lines. When in line continuation mode
the prompt shows '>>' rather than '>’. There are two types of line continuation:

1. When SourcePoint detects that a partial command has been entered, it will automatically
enter line continuation mode (e.g., typing if (x), and then pressing Enter). As additional
lines are typed, SourcePoint will determine if the command is complete, and then will
automatically exit line continuation mode, and execute the command.

116

Command Window

2. Typing '\’ at the end of a line will force SourcePoint into line continuation mode. This is
rarely used while typing commands, but is useful for long printf statements in command
files.

Line continuation mode can be forced off by pressing Ctrl+Break.
Entering Multiple Commands as a Single Command

Multiple commands can be entered as a single command by using ’;’ as a delimiter (e.g., stop;
ord4 0x1000; go).

Copy / Paste

The Command window supports cut, copy, and paste operations. These operations can be
selected from the Edit menu, the Command window context menu, or by pressing Ctrl+X, Ctrl+C
or Ctrl+V.

Text can be selected by left clicking and moving the mouse, or by double left clicking to select a
word.

Pasting a command into the Command window causes it to be executed immediately. Pasting
multiple commands executes all of the commands immediately.

Drag / Drop
The Command window supports two types of drag and drop operations:

1. If acommand file is dragged from Windows Explorer, and dropped into the Command

window, SourcePoint will execute the command file.

2. |If a program file is dragged from Windows Explorer, and dropped into the Command
window, SourcePoint will load the file as if the Load command had been used.

Command Files

Command files are text files containing multiple commands. Creating command files helps to
automate oft-repeated operations. Command files are also referred to as macro files, script files
and include files. There are several ways to execute a command file:

Use the include command in the Command window (see Commands manual).

Drag and drop a command file from Windows Explorer to the Command window.

Select File | Macro | Load Macro from the main menu.

P W pPE

Select File | Macro | Configure Macros to attach a command file to a user-defined toolbar
button, and then press the button.

5. Select File | Macro | Configure Macros to attach a command file to an event. Examples
of events include: go, stop, project load, power cycle, etc. When the event occurs the
macro will automatically execute.

117

SourcePoint for AMD 1.0

6. Define a breakpoint and specify a command file to execute when the breakpoint hits.

Recently executed macro files are shown in File | Recent Macros. Selecting a command file from
this list will re-execute the file. Breakpoint and event macros are excluded from this list.

When a command file is executing, the name of the file is shown in the SourcePoint Status bar (at
the bottom of the SourcePoint window).

Aborting a Command File
Press Ctrl+Break to terminate a running command file.
Logging Commands and Responses to a File

Commands and their associated responses can be logged to a file. The log command begins
logging while the nolog command ends logging. See the Commands manual for more
information.

There are two other ways to copy Command window commands and responses to a text file:

1. Use the mouse to select text in the Command window and then paste it into a text editor.

2. Select File | Save As from the main menu to save all or a portion of the Command
window to a file.

Printing the Command Window

All or a portion of the Command window can be printed. Select File | Print from the main menu or
press Ctrl+P in the Command window.

Searching the Command Window

The Command window supports searching for old commands or response data. Select Edit |
Find from the main menu, or press Ctrl+F in the Command window.

Executing an Operating System Command

The Shell command is used to execute commands outside of SourcePoint. There are two ways
to use the command:

1. Type Shell without any arguments to open an operating system command window.
When the window closes, the focus switches back to the SourcePoint Command window.

2. Type Shell with a command to execute the command and return immediately to
SourcePoint.

Refer to shell in the Commands manual for more information.
Getting Help

There are two ways to access help from the Command window:

118

Command Window

1. Type Help or press F1 to open the SourcePoint Help window.

2. Type Help "command name” to open the SourcePoint Help window with the command
help topic already displayed.

119

Confidence Tests Window

Confidence Tests Window Introduction

Confidence tests are designed to provide confidence that the emulator and target are both
working reliably by exercising various fundamental features of the emulator in an automated
fashion. There are a number of confidence tests available in SourcePoint. The Confidence Tests
window can be opened by selecting Options|Confidence Tests from the menu bar or the related
icon from the toolbar.

+ Note: Close all windows before running any tests. Open windows may not always be updated
and may display incorrect data during and after a confidence test has been run. Most tests modify
the state of the target.

Confidence Tests |

JTAG |Targeth’|emu:ur_l,ll
— Test zet
I~ PBD test Shatus =5 SELR
[~ Enable logging
[T JTAG D test Chatis
W Stop on Failure
[T JTAG pattern test Clatus
[Fun continuous
Fattern:
Im555943 Paszes to run:
I_li
Fazzez completed:
]
— Test status
YWarning: cloze all windows and dizable all breakpoints. Most tests modify the target.
Select All Clear Al B Cloze JTAG Config... Help

Confidence Tests dialog box
Dialog Box Overview

The tests are divided into two categories, as indicated by the tabs in the dialog box — JTAG and
Target Memory. The Test Setup section at the right on each tab lets you set various options
and tells you how many passes have been completed on any currently running test. The Status
buttons indicate the status of a test as it runs. These are described in more detail below.

121

SourcePoint for AMD 1.0

Tests and Test Status Buttons

As each test runs, the text on the associated button changes to show the progress of the testing -
Pass, Fail, Skipped, or Aborted. At the end of the testing, the buttons indicate test results. Click
on the corresponding button to display additional test details. If the test failed, details include the
last cause of failure. For detailed information on each test, see "Confidence Tests Tabs," part of
"Confidence Tests Window Overview," found under Confidence Tests Window.

Test Setup Section

Enable logging. When this option is enabled, select steps are logged (viewable in the Log
window). By logging only select steps, and not all of them, tests cycle through passes at a much
faster rate than in previous versions of SourcePoint.

Stop on failure. Enabled by default, this option stops the tests after the first failure.

Run continuous. When this option is enabled, the test runs continuously until the user cancels it
or until it finds an failure if the Stop on failure option is enabled in the Test setup section of the
dialog box.

The Passes to run option defaults to “1.” Enter the desired number of trials in the text box. As
the test is performed, the iteration number appears in the text box.

Passes completed. This is not an option but a counter. As the name implies, the text box
displays the number of passes the test has completed.

Reset target first. Available only on the Target Memory tab, Reset target first allows you to
reset the target before running the target memory tests.

< Note: Run continuous is the alternative to Passes to run, not to Stop on failure. If you
enable the Run continuous option, the Passes to run option is grayed out, and vice versa. If
you select Run continuous and Stop on failure, the emulator still stops on the first failure. In
other words, either choose the number of passes you want to run or enable the Run continuous
option.

Pop-Up Dialog Box

Run Confidence Tests? dialog box displays when you add or change a connection (e.g., from
TCPI/IP to USB) or when you change settings on the Emulator Configuration JTAG or JTAG
Clock tabs. Arium encourages you to run the JTAG confidence tests at those times.

Run Confidence Tests? |
Ww'e recommend that you run JTAG confidence tests if
any of the following are e

**'ou are working with a new target
*You have made changes to your target
*'ou are having problems cantralling your

corel_|

122

Confidence Tests Window

Run Confidence Tests? pop-up dialog box

123

SourcePoint for AMD 1.0

Confidence Tests Tabs
JTAG Tab
PBD test. Run this test to determine whether the PBD is operating properly.

JTAG ID test. This test causes all the JTAG IDs to be read from the JTAG scan chain of the
target. When the test ends, you can open a report that lists the IDs that were received.

JTAG pattern test. This test shifts a known pattern through the data register (DR), reads it back,
and uses the return value to calculate the chain size. This is cross-checked against the results of
the JTAG ID test. This is a good test for stressing the JTAG circuitry to be sure that it is working
reliably.

Pattern. This pattern can be any 32-bit hexadecimal pattern. Choose a pattern and define it in the
text box.

Confidence Tests |

JTAG |Targeth’|emnr}l|

[PBD test Status Tt sl
™ Enable lagging
[~ JTAG ID test Status
v Stop on failure
[T JTAG pattem test Status
[Fun continuous
Fattern:
|5A556943 Passes to n:
I_Ii
Pazzes completed:
yui
Test status

YWiaming: cloze all windows and dizable all breakpoints. Most tests modify the target.

Select Al Clear All B Cloze JTAG Config... Help

Confidence Tests dialog box showing the JTAG tests

Target Memory Tab

124

Confidence Tests Window

Read target memory. This reads target memory from a given start address to a given end
address. The data that are read are not checked for validity. This test can be used to uncover
JTAG-related memory read problems.

Write target memory. This test first writes, then reads target memory from a given start address
to a given end address. The read data are checked for validity. To determine the nature of a
problem, open a Memory window and view the results.

Start address/End address. Determine the range of memory you want to test. Place the start
and end addresses in the appropriate text boxes.

Write Data Pattern section. This section offers the data pattern options:

e Address as Data is most useful for exposing problems with memory address lines.

e Checkerboard is useful for exposing problems with memory data signals. (The
Checkerboard pattern looks like: 55555555 AAAAAAAA 55555555 AAAAAAAA.)

o Fill With:.allows you to set a data pattern. For this last option, fill in the text box with a
data value. That value is then written to every memory location within the selected
address range.

Confidence Tests |

JTAG Target Memaon I

— T est zetup
™ Read target memony Statuz

[Enable logging

[~ “wiite target memany Status

¥ Stop on failure
Start address:

I [Fun continuous

End address: Paszes o i
[re
—'wirite data pattern——————————— Pazzez completed:

¥ Address a2 data 0

™ Checkerboard
™ Feset target first

 Fill with:

— Test status
Warning: cloze all windows and dizable all breakpoints. Mozt testz modify the target,

Select Al Clear &l | Eim Cloze JTAG Config... Help

Confidence Tests dialog box showing Target Memory tests

125

SourcePoint for AMD 1.0

126

Confidence Tests Window

Table of Confidence Test Failures and Symptoms

Test Name Common Failures
PBD test Wrong PBD. PBD jumpered incorrectly.
JTAG ID test Poor connection from emulator to target. JTAG clock rate too

JTAG pattern test high. Wrong JTAG current level. Electrical problems with JTAG
circuitry on the target.

Read target memory |lllegal address range given, or problems with target memory.
Write target memory |Target DRAM controller or chipset not initialized. Processor not
stopped, and test could not stop it.

127

Descriptors Tables Window

Descriptors Window Introduction

The Descriptors windows are used to examine and modify descriptor table entries. The elements
of a Descriptors window include the title bar, data area, and option tabs for selecting the
descriptor table type. The Descriptors window can be opened by selecting View|Descriptors on
the menu bar or by clicking on the Descriptors icon on the toolbar. The GDT Descriptors table

opens automatically.

Offset | Type Attributes “alues

a

1 0008 Data P=1 G=1 B=1 E=0 W=1 A=0 DPL=0 BE=00000000 L=FFFFFFFF
2 0010 Code F=1 G=1 D=0 C=0 RE=1 A=0 L=1 DPL=0 E=00000000 L=FFFFFFFF
3 | 0018 Data F=1 G=1 B=1 E=0 W=1 &=0 DPL=0 E=00000000 L=FFFFFFFF
4 | 0020 Code =1 G=1 D=1 C=0 R=1 A4=1 L=0 DFL=0 E=00000000 L=FFFFFFFF
5 | 0028 Reserved H=00000000 L=00000000
G | 0030 Data P=1 =1 B=1 E=0 W=1 A=1 DPL=0 BE=00000000 L=FFFFFFFF
7 0038 Code F=1 G=1 D=0 C=0 R=1 A=1 L=1 DPL=0 E=00000000 L=FFFFFFFF
8 |0040 Reserved H=00000000 L=00000000

« [» [\ 0T {IDTH LOTR) LOT /

GDT Descriptors window
Window Structure
Offset Column

The Offset column lists the value of a selector index field within a segment register that points to
a descriptor. A selector index is the decimal entry number multiplied by 8 and displayed as a
hexadecimal value.

Type Column

The Type column lists the descriptor type. Code and data descriptor types include abbreviations
that define the set/not-set state of their status bits.

129

SourcePoint for AMD 1.0

e Code descriptor types are listed with abbreviations for Conforming (C), Readable (R),
and Accessed (A) status bits. An exclamation mark (!) precedes an abbreviation if the bit
is cleared (e.g., !A=Segment has not been accessed).

e Data descriptor types are listed with abbreviations for Expand-down (E), Writable (W),
and Accessed (A) status bits. An exclamation mark (!) precedes an abbreviation if the bit
is cleared (e.g., |[E=Expand-up segment).

e Task State Segment (TSS) descriptor types are listed as 16- and 32-bit TSS and with the
word Busy when the TSS is not available.

e Gate descriptor types are listed as 16- or 32-bit call-gates, 16 or 32-bit interrupt-gates,
task-gates, and 16- or 32-bit trap-gates.

< Note: Status is not defined for LDT, task-gate, call-gate, and IDT descriptor types. TSS types
may include a Busy status.

Attributes Column

The Attributes column defines the Descriptor Privilege Level (DPL) and the Present (P) bit for all
descriptors. Other attributes, defined for certain descriptor types, are identified below.

e The Granularity (G) bit is defined for code, data, TSS, and LDT descriptors (i.e., segment
limit is G=page granular or !G=byte granular).

e The operand/address-mode default size is defined for code (D) and data (B) descriptors
(i.e., operand/address-mode is D/B=32-bit or !D/B= 16-bit).

e The Available (Avl) bit is defined for code, data, and TSS descriptors (i.e., segment is
Avl=available or !Avl=not available).

e The Dword (Doubleword) count is defined for call-gate descriptors.

Values Column

The Values column lists the base address and limit for code, data, TSS, and LDT (table)
descriptors, or the selector and offset for call, interrupt, and trap-gate descriptors; it lists the
selector (only) for task-gate descriptors.

e Base defines the location of a segment within the 4 Gbytes of physical address space. A
base address is displayed as an 8-digit hexadecimal value.

e Limitis a 20-bit value representing the size of the memory segment. A limit is displayed
as a 5-digit hexadecimal value.

e Interrupt and trap gate descriptors use a 16-bit selector and a 32-bit offset as destination
fields that point to the start of an interrupt or trap routine. A selector is displayed as a 4-
digit hexadecimal value; offsets are displayed as 8-digit hexadecimal values.

< Note: Task gate descriptors use only the selector field to refer to a TSS.
Tabs
The tabs at the bottom of the window are used to select the descriptor tables to display in the

window. The title bar changes to reflect the selected descriptor table and shows the base and
limit values of that table.

e Select the GDT tab to view the status of or modify the contents of a Global Descriptor
Table (GDT) entry.

o Select the IDT tab to view the status of or modify the contents of an Interrupt Descriptor
Table (IDT) entry.

130

Descriptors Tables Window

e Select the LDT tab to view the status of or modify the contents of a Local Descriptor
Table (LDT) entry.

e Select the LDTR tab to view the status of or modify the contents of a Local Descriptor
Table Register (LDTR) entry.

The LDT or LDTR option tabs may not be enabled in all situations. The LDTR tab displays the
currently active local descriptor table based upon the LDTR register value. The LDT tab is used
to display any local descriptor table that is referenced in the GDT. The LDT tab works only when
an LDT entry is selected in the GDT display.

131

SourcePoint for AMD 1.0

Descriptors Window Menu

The Descriptor Table menu, a context menu accessed by right-clicking on a table entry, features
an easy way to segue into either a Code window or Memory window based on the highlighted
descriptor.

Wiew gz Code...
YWiew az Memaony...

Froperties. ..

Descriptors menu

View as Code menu item. This selection opens a Code window at the address of the selected
descriptor table entry. Code can then be viewed and breakpoints can be set through the open
Code window.

View as Memory menu item. A Memory window opens at the selected descriptor table entry.
Memory can then be examined or changed.

Properties menu item. Clicking on the Properties menu item causes a Descriptors dialog box
to display. The information in each dialog box varies, depending on the type of descriptor, but
there are three sections in each: Descriptor type, Attributes, and Values. They are described in
more detail below.

< Note: The information in these columns can be edited to modify existing descriptors or to add
new descriptors.

Descrptor: IDT [8 x|
—Deszcnptaor type————— Attnbutes———————————— —Walues

ID:n:Ie j E Dezcriptor priviege level | | Baze: IFI:I‘”:'F':":":I
[T C: Confarming :E E: Ereser;t _ Lirmiit IDUUDFDEE
: ranwlanty
™ F: Readable Eytes 7-4: IFIZIIIIIIIFB4D

[D: Default size = 32 bitz
™ & Accessed I Al Available Bytes 3.0 |FUDOFOES

k. I Ear‘u:ell .-i‘-.ppl_l,ll

Sample Properties dialog box

e Descriptor Type Section. The Descriptor Type section displays the descriptor type
selected from the Descriptor Type drop down list box. The displayed descriptor type is
one of several included in a drop down list. For application descriptor types (i.e., Code
and Data descriptors), this dialog box includes check boxes whose default states define
the descriptor status. With exception of the TSS Busy bit, no status is defined for system
descriptor types (i.e., the LDT, TSS, and gate-type descriptors).

+» Note: Enabling or disabling these options changes the values displayed for Bytes 7-4 in the
Values section of dialog box.

132

Descriptors Tables Window

e Attributes Section. The Attributes section contains check boxes where default
enabled/disabled states define the attributes of each descriptor. This area also contains a
text box that displays the default Descriptor Privilege Level and, for call-gate descriptors,
a second text box that displays the default Dword count.

+« Note: Enabling or disabling the attributes in the Attributes section of the dialog box changes
the values displayed for Bytes 7-4 in the Values section.

e Values Section. The Values section contains text boxes that are labeled Base and
Limit or Selector and Offset. These text boxes display the base address and limit values
for code, data, TSS, and LDT descriptors and the selector and offset values for call,
interrupt, and trap-gate descriptors. Only the selector is displayed for task-gate
descriptors.

The Values section also contains text boxes labeled Bytes 7-4 and Bytes 3-0. These text boxes
display the values defined for each field in a descriptor's 8-byte data structure. These fields, in
addition to defining a descriptor's base address and limit or selector and offset, define its type,
status, and attributes.

How to Replace a Descriptor Entry

Replacing a descriptor entry is the process of selecting a descriptor, modifying its status and
attributes, and replacing the selected descriptor with the modified version.

To Replace a Descriptor Entry
1. Inthe descriptor table, double-click on the entry you want to modify.
The Properties menu item displays.
2. Click on Properties.
A Descriptor dialog box displays.

3. From the Descriptor Type drop down list, select the descriptor to be replaced with a
modified version.

« Note: The descriptor's type and status appear in the Descriptor Type dialog box;
corresponding attributes appear in the Attributes section of the dialog box. The descriptor's
Base address and Limit or Selector and Offset and the values defined for Bytes 7-4 and
Bytes 3-0 appear in the Values section of the dialog box.

4. Inthe Descriptor Type dialog box, select the check boxes that provide the desired
status.

5. Inthe Attributes section of the dialog box, type in the desired Descriptor privilege
level.

6. Select the check boxes that provide the desired attributes.

7. Inthe Values section of the dialog box, enter the desired values for Base and Limit or
Selector and Offset.

8. Click the Apply button.

133

SourcePoint for AMD 1.0

9. Click the OK button.

134

Devices Window

Devices Window Introduction

To open the Devices window, select View|Devices or click on the Devices icon on the toolbar. If it
is your first time opening the Devices window, you are prompted to select a device file.

The left-hand pane of the Devices window is called the Devices pane. This is a simple tree
structure of devices. The right-hand pane is referred to as the Grid pane. Once you have selected
a device from the Devices pane, the corresponding predefined cells are displayed in the Grid
pane.

CdDevies BE

=] Lurninary M3 -
bl baiie s GEIODATA 0000oooon
GPIC Part B GPIODIR 00000000
P10 Part GPIDIS Q0000000
GPIO Pork D GPIOIEE 000o000nn
GPIO Port E GPIOIEV 000o000nn
Wakchdog bimer GPIOIM oooooooon
551 GPIORIS 000o00nn
UARTO GEPIOMIS 0000000nn
UART1 GPIOICR 0000000nn
I2C Master GPIOAFSEL 00000000
12 Slave GPIODRZR 000o000nn
Timert GPIODRAR 000o000nn
Tirert GPIODRER 000o00nn
T GPIOODR 000o00nn
b GPIOPTR 0000000nn
GPIOPDR 0000000nn
System control GPIOSLE 00000000
Flash control GPIODEN 000o000nn

GPIOPeriohID4 F2C3EACC ¥

Devices window
Device View Files - Overview

The Devices window allows you to define a custom view of memory. A common use of this view
is to display the memory mapped I/O of the devices within a system. The format of this view is
defined by one or more text files called device view files. The extension for these files is "dev”.
Each file contains definitions for one or more devices. Each device contains a number of cell
definitions.

Arium provides device view files for many common processors. These are located in
Targets\Device_view under the directory where SourcePoint was installed. For other processors,
a text editor can be used to create your own device view files. The Arium-provided files provide
examples of how to create these files.

Device View File Structure

135

SourcePoint for AMD 1.0

Device view files are simple text files. White space is ignored. Keywords are case-insensitive.
Standard C++ comments (//) are allowed.

Each Device view file contains one or more device definitions. The syntax for a device definition
is as follows:

[Device#]

<device directives>
<enumerations>
<cell definitions>

The Device# entry specifies the device number. Device numbering begins with 0 and must be
numbered consecutively in the file.

Cell Definitions

The general syntax for a cell definition is as follows:

Cel l#=<row#>,<column#>,cell-type,options

where:

cell-type = {TEXT | REG | MSR | MEM | 10 | SIO | USER | CHILD}
Row and column numbers are 0-based.

Text cells. Text cells allow you to display a label in a cell.
Syntax:

CELL#=<row#>,<column#>,TEXT,<text enclosed in quotes>
Example:

CELLO=1,1,TEXT,”Hello world!”

The above example creates a text cell in the second column of the second row and inserts the
phrase "Hello world!” into it. The maximum text length is 100 characters.

Memory cells. Memory cells allow you to display and change the contents of a memory location.
The memory location is limited to lengths of 1, 2, 4, or 8 bytes.

Syntax:
CELL#=<row#>,<column#>,MEM,<address>,<length in bytes>
Example:

CELLO=0,0,MEM,1000p, 1

136

Devices Window

The above example creates a memory cell in the first column of the first row and displays 1 byte
of memory starting at physical address 1000.

« Note: When SourcePoint reads memory, it reads 128 byte blocks to speed up display. On
some systems this may be a problem (e.g., reading the area between memory-mapped I/O). If
this is the case, create a memory map entry encompassing the memory cells (Options|Target
Configuration) and set the type to I/O. This forces SourcePoint to read each cell separately, and
only read the exact number of bytes defined in the cell.

Register cells. The Devices window is not limited to displaying memory. Register cells allow you
to display and change the contents of a register.

Syntax:
CELL#=<row#>,<column#>,REG,<register name>
Example:

CELLO=0,1,REG,EIP

The above example creates a register cell in the second column of the first row and displays the
value of the EIP register in the cell.

MSR cells. MSR cells allow you to display and change the contents of an MSR.
Syntax:

CELL#=<row#>,<column#>,MSR,<MSR address>

Example:

CELLO=0,1,MSR, 80

The above example creates an MSR cell in the first column of the first row and displays the value
read from MSR 80H. The MSR value is re-read every time the target stops.

I/O cells. I/0 cells allow you to display and change the contents of an 1/O port.
Syntax:

CELL#=<row#>,<column#>,10,<port address>,<port size>
Example:

CELLO=0,0,10, 80, 1

The above example creates an I/O cell in the first column of the first row and displays an 8-bit
value read from I/O port 80H. The port value is re-read every time the target stops.

Indirect 1/0 cells (IA-32 processors only). Indirect I/O cells allow you to display and change the
contents of an indirect 1/O location.

137

SourcePoint for AMD 1.0

When reading or writing a data value, the index value is first written to the port specified by the
IndexPort directive. The data value is then either written to, or read from, the port specified by the
DataPort directive.

Syntax:
CELL#=<row#>,<column#>,SI10,<index>

+ Note: An error is generated if an indirect 1/0 cell is defined with missing IndexPort or DataPort
directives.

Example:

IndexPort=70h, 1
DataPort=71h,1
CELLO0=0,0,S10, 30h

The above example creates an indirect I/O cell in the first column of the first row and displays an
8-bit value read from index 30 of indirect I/O port pair 70/71. The value is re-read every time the
target stops, or when refresh is selected from the context menu.

User-defined cells. User-defined cells allow you to enter an expression to be evaluated every
time the target stops. Any expression that can be evaluated in the Command window can be
specified. User-defined cells are read-only.

Syntax:
CELL#=<row#>,<column#>,USER,expression
Example:

CELLO=0,0,USER, i + uli

The above example creates a user-defined cell in the first column of the first row and displays the
sum of program symbols li and uli. The expression is re-evaluated every time the target stops.

Child cells. Child cells display a portion of another register or memory cell (within the same
device) and extract a variable number of bits at a particular offset.

Syntax:

CELL#=<row#>,<column#>,CHILD,<parent row>,<parent
column>,<offset>,<length>, <name>.

Example:

CELLO=0,1,REG,CPSR
CELL1=5,1,CHILD,0,1,5,1,T

The above example creates two cells. First it creates a register cell and places the value of CPSR
into that cell. The second cell’s definition creates a child of the first cell, displaying Bit 5 of CPSR
(the T bit).

138

Devices Window

Child values are automatically shown in the tooltip help of parent cells. They are also shown
when the parent cell is expanded. See below for more information. If you specify a negative row
or column number for a child cell, then a cell will not be created. This is useful when the only
place you want to see the child value is in the tooltip of the parent.

Directives

Name directive. Specifies the name for a device (the name that appears in the Devices pane).
This directive is required.

Syntax:
Name = <name>
Example:

[DeviceO]
Name = Uart

Base directive. Specifies a base address for all memory cells within a device definition. Once
defined, memory cells can specify addresses relative to this base address. See the
RepeatDevice directive below for an example of where this might be useful.

Syntax:
Base = <address>

Example:

[DeviceO]

Name = Uart

Base = 3FFFO000

CellO = 0, 0, MEM, base+1CF8, 4

In this example a memory cell is defined at address 3FFF1C8 (3FFF000 + 1CF8).

Processor Directive. In a multi-processor target, specifies which processor to use when reading
memory and registers. Processors can be specified numerically (e.g., 0, 1, 2, 3), alpha-
numerically (e.g., PO, P1, P2, P3), or alpha only (e.g., AHB, APB). If this directive is not specified,
then the current viewpoint processor active when the Device view file is loaded is used.

Syntax:
Processor = #
Example:

[DeviceO]
Name = Uart
Processor =1

139

SourcePoint for AMD 1.0

RepeatDevice directive. This directive allows creation of a device that has a definition identical
to a previously defined device. This is useful when a system has two identical devices (e.g., two
uarts), where the cell definitions are identical.

Syntax:

RepeatDevice = <device#>

Example:

[Devicel]

Name = Uartl

Base = E0000000

< cell definitions>

[Device2]

Name = Uart2

RepeatDevice = 1 // get cell definitions from device 1
Base = E1000000

In this example two devices are defined. The second is identical to the first with the exception of
the name and the base address used when reading memory.

« Note: When using RepeatDevice, cell names will not be unique, which limits the usefulness of
AddSymbols.

AddSvymbols directive. This directive adds the names of memory-mapped I/O to the command
language. If this directive is not specified, then the names are not added to the command
language.

Memory-mapped I/O displayed in the Devices window consists of pairs of cells, a text cell
displaying the register name, and a memory cell displaying the contents of memory.

«» Note: TEXT cells should not contain spaces in the text string.

This directive may appear in the [Group] section at the top of a Device view file, in which case it
applies to all devices in the file, or it can appear in within a [Device] section, in which case it
applies to only that device.

This directive increases the load time of Device view files.
Syntax:

AddSymbols = [true | false]

Example:

[Devicel]

Name = Uartl

AddSymbols = true

CellO0 = 0, 0, text, ctrlReg”
Celll = 0, 1, mem, 1000, 4

140

Devices Window

In this example, the symbol ctrlReg is added to the command language and is equal to address
1000. Typing "ord4 ctrlReg” will read memory at address 1000.

IndexPort directive. This directive specifies the index port to be used for indirect 1/O cells. This
directive may appear in the [Group] section at the top of a Device view file, in which case it
applies to all devices in the file, or it can appear in within a [Device] section, in which case it
applies to only that device.

Syntax:

IndexPort = <port #>, <port size>

DataPort directive. This directive specifies the data port to be used for indirect 1/O cells. This
directive may appear in the [Group] section at the top of a Device view file, in which case it
applies to all devices in the file, or it can appear in within a [Device] section, in which case it
applies to only that device.

Syntax:
DataPort = <port #>, <port size>

Example:

IndexPort=70h, 1
DataPort=71h,1
CELLO0=0,0,S10, 30h

The above example creates an indirect I/O cell in the first column of the first row and displays an
8-bit value read from index 30 of indirect I/O port pair 70/71. The value is re-read every time the
target stops, or when refresh is selected from the context menu

Enumerations

Enumerations can be defined in a device file and referred to by the cells to display a readable
string value rather than a raw number. An enumeration is defined by an [ENUM#] section, where
is an integer number. Each entry in the enumeration must be sequentially numbered starting
with 0. Enumerations apply to all devices within a file.

Syntax:

[Enum#]
Name=<name>
Key#=<value>,<string>

Example:

[EnumQ]
name=""Level"
key0=0,’Low”
keyl=1,”High”

Example:

141

SourcePoint for AMD 1.0

[Enuml]

name=""version"
key0=0,’Version 1.0 Rom”
keyl=1,”Version 1.1 Rom”
key2=2,”Version 1.2 Rom”

These enumerations can be referenced by a cell definition using the enum keyword.

Example:

CellO=1,1,MEM,1000,1,enum=version

The above example causes a version string to be displayed in a cell rather than a number.
Groups

Groups allow you to group devices together (in the Devices pane) to help organization. A group is
defined by adding the section [GROUP] in the device file. The group must also be given a hame.
This can be done by adding NAME="Group Name” into the group section. After adding this to

your device file, all devices in that file are grouped in the Devices pane under the given group
name. Multiple groups require multiple device view files, one per group.

Device/Cell Options

The following directives are dual purpose. They can be inserted in a device section to affect all
cells within a device definition, or they can be added to a specific cell definition to affect just that
cell.

Background Color. Background color can be set using a simple RGB value or using a keyword.
The available color keywords are as follows: black, white, red, green, blue, yellow, orange, gray,
magenta. If not specified, the background color specified in Options|Preferences|Colors is
used.

Syntax:

BACK=<Hex Value for Red><Hex Value for Green><Hex Value for Blue>
or

BACK=<Color Keyword>

Example:

BACK=00FFO00 // all cells to
green

Example:

BACK=green // all cells to
green

Example:

142

Devices Window

Cell0=0,0,text, " Name",back=white // single cell
only

Text Color. Text color can be set using a simple RGB value or using a keyword. The available
color keywords are as follows: black, white, red, green, blue, yellow, orange, gray, magenta. If not
specified, the background color specified in Options|Preferences|Colors is used.

Syntax:

TEXT=<Hex Value for Red><Hex Value for Green><Hex Value for Blue>
or

TEXT=<Color Keyword>

Example:

TEXT=FFFFFF // all cells to
white

Example:

TEXT=white // all cells to
white

Example:

Cell0=0,0,text,"Name", text=white // single cell
only

Justification. Cell justification can be set using three keywords: left, center, or right. The default
is left justification.

Syntax:

JUSTIFY=<Justification Keyword>

Example:

JUSTIFY=center // all cells in a
device

Example:

Cell0=0,0, justify,"Name", justify=center // single cell only

Tooltip. Tooltip text can be defined for each cell. When the mouse pointer hovers over a
particular cell the text will be displayed.

Syntax:

Tooltip=<Tooltip text>

143

SourcePoint for AMD 1.0

Example:

Tooltip="This is a sample of tooltip text.”

< Note: If tooltip text is not defined for a register cell and the register has subfields, these
subfields are shown automatically in the tooltip text (similar to what happens in the Registers

window). If tooltip text is not defined for a memory cell and there are child cells pointing to the
memory cell, the child values are shown automatically.

Accessibility. Cell accessibility indicates whether the cell is read only, write only, or read/write.
The default is read/write.

Syntax:
ACCESS=<R, W, RWwW>
Example:

ACCESS=R // all cells to read-
only

+« Note: This attribute applies only to memory cells.

Format. The display format of a cell can be altered using a PRINTF format specification string.
This allows you to display a value in a base other than hex.

Syntax:

FORMAT=<PRINTF format specification string>

Example:

FORMAT=""%d" /7 all cells in device
Example:

cell10=0,MEM,1000p, I ,FORMAT="""%d"’ // single cell only

Enumeration. A cell can be tied to an enumeration that has been defined elsewhere in the
device file. This can be used to display multi-bit fields as meaningful text strings rather than raw
hex values. To do this, simply name the enumeration. (For more information, see enumerations
above.)

Syntax:
ENUM=<Enumeration name>

Example:

ENUM=""StatusBits”

144

Devices Window

Combined Examples. The following examples illustrate how you can put various syntax options
together.

Example:

cell0=0,0,mem,1000p,4,bkgnd=black, text=FFFFFF, justify=center,tooltip="M
emory Mapped Device”

Example:

celll=1,0,mem,7FFFC3B0p,4,access=r,enum="Status”

145

SourcePoint for AMD 1.0

Devices Window Menu
Devices Pane
Add Dewvice

Remove Device
Remove All Devices

Properties

Devices window menu - Devices pane

Add Device Menu Item. Prompts for a device view file to load. More than one file can be loaded
at a time. Each file can contain one or more device definitions. Currently displayed devices are
saved in the project file, so when you exit and restart SourcePoint the devices displayed are
remembered.

Remove Device Menu Item. Removes a device from the display. This action causes the Device
view file containing the device to be unloaded. If more than one device was defined in the file,
then multiple devices are removed.

Remove All Devices Menu Item. Removes all devices from the display. This action unloads all
Device view files.

Properties Menu Item. Shows the Device view file associated with a device.

Grid Pane

Edit
Expand. ..

Copy
Paste

Refresh
Refresh all

Propetties

Devices window menu - Grid pane

Edit Menu Item. Edits the value of a register or memory cell. Memory cells must have write
access enabled to be editable.

Expand Menu Item. Expands a register or memory cell into binary. This view also displays any
bit fields (child cells) defined within the register.

Copy Menu Item. Copies the contents of a cell to the clipboard.

Paste Menu Item. Pastes a register or memory value into a cell. This applies to non-TEXT cells.

146

Devices Window

Refresh Menu Item. Refreshes a register or memory cell. This menu item also forces a re-read
of the value from the target.

Refresh All Menu Item. Refreshes all cells within a device.

Properties Menu Item. Displays the properties (attributes) of a cell. The list of properties varies
by cell type.

147

SourcePoint for AMD 1.0

Accessing Devices Window Cells in the Command Window

Often times the Devices window is used to display memory-mapped I/O locations containing the
register definitions for the internal peripherals inside a device. Column 0 typically contains text
cells with register names and column 1 contains memory cells with register values. (See
C:\Program Files\American Arium\ARM\Samples\Device for examples of these kinds of device
files.)

SourcePoint can optionally make these register names available in the command language. This
allows you to access individual registers via the Command window or manipulate registers within
a command script (include file).

To enable this feature for all devices in a device file, add the following entry to the file:

[Group]
AddSymbols=1

Device files often contain definitions for a group of devices. To enable this feature for a single
device (e.g., Device3), add the following entry to that devices section:

[Device3]
AddSymbols=1

« Note: To speed up the processing of device files, the cells for a particular device are
processed only when that device is displayed in the Devices window. Devices whose memory-
mapped registers are to be added to the command language must be processed when the device
file is loaded, so device file load times may rise.

« Note: Memory cells are only added to the command language if the preceding cell (same row,
previous column) is a text cell.

Example:

The following two cell definitions are part of the definition of the memory-mapped registers used
to configure a DMA controller:

[DeviceO]
Name=DMA Controller

AddSymbols=1
cell2=1,0,text,""DCSRO", text=blue, tooltip="DMA Control/Status

Register"
cell3=1,1,mem,0x40000000,4 ,access=rw,

Adding the "AddSymbols=1" entry will result in the following alias being defined in the command
language:

#define DCSRO 0x40000000
It thus types the following in the Command window:

word DCSRO

148

Devices Window

This causes the command interpreter to replace DCSRO with 0x4000000 and display 4 bytes of
memory read from address 0x40000000.

How to Create a Simple Devices Window

The Devices window is a versatile user content-defined window to display memory mapped 1/O
devices.

Creating a Devices File

The file used for the Devices window is an ASCII text file with particular formatting described in
detail in the Devices window introduction. This file can be created using your favorite text editor.

1. Open your text editor.

2. The first active lines in your devices file should begin with the keyword [Group]. This will
be the primary text displayed in the Devices window. We will use the Altera Excalibur
SOPC as our example.

Input:

[Group]
Name=Altera Excalibur EPXA1/4/10 Device Registers

3. The next portion of your device file describes groupings of particular devices. You can
have multiple devices groupings using the syntax DeviceO, Devicel, ...

Input:

[DeviceO]
Name=Reset and Mode Control Regs

4. Type the following to create the Device window shown below:

+» Note: Each device is composed of cell entries built in a row/column grid fashion. Cells MUST
be numbered in sequential fashion. You can create your cell contents with text, memory data, or
register values. Review the information found in "Devices Window," under Devices Overview,"
part of Devices Window for specifics on each type. Flyover tooltips can also be included for each
cell. Spaces are not allowed between fields. Comment lines are delineated with a // at the
beginning of the line.

// Column Headers
// format is shown as:
// cell#,row,col,type,string,bkgd color,text color,tooltip

cell0=0,0,text,"” REGISTER NAMES '",back=gray, text=white
celll=0,1,text," VALUE ', ,back=gray, text=white,

// Register Names
// format is shown as:

149

SourcePoint for AMD 1.0

// cell#,row,col,type,string,text color,tooltip

cell2 =1,0,text,BOOT_CR",text=blue,tooltip="boot control"
cell3 =2,0,text,"RESET_SR",text=blue,tooltip="reset status"
cell4 =3,0,text,"IDCODE", text=blue,tooltip="identity and ver"
cell5 =4,0,text, " "SRAMO_SR", text=blue,tooltip=""SP SRAMO size"
cell6 =5,0,text, "SRAM1_SR",text=blue,tooltip=""SP SRAM1l size"
cell7 =6,0,text, " "DPSRAMO_SR", text=blue,tooltip="DP SRAMO size"
cell8 =7,0,text, " DPSRAMO_LCR", text=blue,tooltip="DP SRAMO lock"
cell9 =8,0, text,""DPSRAM1_SR", text=blue,tooltip="DP SRAM1 size"
celll1l0=9,0, text, " "DPSRAM1_LCR",text=blue,tooltip=""DP SRAM1 lock"

// Memory Mapped locations for registers listed above
// format is shown as:
// cell#,row,col,type,memory location,access,tooltip

cellll=1,1,mem,0x7fFFc000,4,access=rw,tooltip=""base+000H BUS 2"
celll2=2,1,mem,0x7fFFc004,4,access=rw,tooltip="base+004H BUS 2"
celll1l3=3,1,mem,0x7fFFc008,4,access=r,tooltip= "base+008H BUS 2"
celll4=4,1,mem,0x7fFFc020,4,access=r,tooltip= "base+020H BUS 2"
celll1l5=5,1,mem,0x7fFFc024,4 ,access=r,tooltip= "base+024H BUS 2
celll6=6,1,mem,0x7fFFc030,4,access=r,tooltip= "base+030H BUS 2"
celll7=7,1,mem,0x7fFFc034,4,access=rw,tooltip="base+034H BUS 2"
celll18=8,1,mem,0x7fFFc038,4,access=r,tooltip= "base+038H BUS 2"
celll19=9,1,mem,0x7fFFc03C,4,access=rw, tooltip="base+03CH BUS 2"

5. Save the file with the extension ".dev".
Loading the Devices File

1. Select the Devices window icon, or from the View menu select Devices. A file dialog
displays asking for the file.

2. Select your device.dev file and click on Open.

< Note: You can add additional views by right clicking in the devices side (left) of the Devices
window pane.

Sample device files may be found in the \Samples\Devices directory of your SourcePoint
installation.

150

Log Window

Log Window Introduction

Select View|Log on the menu bar to open a Log window that displays SourcePoint event
information. Each event is associated with the time that it occurred, the system component that
recorded the event, and the event itself.

= Log = 3

Date Time Component Message

F
f11/16,/2006 08:01:17.351 ATCPProtocol wWsaStartup complete to Winsock 2.0
f11/16,/2006 08:01:17.398 setPodlonnected PodZonnect changed to ON. J
f11/16,/2006 08:01:17.430 Configuration Target power ON detected.
f11/16,/2006 08:01:17.432 CertifyFlexlm ECM 57N 1000
f11/16,/2006 08:01:17.432 CertifyFlexlm ECM Type Pentium (ECM-5C0
f11/16,/2006 08:01:17.680 loadProject Loading project C:%Program FileshAmer-
f11/16,/2006 08:01:18.055 dolnit Created Arium Run Cormtrol and Arium Lc
@11/16,/2006 08:01:53.851 readRegs Error sending ECM command - Target mus
_I_I QOO00000 Q0000014 CO1a0000 3?OCICIC'UC'_i:|
4 3 /;

Log window

The Log window provides a convenient display of information that is contained in the log file to
which SourcePoint continually writes. SourcePoint writes to a file named SPLOGOO.txt in the
default directory. This file is stored in clear text and can be read directly by any text editor.

The window provides a display area for warnings and errors that occur during the operation of
SourcePoint. Not all errors are logged in this window. The primary purpose is to log warnings and
errors for diagnostic purposes. The information contained in the messages is designed to aid the
Arium technical support staff in troubleshooting customer difficulties.

The columns can display the date and time at which the error/warning occurred, the type of
message logged, and several columns about the software components of SourcePoint that
originated the message. The Log window may be ignored in most situations; the Arium technical
supports staff may ask for the contents of this window to assist them in solving a particular
problem with SourcePoint.

The Log window fully supports Copy, Print, Print Preview, and Save functions. For more
information, please refer to "File Menu" in "SourcePoint 4.0 Overview" under SourcePoint
Environment.

Log Display Columns

The Log window consists of columns that are labeled in the display. The Log window displays
columns from left to right are: Type, Date, Time, File [Line], Component, and Message. Any
entry may be displayed over multiple lines. If an entry spans multiple lines, only the message
column will display on subsequent lines.

Display of some columns is optional. For more information on which columns can be
enabled/disabled and how to enable/disable them, see "Log Window Menu," part of "Log Window
Overview," found under Log Window.

Type Column

151

SourcePoint for AMD 1.0

Entries in the log are provided via icons and classified by type.

Information. These entries are purely informational in content. Examples of the entries of this
type include log start, log end, initialization, and target acquisition.

Warning. These entries contain information about exceptional conditions that were handled
successfully.

Error. These entries are errors that were not successfully handled. The system may recover, but
an error usually indicates that either a request was left unsatisfied or a response was incomplete.
Data may be corrupted.

Fatal. These entries are probably the last entries before SourcePoint crashes.

For more information on the icons, see, "Log Window Icon Definitions," part of "Log Window
Overview," found under Log Window.

Date/Time Column

The Date/Time column contains the date and time that the entry was made in the log. This
column is colored blue. Display of this column is optional.

File [Line] Column

The File [Line] column contains an abbreviated display of the name of the SourcePoint source
file followed by the line number in the source file where the entry originated. This column is
colored gray. Display of this column is optional and disabled by default.

Component Column

The Component column contains the logical part of SourcePoint that generated the event. This
column is colored green. Display of this column is optional.

Message Column

The Message column contains the bulk of the event message. This column is colored black.

152

Log Window

Log Window Icon Definitions

Entries in the Log window are classified by type. The types are as follows:

Information symbol. These entries are purely informational in content. Examples of the
entries of this type include log start, log end, initialization, and target acquisition.

Warning symbol. These entries contain information about exceptional conditions that
were successfully handled.

Error symbol. These entries are errors that were not successfully handled. The system
may recover, but an error usually indicates that either a request was left unsatisfied or a
response was incomplete. Data may be corrupted.

3 Fatal symbol. These entries are probably the last entries before SourcePoint crashes.
These are extremely helpful to the development team.

153

SourcePoint for AMD 1.0

Log Window Menu

To display a Log window menu, a Log window must be on your screen. The Log window menu
can then be found on the menu bar or made available by right-clicking in the Log window.

Filter *
Display 3

Refresh
Clear

Log ko Disk. ..

Copy

Log window menu

Filter menu item. Various filters can be used to collect different types of data, including Fatal
Errors, Non-Fatal Errors, Warnings, Information, and Log Errors Only.

Display menu Item. The Display menu item allows you to choose between icons and text to
describe the type of log entry and enable/disable the Date/Time column, the Code or File [Line]
column and the Component column. It also allows you to display a single line of code. The
column-related options are described in more detail below.

e Type Icon option. Select the Type Icon option to change the method of displaying the
type of log event. If enabled, small icons are displayed. If disabled, the corresponding
word (e.g. Error, Fatal) is displayed. The Type column contents display in black by
default. Switching to a text display may be helpful before saving the log contents to a file
or for a Copy command.

e Date/Time option. Enable the Date/Time option to show the date and the time that the
entry was made in the log. The Date and Time columns display in blue by default.

e Code option. Enable the Code option to show the SourcePoint source file name and the
line in the source file that generated the entry. This information makes the source of the
log entry completely unambiguous and has been found to be very effective in pinpointing
trouble spots. The Code column contents display in gray by default.

e Component option. Enable the Component column option to display the logical
SourcePoint component making the log entry. The component column contents display in
green by default.

Refresh menu item. The Refresh menu item causes the Log window to reinitialize completely
and redisplay the log. Use this menu item if the Log window contents appear corrupted or out of
date.

Clear menu item. The Clear menu item simply clears the current log file display.

Log to Disk menu item. Clicking on this menu item brings up the Log to Disk dialog box. From
the dialog you can select the size of the log file and the number of files.

Copy menu item. The Copy menu item allows you to copy the Log window. It is accessible only
in the context menu (available by right-clicking on the Log window).

154

Log Window

155

Memory Window

Memory Window Introduction

The Memory window is used to display and edit target memory. To open a Memory window,
select View | Memory or click on the Memory window icon on the toolbar.

Several Memory windows can be opened to view different areas of memory at the same time.
There is no maximum to the number of Memory Windows that can be opened; however, each
opened window is refreshed from the target on run, stop, or step. The more memory that must be
refreshed, the slower the windows will update.

£ Memony: 00001000

gooio0o 90 D2 54 16 1B 48 54 CE FB 1E YA YE EB EC DB DF . RZ. HZIN{ . z=~kl[_ «
DOO01010 47 56 5E DA 58 1B 10 74 3E CD D9 FF 7D 1F SB SF GV HX. . z»MY .} . [_
QO001020 82 58 DA 54 06 19 44 C8B 7F 7C 74 7B 6F 34 DF 7B HZZ. JH. |z{o:_{
0ooo1030 Co 0e De 1E 57 44 54 50 18 F3 7E DE DF 52 56 Fa @ V. WIZP . x~[_RV=
0ooo01040 90 43 14 5B 36 4E 68 FA 73 44 CE FA 7D 74 FA 34 C [6Nhz=sJHzl==:
DO001050 C3 56 56 DD 34 06 7C 40 F9 93 4F DB D7 DB DA FA CVV]4 . |@y O[WEZ=
0O001060 8D 7C 72 GA 44 48 CO 48 E7 EE Fi 4F 41 EF F0 FE | |rZJH@HgnzOhop™
QOO01070 DA 44 383 3F 2B 38 S5E CE 7F FD 74 FF F? F2 SE 6E ZIB7+8"H .}z . wr'n
00001080 1C 04 5C DB 41 02 BE 4B 07 6E DB 9B GF 94 4F AF . ~[A. K. .n[._ .0~
QO001090 BE 5C 5C 5B 82 E2 42 72 7D FA4 74 SE Fo 4E 7F D8 .~~[.bBrlzz"wH.X
00001040 01 A5 CA 10 28 52 DA 34 FF 6A& 54 73 B9 SE &F DF %I (RFZ: jZ=9"__
DOO0D10EOD 18 52 40 54 03 40 ED FE 7F Db FB SE F? F? 7D 5F R@Z @~ V{ ww}_
0oo0loco eC 4E SF 7A EO 58 42 6d S5F 6F GE 78 7B 4B 7E 36 1H_z " XEBj_o"={K™b
QO0010D0 6D S5A FA 58 9F 7C 53 4A F7 C7 DF 4E F? SE AB 6E mZzX. |SJwG _Hw'+n Rd

nnnninen An AA EA £27 21 1A Thin 99 FR FR CTh CR BT 26 7R CO @T7~1 P 1" L e
Iunnmnun v Shit | |Hexadecimal |16 bytes wide % | | 7-Bit A5CI I
Memory window

Display Fields

The Memory window has three areas: the address area, the data area and the ASCII area.
Address Area

The left side of the Memory window lists the starting addresses for the row of memory objects
(data) to the right. All addresses are displayed as hexadecimal values. The address of the
current data object at the cursor location is displayed in the Address control in the dialog bar (at
the bottom of the window).

Data Area

The data area is to the right of the address. The number of memory objects in a row, the memory
object size and the display radix are chosen from the drop down lists in the dialog bar.

< NOTE: A question mark may be displayed in place of a data value. This indicates the target
was unable to read memory (because the target is running, the address is invalid, etc.).

ASCII Area

157

SourcePoint for AMD 1.0

If desired, character equivalents for the data area can be displayed on the far right of the Memory
window. Options include 7-Bit ASCII, 8-Bit ASCII, UTF-16LE (Unicode 16-bit little endian) and
UTF-16BE (Unicode 16-bit big endian). Unprintable ASCII characters are replaced with a '’
character. Unprintable Unicode characters are usually replaced with a square character (this
depends on the Unicode font selected).

The default Unicode font is Arial Unicode MS. If not available on the Host system, the operating
system will attempt to find a comparable font. If the selected font does not work for your
application, it can be overridden by adding the following entry in the SourcePoint INI file (sp.ini):

[Fonts]
Unicode=MS Mincho /I select MS Mincho font for better Kanji characters

Dialog Bar
The dialog bar is found at the bottom of the Memory window.
Address Text Box

This text box displays the current address of the PC. It can be modified by over-typing to move to
a new address. Recently viewed addresses can be selected from the drop down list. Symbolic
addresses can be entered directly, or the Find Symbol button to the right of the text box can be
used. Clicking on this button causes the Find Symbol window to display. The Find Symbol
window allows you to quickly maneuver and find any program symbol and its memory address.

For more information on the Find Symbol window, go to the topic, Edit Menu, part of
"SourcePoint Overview," under SourcePoint Environment.

Preference Drop Down Lists

The four drop down list boxes allow you to change (for the current window only) the Size, Base,
Width, and ASCII preferences.

Refresh Button

The Refresh button forces the Memory view to re-read memory from the target.

158

Memory Window

Memory Window Menu

The Memory window menu can be displayed by selecting Memory on the top-level menu, or by
right-clicking in a Memory window.

Size
Selects the size of memory objects to display play. Memory size options are 8-bit, 16-bit, 32-bit,

or 64-bit. Size can also be selected directly from the dialog bar.
*» NOTE: Multi-byte objects are displayed little-endian data format.

Radix

Selects the display base for memory objects. Radix options are Hex, Signed 10, or Unsigned
10. Radix can also be selected directly from the dialog bar.

Width

Selects the number of bytes of memory to display per row of display. Width options are from 1-
byte to 64-bytes. A fit to window selection is also available. Width can also be selected directly
from the dialog bar.

ASCII

Selects a character display mode. Options include: No ASCII, 7-Bit ASCII, 8-Bit ASCII, UTF-
16LE (Unicode 16-bit little-endian) and UTF-16BE (Unicode 16-bit big-endian). Unprintable ASCII
characters are replace with a ‘.’ character. Unprintable Unicode characters are usually replaced
with a square character (this depends on the Unicode font selected).

The default Unicode font is Arial Unicode MS. If not available on the Host system, the operating
system will attempt to find a comparable font. If the selected font does not work for your
application, it can be overridden by adding the following entry in the SourcePoint INI file (sp.ini):

[Fonts]
Unicode=MS Mincho Il select MS Mincho font for better Kanji characters

ASCII can also be selected directly from the dialog bar.
Refresh

Forces the Memory view to re-read memory from the target. This option is also available directly
on the dialog bar.

View At Address

Brings up the Address dialog box and allows you to view memory at the address specified. You
can also type a new address in the Address text box in the dialog bar to change a memory
address.

Viewpoint

159

SourcePoint for AMD 1.0

Allows you to track a specific processor (PO, P1, etc.) or the current viewpoint processor.
Copy/Paste

Used to copy and paste data values in the window. Ctrl-C and Ctrl-V also work.

160

Memory Window

Memory Window Preferences

Open Options|Preferences from the menu bar and select the Memory tab to set preferences.
For details, see the topic, "Options Menu - Preferences Menu Item" in "SourcePoint Overview"
under SourcePoint Environment.

How to Open a Memory Window
To open a Memory window, go to View|Memory from the menu bar or click on the Memory

window icon. The Address dialog box displays showing the address of the current DS register
value.

T |

|FFFFFFFFP |

Enter an addrezz in one of the fallawing styles:
Linear addrezs exprL
Phyzical addrezs expiP
Cffzet expr
Segment value : offzet EXprENpr
Segment reqizter : offzet =S:ewpr
Ldt-selector ; selector ; offzet expresprespr
Symbolic ABCTZ3
Cancel |

Address dialog box

Enter a starting address in the Memory Address text box, using one of the following address
styles:

e Linear Address (exprL) = Real or Protected Mode.

e Physical Address (exprP) = Real or Protected Mode (same as Linear address if paging
is not in effect).

o Offset (expr) = Equivalent of DS:Offset.

e Segment Value: Offset (expr:expr) = Value selected for segment plus value selected
for offset.

e Segment Register: Offset (XS:expr) = Uppercase designation for CS, DS, ES, FS, GS,
or SS register plus value selected for offset (e.g., CS:EIP).

e LDTR: Selector: Offset (expr:expr:expr) = Value selected for LDTR plus values
selected for selector (segment register) and offset. This style is used in Protected mode
only.

« Note: Several Memory windows can be opened to view different areas of memory at the same
time. The maximum number of open Memory windows is limited only by available memory in the
host and available screen space. However, each opened window is refreshed from the target on
run, stop or step. The more memory that must be refreshed, the slower the windows update.

161

SourcePoint for AMD 1.0

162

Memory Window

How to View Memory at an Address

There are a number of ways to view memory at a particular address, depending on where you are
in SourcePoint.

Getting to a Memory Window
1. If you are in a non-memory window, go to View|Memory on the menu bar.
The Address dialog box opens.

Enter the address you want to view in the text box.
Click the OK button.

wn

This will bring up a Memory window containing the address.
Getting an Address From a Memory Window

If you are in a Memory window, enter the address you want to view in the text box in the left-hand
corner of the dialog bar.

Alternatively, if you are in a Memory window, go to Memory|View at Address menu item to open
the Address dialog box.

Address Styles
You can type in an address using any of the following address styles:

e Linear Address (exprL) = Real or Protected Mode

e Physical Address (exprP) = Real or Protected Mode (same as linear if paging is not in
effect).

o Offset (expr) = Offset relative to selector CS.

e Segment Value: Offset (expr:expr) = Value selected for segment plus value selected for
offset.

e Segment Register: Offset (XS:expr) = Uppercase designation for CS, DS, ES, FS, GS, or
SS register plus value selected for offset.

e LDTR: Selector: Offset (expr:expr:expr) = Value selected for LDTR plus values selected
for selector (segment register) and offset (this style is used in Protected Mode only).

163

SourcePoint for AMD 1.0

How To Change Memory Values

164

To open the Memory window, go to View|Memory on the menu bar.
If desired, change the memory address range by entering a new starting address in the
Address dialog box.

« Note: If you are already in a Memory window, you do not need to open another one.
Just change the address in the dialog bar. The Memory window refreshes and displays a
new range of memory beginning with the specified address.

Insert the blinking caret immediately before the memory object to be changed.
Enter the new values.

The old values are overtyped. As new values are entered, the changed field turns light
green.

Press the Enter key or click on a different address string to activate the new values.

The changed field is displayed in bright green.

Page Translation Window

Page Translation Window Introduction

The Page Translation window is used to look at the memory paging feature of a processor. The
window displays a pictorial representation of the address translation process that occurs in
paging. The exact representation in the window may change as different varieties of paging are in
use (e.g., 4K vs. 2M pages) or the processor type (e.g., Intel or AMD), but, in general, it is a good
representation of what is displayed. To open the Page Translation window, go to View|Page
Translation or click on the Page Translation icon on the toolbar.

B Page Translation M=l E3

Enter address ta translate:

tap Painter Directary Table Offzet
LMEm:|DDDUDDDDU|DUDDDDUDD|DDDUDDDDU| pooooonooo |DDDUDDDDUDDI = 0000000000011
— | |

Page Map Level 4 Page Directory Pointer Page Directory Page Table Page Frame

goooooooon = ooooonoono|=] gooonoooon|= gooooooooo|=]
0ooooooooon 0000000000 0000000000 0000005001 -
0000000FFF 0000000000 0000004001 0000005021 [0D0000SOOLE
0oooooooon 0000003001 aonoondnzi [oooonosodq]
0000002001 0000003021 Y__0000004041]
0000002021 ¥ 0000003041]

"y Dunuuuznan)_lj j j I

P b + =

CR3: Hot Present

I gopooolooop — Eresentd
coesze
it Refresh

Page Translation dialog box (AMD processor)
Page Translation Window Elements
Address Field

The Enter address to translate field allows entry of address in various formats (e.g., linear,
segment:offset, selector:offset, segment register:offset). This address is translated into a linear
address and inserted into the Linear field.

Linear Fields

The Linear fields are displays of the resultant linear address from the Address field. The display
is in binary, divided into the various components. The hex value is shown to the right.

The Linear address is divided into various components that depend on page size or processor
type. As a result, Page Map Level 4, Page Directory Pointer, and Page Table may not be
visible.

Tables

165

SourcePoint for AMD 1.0

The Page Translation dialog box allows scrolling in the Page Map Level 4, Page Directory
Pointer, Page Directory and Page Table fields. This enables exploration of the mapping of
pages without having to enter a new value in the Address field. Simply click the mouse on or
scroll to an entry in the one of the table list boxes, and the corresponding entry is activated.

The entries in these tables are color-coded, which speeds up the interpretation of the table state
and structure.

Grey = Not Present
Black = Present
Blue - Accessed
Red = Dirty

Placing the cursor on a current value causes a flyover tooltip to display the attributes of the entry.
Page Frame

This field displays the resultant translated physical address of the corresponding linear address.
In some cases the linear and physical addresses may be the same.

166

PCI Devices Window

PCI Devices Window Introduction

The PCI Devices window displays basic information for the PCI devices on the target. It scans the
PCI buses you specify, using a process called PCI device enumeration, and displays a summary
of each PCI device found ordered by its bus, device, and function numbers. Select View | PCI
Devices in the menu or click the PCI Devices icon on the toolbar to access the PCI Devices
window.

|# pcl Devices

Description
Hemory Controller Hub

Corporation 0 0 Expre=ss Integrated Graphics Controller
Intel Corporation a0fa6 2746 1] 2 1 Expres=s Integrated Graphics Controller
Intel Corporation 3086 2700 0 28 0 PCI Express Port 1
Intel Corporaticon 2086 27C8 o 29 0 USE THCT #1
Intel Corporation a08a 27C9 0 29 1 USE UHCI #2
Intel Corporation 8086 27CA o 29 2 USE UHCI #3
Intel Corporaticn a086 27CB o 29 3 USE UHCT #4
Intel Corporation 8086 27CC 0 29 7 USBZ EHCI Controller
Intel Corporation g086 2448 o an 0 Hub Interface to PCI Bridge
Intel Corporation a0fa6 27ED o0 31 0 LPC Interface Bridge
Intel Corporation 8086 27DF 0 31 1 IDE Controller
Intel Corporaticon 2086 27C4 o 31 ? Serial ATA Storage Controller IDE
Intel Corporation a0an 2704 o0 31 3 SHBu= Controller

PCI Devices window

When you open the PCI Devices window, it first displays the Refresh PCI Devices dialog box,
which requires you to specify the starting and ending PCI bus numbers to scan. Click the Refresh
button to start PCI device enumeration.

While the PCI buses are being scanned, the PCI Devices window is filled in with the PCI
functions found while a progress bar is displayed. You can cancel the scan prematurely by
clicking the Cancel button. There can be a maximum of 256 PCI buses on a target. Each bus can
have a maximum of 32 devices, and each device can have a maximum of 8 functions. The PCI
Devices window displays a function on each row of the grid. Each PCI device's function has 256
bytes of configuration registers.

PCI Devices Window Columns:

» The Vendor column displays the manufacturer's name string.

» The Vendor ID column displays the manufacturer's unique 16-bit identifier in hexadecimal.
» The Device ID column displays the device's unique 16-bit identifier in hexadecimal.

* The Bus column displays the bus number in decimal.

» The Dev column displays the device number in decimal.

 The Func column displays the function number in decimal.

167

SourcePoint for AMD 1.0

 The Description column displays the device's description string.

The PCI Devices window is resizable. All columns are of fixed width except the Description
column, which automatically resizes to fit the window.

+«* Note: Opening the PCI Devices window immediately after target reset may not reveal all PCI
devices on the target. Some chipset initialization may be required to enable all devices to be
found during PCI device enumeration. The PCI Express configuration space also may not be
available at reset.

Refresh PCI Devices Dialog Box

The Refresh PCI Devices dialog box lets you specify the starting and ending PCI bus numbers to
scan, as well as the base memory address for PCI Express devices.

Refresh PCI Devices E|
PCl devices setup
First buz: |[E Last buz |0 —
PCI Expresz baze address: (=E 0000000
Refrezh] [Cancel

Refresh PCI Devices Dialog

Open the Refresh PCI Devices dialog box by clicking on the option from the menu or by right
clicking in the window. Enter the first bus and last bus to scan. Scanning all PCI buses, from 0 to
255, may take considerable time. It is recommended that you start by scanning buses 0 to 3.

Enter the base memory address for PCI Express devices. This 8-digit hexadecimal number, for
example EO000000, indicates the location in target memory where the PCI Express configuration
space is located. Since this value is target specific, it cannot be automatically determined.

Click the Refresh button to begin scanning.

PCI Devices Window Menu

The context menu contains two items, Refresh and View Registers.
Refresh. Opens the Refresh PCI Devices dialog box.

View Registers. Opens the PCI Registers dialog box. The PCI Registers dialog box can also be
opened by double-clicking an entry in the PCI Devices window.

PCI Registers Dialog Box

You can view more detailed information about a PCI device by opening the PCI Registers dialog
box. Here you find a list of the configuration registers and device capabilities for the currently

168

PCI Devices Window

selected PCI function. You can display multiple PCI Registers dialog boxes for different PCI
devices at the same time.

PCI Device[0:28:0] Intel Corporation - PCI Express Pork 1

Rengister Offset Yalue -

Vendor ID Qo a0go
Device ID nz 27200
Command Register 04 ooon
Statu=z Hegister : & ooin
Revi=zion ID na nz
Cla=z= Code n4 Ne0400
Cache Line Size nc nn
Frimary Latency Timer oD oo
Header Twvpe 0E a1
BIST OF Qo
Ba=ze Address Register 0 10 ooooooon
Ba=ze Address Register 1 14 00000000
Frimary Bu=s Humber 13 oo
Secondary Bus Humber 19 oo
Subordinate Bus Humber 14 nn
Secondary Latency Timer 1B oo
I-0 Baze 1C nn
I-0 Limit 1D Qo
Secondary Status 1E 2000
Memory Base 20 ooon
Memorwy Limit 22 gooo
Frefetchable Hemorv Base 24 nool
Frefetchable Memorvy Limit 26 nool w
4 | » ' Standard (Capabilties’y, Byte’y Wiordy Dward /| € >

PCI Registers Dialog

The Registers column displays the name of the register as a text string. The Offset column
denotes the register's location (byte offset) in hexadecimal with respect to the start of the
function's configuration data. The Value column displays the value of the register in hexadecimal.
Note that register sizes vary.

Click on one of the tabs at the bottom to change the display format. The Standard tab displays
the standard PCIl-compatible register set. The Capabilities tab displays the PCI Capability and

PCI Express Extended Capability register sets. The Byte, Word, and Dword tabs display all the
registers in a hexadecimal format, 256 bytes for PCI functions and 4096 bytes for PCI Express
functions.

Enable Auto Update to have the Registers dialog box automatically refresh itself each time the
target stops.

This is a resizable modeless dialog box, meaning that it stays on top of other windows and allows
you to switch to other windows while staying active until you close it.

Registers Dialog Box Menu

The context menu contains four items: Edit, Expand, Refresh and Auto Update.

169

SourcePoint for AMD 1.0

Edit. Puts the currently selected register's Value cell in edit mode for modifying. Hit the <Enter>
key when done editing a value. All the registers are read back from the target after editing a
register in case the modification affects other register values.

Expand. Opens the Expand dialog box which allows editing of individual bits.

Vendor ID rz|

nooloooouoooionog

Expand Dialog
Refresh. Reads the register values from the target and updates the grid.

Auto Update. Causes the registers to be refreshed from the target when ever the target stops.

170

PCI Devices Window

PCI Devices Window Menu

The context menu contains two items, Refresh and View Registers. Selecting Refresh on the
context menu opens the Refresh PCI Devices dialog box. Selecting View Registers opens the
PCI Registers view.

Refresh...
View Registers. ..

PCI Devices menu

View Registers menu item. The PCI Registers view is opened by double-clicking an entry in the
PCI Devices window or via the context menu. It displays detailed information for the specific PCI
device, including the name and values of all registers. You can change the PCI device shown by
selecting a different entry in the PCI Devices window while the PCI Registers view is open. The
name and location of the registers may change, depending on the type of device shown.

PCI Registers[00:1d:00]: Intel Corporation:USE UHCI Controller #1 E I

Dewvice ID

Command Fegister 04

Statu=s Fegister 06

Revizion ID na

Cla=z= Code na ooooon
Cache Line Size nc na
Latency Timer oo nn
Header Type NE 1]
BIST 0F oo
Baze Address FRegister 0 10 oooooooo
Ba=ze Addres=s Fegister 1 14 0ooooooo
Ba=ze Addre=s= Fegister 2 13 oooooooo
Ba=zs Address Register 3 1C oooooooo
Ba=ze Address Register 4 20 0ooooonn
Baze Address Register & 24 00000000
CardBu=s CIS FPointer 28 00000o0oo —
Subszyv=ten Vendor ID 20C oo
Sub=szy=tem ID 2E oo
Expan=ion REOM Ba=zese Addre=s= 30 oooooooo
TR Tine 1N nn ;I

PCI Registers view

171

SourcePoint for AMD 1.0

How to Open the PCI Registers View From the PCI Devices Window

1. Open the PCI Registers view by double-clicking an entry in the PCI Devices window, by
clicking on View Registers from the menu bar, or by right-clicking an entry and selecting
View Registers from the context menu.

The PCI Register view displays, showing the standard set of PCI registers for the
currently selected PCI function in the PCI Devices window.

2. Change the PCI device shown by selecting a different entry in the PCI Devices window
while it is open.

The standard registers are shown by default.

3. Use the PCI Registers view context menu to choose the display format and control
automatic updating.

Standard Registers only displays the standard PCI-compatible registers set. Byte, Word,
and Dword items display all the registers in a hexadecimal format. This is 256 bytes for
PCI functions and 4096 bytes for PCI Express functions.

4. Enable Auto Update to have the PCI Registers view refresh itself each time the target
stops.

172

PCI Devices Window

How to Refresh a PCI Devices Dialog Box

1. Open the Refresh PCI Devices dialog box by clicking on the option from the menu bar or
by right clicking in the window.

The Refresh PCI Devices dialog box displays.
2. Enter the first bus and last bus to scan.

Scanning all PCI buses, from 0 to 255, may take considerable time. It is recommended
that you start by scanning buses 0 to 3.

3. Enter the base memory address for PCI Express devices.

This 8-digit hexadecimal number, for example EO000000, indicates the location in target
memory where the configuration space of PCI Express devices starts. Since this value is
target specific, it cannot be automatically determined.

4. Click the Refresh button to begin scanning.

173

Registers Window

Registers Window Introduction

The Registers window displays registers from a selected processor. Multiple Registers windows
may be opened.

To open the Registers window, select View|Registers on the menu bar or click on the Registers
icon on the toolbar.

P "

IP General Registers (PG*) E'@
.. Legac}r Mame Value
) E&X oooooooao
- Floating Point Egi gggggg;é
- Segment EDE 000003FD
- Control EEF QO000EBC
- Debug EST gooooooao
M ESP—378ncesn
VMM - 5P cs 0038
- YMM - DP 0S 0030
-~ MM - Int 55 aoan
+-1A-32e ES aoan
L MSR FS noog
.. aeneral GS 0003
EIFP JACTIE?D
-~ MTRR EFLAGS 00000046
- Machine Check
- Debug
. PerfMaon
o Cx-Perffon
e WZAPIC
— UNCORE
IRTILY Y
- User
I3,

Registers window
Register Groups
The left side of the Registers window contains groups of registers that are available for viewing.
Register List

The right side of the Registers window displays the list of processor registers contained in the
selected register group. The number of columns displayed varies based on the register group
selected. Columns are resizable.

175

SourcePoint for AMD 1.0

Name. Displays the register name. The tooltip for a register name gives a description of the
register.

Value. Displays the register value. Register values are displayed in hexadecimal except for
floating point registers which are displayed in scientific notation.

The tooltip for a register value varies depending on the register type. If the register contains sub-
fields, then the field names and values are displayed. For instance, the tooltip for EFLAGS
displays all the processor flags and their values. The tooltip for floating point registers displays
the value in hex. The tooltip for segment registers (CS, SS, etc.) displays the base, limit, and
access rights associated with that register

Number. This column is only present when an MSR register group is displayed. It displays the
MSR number.

Description. This column is only present when an MSR register group is displayed. It displays a
description of the MSR.

Registers Window Menu

The Registers menu displays on the menu bar after a Registers window has been opened. It is
also displayed when right-clicking in the Register List area of the Registers window

Edit. Edits a register value. Double left-clicking has the same effect. See Editing a Register
Value below.

Expand. Displays a register value in binary. See Expanding a Register Value below.

Remove. Removes the currently selected register from the Register list. The register can be
restored by selecting Restore Defaults.

Open Code Window. Opens a Code Window to the address specified by the selected register
value.

Open Memory Window. Opens a Memory Window to the address specified by the selected
register value.

Show Description. Shows / hides the Description columns.

Copy to User Page. Copies the currently selected register to the User register list. This is useful
for creating a custom register list.

Restore Defaults. Restores the default register lists.

Viewpoint. Selects which processor’s registers are displayed. This menu item is only present for
multi-processor targets. See Processor Selection below.

Editing a Register Value

To edit a register value, either select Edit from the menu, or double click on a register value.
Enter the new value, and either press Enter, or cursor from the field to write the value to the
processor. Press Esc to cancel an edit

176

Registers Window

If a value is being edited when either go or step is selected, the edit is terminated, the value is
written to the processor, and then the go or step operation is performed. Register values cannot
be edited while the processor is running

Read-only register values are displayed in gray. These values may not be edited. Write-only
register values are displayed as a string of asterisks. To edit a write-only value, type over the
asterisks. When the edit is terminated, the value is written to the processor and the register value
changes back to asterisks.

Register values can be copied and pasted by using the Edit menu item on the menu bar to copy
and paste a value.

Register values may be displayed and edited in binary by opening the Expand window.
Expanding a Register Value

To expand a register to view individual bits, select Expand from the menu. The Expand dialog
will open.

EFLAGS Register | 28 |

o vIF WIF AC WM RF

e)iellofe] leflalefe] ellaliefie] lo]la)]

L |:| Il D Il |:| Il |:| |

_ NT 1IOF IOF OF DF IF TF 5F ZF

L D 1L D I L 4 I L E |
k. Cancel
[,
h, | .o -

Expand dialog

Each bit is displayed as a button with its value displayed in binary. The name of each bit (if any) is
displayed above the button. Multi-bit fields have the same name above each button. Bit names
are shortened to a maximum of three characters. The flyover help for a bit displays a longer
description of that bit.

Bit numbers, along with the value of each nibble in hex, are displayed beneath the buttons.

To change the value of a bit, click on the bit, or cursor to a bit and press 0 or 1. To write the value
to the processor, press the OK button.

+ Note: To display a register's bits and have them remain always viewable, open the Watch
window, and drag the register name into it. Click on the "+" sign to the left of the register name to
display the register's bits.

177

SourcePoint for AMD 1.0

Processor Selection

The processor is selected by selecting Viewpoint in the menu, and then specifying a processor.
On single processor targets, this menu item is not present.

The default processor selection is Track Viewpoint. When selected, the Registers window
automatically switches processors when the viewpoint processor is changed (in the Viewpoint
window).

The currently selected processor is displayed in the Title bar. If Track Viewpoint is enabled, then
a "' character is displayed.

Register Value Coloring

Modified registers are colored green. This indicates that the register's value has changed as a
result of a go or step operation or that the value has been edited.

Read-only register values are displayed in gray rather than black. Write-only register values are
displayed as a string of asterisks rather than numbers.

Register coloring can be customized by selecting Options|Preferences|Colors.

178

Registers Window

How To - Registers

Customize the Registers Window

All changes to the Registers window are saved in the project file. These changes include register
list changes, column widths for each register list, and window and pane sizes, along with the
number and location of windows. The currently selected register list and processor selection are
also saved.

Adding or Reordering Registers

Registers lists can be reordered. Simply drag and drop a register name to a hew position in the
register list.

Registers can be added to a list. Either drag the register name to the left-hand pane and drop it
on another register group, or drag it to the right-hand pane of another Registers window.

Registers can be removed from a list. Select a register, right-click, and then select Remove
Register.

Register lists can be restored to their original content and order by right-clicking and selecting
Restore Defaults.

Resizing the Window

The size of the left-hand and right-hand panes can be adjusted by clicking on the pane separator
and moving it back and forth.

The Name column can be resized by clicking on the column separator (in the heading), and
moving the separator back and forth. The Name column can be automatically sized to the longest
visible name by double-clicking on the column separator (in the heading). The Value column
automatically re-sizes to fit the right pane.

User Register List

The User register window is no different than any other register list except that it starts out empty.
Registers can be added by dragging register names from other Registers windows, by dragging a
register name to the left-hand pane and dropping it on the User entry, or by right-clicking on a
register name and selecting Copy to User Page.

179

SourcePoint for AMD 1.0

Print a Register List

Select File|Print to print the currently displayed register list. All registers in the list are printed
regardless of the number displayed.

180

Symbols Windows

Symbols Window Introduction

To access the Symbols window, go to View|Symbols on the menu bar or click on the Symbols
icon on the toolbar. The Symbols window displays symbolic debug information. You have access
to all symbols and source code via the Symbols window.

The Symbols window is a tabbed dialog with four tabs (views): Globals, Locals, Stack, and
Classes. Each can be accessed via a mouse click on the tab of choice, or by tabbing through
them to the one you want.

e The Globals tab displays a hierarchy of loaded programs. Programs can be expanded to
show modules, procedures, and symbols.

e The Locals tab shows the variables accessible in the current stack frame.

e The Stack tab shows the stack as a list of stack frames.

e The Classes tab lists structure and class definitions in a hierarchy similar to that under
the Globals tab.

+ Note: If you prefer separate windows for each view rather than using the tabs, open instances
of the Symbols window, resize each window as desired, then save the settings in a project file.
Up to 16 Symbols windows can be open at the same time.

{zg_Srmhuls - Globals PO*
Mame Walue -~
[0 even_odd st
----- B 1.234500
i
[~ [2] foaSh "fooString”
[27 FoaStuct
-2 foaStructimray J
----- mi 0xzFFFFFFFF
[0 ints
-2 IntsAmray
----- md 0.123457
----- ml 0xF911B4E9
EE'"'D pach
B pai
-7 pali hd
4 ', Globals A Locals A Stack A Classes £

Symbols view under the Globals tab
General Features

Each view contains a multi-column tree control. Listed below are some of the common features
found in each view.

Display Base

181

SourcePoint for AMD 1.0

Values can be displayed in either decimal or hexadecimal. Select Hexadecimal Display in the
context menu to toggle between the two. Regardless of the display base, addresses are always
displayed in hexadecimal. In addition, values larger than 32 bits are always displayed in
hexadecimal.

< Note: There is no Symbols drop down menu on the menu bar. Menu items can be accessed
via a context menu only. To open a context menu, right-click on a Symbols window.

Editing Values

Variable and register values can be edited by double-clicking the left mouse button or by
selecting Edit from the context menu. To end editing a value, press the Enter key or select
another field. If a value is being edited when either Go or Step is selected, then the edit is
terminated, the value is written, and then the Go or Step operation is performed. Values can be
copied and pasted by using the Edit menu, by using Ctrl-C/Ctrl-V, or by using drag and drop.
Selecting Undo from the Edit menu restores a value to its original, unedited value. Selecting
Redo restores the edited value.

Properties

A Properties dialog box can be opened by selecting Properties from the context menu. The
information displayed varies depending on the type of item selected. Selecting a new item
automatically refreshes the information displayed.

ToolTips

Most items have flyover tooltips that display some of the information available in the Properties
dialog box.

Keyboard Support
The arrow keys provide keyboard support for navigation through the tree:

e The Up Arrow and Down Arrow keys move between items.

e The Left arrow and Right Arrow keys move along a particular branch. Pressing the Right
Arrow expands a branch if it is not currently displayed. Pressing the Left Arrow moves to
the first item in a branch; pressing it a second time collapses the branch.

The Home and End keys move to the top or bottom of the tree.

The Page Up and Page Down keys move a page at a time.

The + and - keys expand and collapse the current tree node.

The Enter key alternately expands and collapses the current node.

The use of the asterisk (Shift and the number 8 on the keyboard) expands all tree nodes
beneath the currently selected node.

Shortcuts

Select Collapse All from the context menu to collapse all nodes in the tree. Certain views also
have an Expand All entry in the context menu which expands all nodes in the tree. The use of
the asterisk can also be used to expand all nodes in the tree.

Refresh

182

Symbols Windows

Values are refreshed automatically when the processor runs or when a value is changed
elsewhere in SourcePoint. To force a refresh of all values in a view, select Refresh from the
context menu.

Printing

To print a view, go to File|Print on the menu bar. The entire tree is printed, but only currently
expanded nodes are included.

Saving to a File

To save a view, go to File|Save As on the menu bar. The Save As dialog opens. Specify a file
name (or use the default) and then click OK. The entire tree is written to the specified file name.

Colors
Colors can be changed via the Colors tab under Options|Preferences.

For more information, see "Options Menu - Preferences Command," part of "SourcePoint
Overview," found under SourcePoint Environment.

Multi-Processor Environment

In multi-processor systems, register values and stack-relative variables are always associated
with the current viewpoint processor.

183

SourcePoint for AMD 1.0

Symbols Window Icon Definitions

The icons you may find in the Symbols window are as follows:

Program

[#] Module with source information

[#] |Module with no source information

B Simple or terminal variable (structure element, array element, de-referenced pointer)
[Z71 |Non-terminal variable (structure, array, pointer)

f. |Procedures within a module/methods within a class

184

Symbols Windows

Symbols Window Menus

There are several context menus in the Symbols window, depending on the type of symbol. To
display the context menu associated with a symbol, click on it, then right click to bring up the
menu. A typical menu is described below.

Edit

Cpen Code \Window

Cpen Memary Windaw
Set Breakpoint Fa
Go Unkil Cursor F7

v Hexadecimal Display
Show Mames
sShow Types

v Show Yalues
Shaw Return Type
Show Source Location

Expand Children

Collapse Children

Viewpoink g
Refresh

Properties

Typical Symbols context menu
Edit menu item. When a value cell is selected, you can edit the value of the associated symbol.

Open Code Window/Open Memory Window menu items. These menu items allow you to open
a Code or Memory window at the associated address.

Set Breakpoint menu item. This menu item allows you to set a breakpoint in the Code window
at the address of a selected symbol without having to open the Breakpoints window to do so.

Go Until Cursor menu item. Enabling this menu item causes SourcePoint to run from a node to
the point where you have placed your cursor.

Hexadecimal Display menu item. This menu item is enabled by default and causes the values
displayed to be listed in Hexidecimal.

Show Names/Show Types/Show Values/Show Return Type menu items. These menu items
are enabled if you are in the Stack tab. They cause SourcePoint to display names, types, and
values of functions in the Symbols window..

Show Source Location menu item. This menu item is available only if you are connected to an
IDE.

Expand Children/Collapse Children menu items. Enabling one of these menu items
expands/collapses selected nodes in the symbol tree.

185

SourcePoint for AMD 1.0

Viewpoint menu item. This menu item indicates the status of the processor viewpoint. If you
have enabled one of the processor options, that processor is tracked. If you have enabled the
Track Viewpoint option, the current processor is tracked.

Refresh menu item. This menu item refreshes the current view.

Properties menu item. Enabling this menu item opens a message box that contains information
such as Name, Mangled Name, Type, Address, Length, Scope, and Program. Different
symbols have different properties.

186

Symbols Windows

Classes Tab
The Classes tab lists structure and class definitions

What you see in the Classes tab may depend on whether you have left the Smart Symbol
Analysis option enabled (the default) in the Program tab of the Preferences dialog box. (See
the topic, "Options Menu - Preferences Menu Item" in "SourcePoint Overview" under SourcePoint
Environment for more details.) If so, the Classes tab shows only those classes that have already
been discovered.

You may choose to disable the Smart Symbol Analysis option in order to view all symbols.
However, it may take considerable time for the symbols to load. Alternatively, if you want to see a
particular class or structure, go to the Globals tab and expand the module where it is declared.
The module usually has the same name as the file.

< Note: The tab works properly only for files with Dwarf2 symbols.

187

SourcePoint for AMD 1.0

Globals Tab

The Globals tab displays a hierarchy of loaded programs. Programs can be expanded to show
modules, procedures, and symbols.

Columns

There are up to four columns displayed in the Files view: Name, Address, Type, and Value,
depending on how expanded an entry is. The Name column displays program, module,
procedure, and symbol names. The Address and Type columns display symbol addresses and
data types. The Value column displays variable values. The Name and Value columns are
always displayed, while the Address and Type columns can be enabled or disabled via the
context menu.

Programs

Each program can be expanded in the Globals folder to show the modules it contains. A Code or
Memory window, showing the starting point of a program, can be opened by selecting either the
Open Code Window or Open Memory Window menu item from the context menu. Programs
can be removed from SourcePoint by selecting either Remove Program or Remove All
Programs from the context menu.

+« Note: If a module does not contain any data variables, the + disappears from in front of the
Data folder the first time it is expanded.
< Note: Currently, values are not available for program global variables.

Modules

Each module can be expanded to show the procedures it contains. Module bitmaps are colored
yellow to indicate that source line information is available. A Code or Memory window, showing
the first procedure in the module, can be opened by selecting either Open Code Window or
Open Memory Window from the context menu. To set a breakpoint at the first procedure in the
module, select Set Breakpoint from the context menu.

Expanding the Data folder of a program displays all the global variables defined in the program.
Expanding the Data folder for a module displays the variables defined within that module.

«» Note: To speed program load, symbol information is not completely processed until requested.
For very large programs (programs with a lot of symbols), opening the Data folder for a program
may take a while. Opening the Data folder for a particular module is usually faster.

+ Note: if a module doesn't contain any global variables, the + disappears from in front of the
Data folder the first time it is expanded.

Procedures

A Code or Memory window, showing the procedure, can be opened by selecting either Open
Code Window or Open Memory Window from the context menu. To set a breakpoint at the
entry point of the procedure, select Set Breakpoint from the context menu. Selecting Go Until
Cursor from the context menu causes the processor to run until the procedure is executed.

Symbols

188

Symbols Windows

Symbols include variables and labels. Variables have editable values, while labels do not.
Composite variables, including arrays, structures, and unions, are expandable to show their sub-
elements. The Address and Type columns are not visible by default but can be enabled via the
context menu. (You must have selected a symbol for these items to be available in the context
menu). Alternatively, the address and data type of a symbol can be viewed either via the flyover
tooltips or by selecting Properties from the context menu. Variable values can be edited by
double-clicking the left mouse button or by selecting Edit from the context menu. Variable values
are normally colored black. If a variable value changes, either by running or stepping the
processor or by editing its value directly, then the value is colored green to indicate the change.

189

SourcePoint for AMD 1.0

Locals Tab

The Locals tab shows the local variables accessible in the current stack frame, including
procedure arguments and automatics. Composite variables, including arrays, structures, and
unions, are expandable to show their sub-elements.

Columns

The Locals tab has up to four columns displaying variable names, addresses, data types, and
values. The Name and Value columns are always displayed. The Address and Type columns
are disabled by default but can be enabled via the context menu. Alternatively, the address and
data type of a symbol can be viewed via the flyover tooltips or by selecting Properties from the
context menu.

Editing

Variable values can be edited by double-clicking the left mouse button or by selecting Edit from
the context menu. Variable values are normally colored black. If a variable value changes, either
by running or stepping the processor, or by editing its value directly, then the value is colored
green to indicate the change. A variable can be copied to a Watch window by selecting Copy To
Watch from the context menu.

For more information about the Watch window, see "Watch Window Introduction” part of "Watch
Window Overview," found under Watch Window.

Sorting

The variables in the Locals tab can be sorted by name, address, or data type by left clicking in
the appropriate column heading. Click once to sort in ascending order, again to re-sort in
descending order.

Multi-processor

In multi-processor systems the Locals tab is always associated with the current viewpoint
processor.

190

Symbols Windows

Stack Tab

The Stack tab shows the program's current call stack. Stack frames can be expanded to show
local variables, including procedure arguments and automatics. Composite variables, including
arrays, structures, and unions, are expandable to show their sub-elements.

Columns

The Stack tab has up to four columns displaying names, addresses, data types and values. The
Name and Value columns are always displayed. The Address and Type columns are disabled

by default but can be enabled via the context menu. Alternatively, the address and data type of a
variable can be viewed via the flyover tooltips, or by selecting Properties from the context menu.

Stack Frames

Each frame shows the name of the procedure called. Argument names, data types, and values
can be selectively displayed via the context menu. A Code or Memory window showing the
procedure can be opened by selecting either Open Code Window or Open Memory Window
from the context menu. To set a breakpoint at the entry point of the procedure, select Set
Breakpoint from the context menu. Selecting Go Until Cursor from the context menu causes the
processor to run until the procedure is executed.

How to Change Values in the Symbols Window

+« Note: Entire fields cannot be selected when changing symbol values. The cursor control keys
or the mouse must be used to position the blinking caret immediately before the variable or
register digits can be changed.

1. Right-click on the value you want to change (or select Edit via the context-sensitive
menu).

2. Use the mouse or cursor control keys to position the blinking caret immediately before
the digit or series of digits to be changed.

3. Enter the new value for each digit, as required. Use the cursor control keys to skip over
unchanged digits.

4. To effect the value changes, press the Enter key or click your mouse on another field or
window.

The color of all digits in the field changes from black to green.

+« Note: This method replaces the entire symbols content.

191

Viewpoint Window

Viewpoint Window Introduction

The Viewpoint shows the processors in the target system.

33 Viewpoint

Mame Description]
& PO 236 Family & Model 24 (SBE) Running
o~ P1 36 Family 6 Model 24 (SBE) Running
o P2 =86 Family & Model 24 (SB) REunning
o~ B3 ®86 Family & Model 24 (SB) Funning
— P4 ®86 Family & Model 24 (SB) RFunning
— P& =86 Family & Model 24 (SB) RFunning
- Pb 36 Family 6 Model 24 (SBE) Running
o P7 236 Family & Model 24 (SBE) Running
< >

Viewpoint window

Viewpoint column (no heading). The first column contains radio buttons to select the current
viewpoint. If a processor is unavailable for selection, the entire row, including the radio button, is
grayed out.

Name column. The name column displays the processor name. By default, SourcePoint names
processors PO, P1, etc. Processor names can be changed in the Target Configuration dialog
(Options | Target Configuration | Devices), or by using the vpalias command in the Command
window.

Description column. The description column displays a description of the processor.

Status column. The status column displays processor status. The options are Running, Stopped
or Sleeping. If a processor is currently stopped due to hitting a breakpoint, then its status is
appended with "(hit breakpoint)".

193

SourcePoint for AMD 1.0

Viewpoint Window Menu
To bring up the Viewpoint window context menu, right click on the window.

Set Viewpoint. Set the selected processor as the current viewpoint processor. It performs the
same function as clicking on the radio button in the first column.

Viewpoint Tracks Breakpoints (MP targets only). When this menu item is enabled, the
viewpoint processor switches automatically to whichever processor hits a breakpoint.

Hide Processors. Opens the Hide Processors dialog to allow particular processors to be hidden
from the Viewpoint view.

Show Hidden Processors. Forces all processors to be displayed regardless of the settings in
the Hide Processors dialog.

Show Sleeping Processors. Displays sleeping processors in the Viewpoint view. If not
selected, sleeping processors are automatically hidden from the view.

194

Watch Window

Watch Window Introduction

The Watch window is designed to allow you to more easily "watch" those variables, registers,
and expressions you want to view often, especially as they change value, by copying them into a
Watch or Quick Watch tab in the Watch window. This saves you from having to scroll through a
Symbols window tab to view them. Composite variables, including arrays, structures, and unions,
are expandable to show their sub-elements.

#lwatchl = E
M ame Walue ;l
- auch "abcd"

"""" auch[d] Nz6l

"""" auch[1] Nx62

"""" auch[2] Nx63

"""" auch[3] Nxzkd
[fog2
=1 fooSh

"""" fooSH0] N=z03

"""" fooSHh[1] Nxzl2

"""" fooShZ] N=00

"""" fooSh]3] N=00

"""" fooStd] N=0A

"""" fooSh5] x40

"""" fooSH[E] Nx=zl0

"""" fooSH[7] N=54

"""" fooSha] N=E2

"""" fooSk]9] N=z02
A5 Tt atchl Alwiatch2 hiwfatchd Duick ‘Watchy

Watch window showing data in the Quick Watch tab view
Watch Tabs

The Watch tabs are designed to hold user-specified variables, registers, and expressions whose
values are re-evaluated each time the processor stops or is stepped.

< Note: In Monitor mode, the target is read without being stopped. In this mode, values do not
update automatically. Use the Refresh menu item in the context menu to update values in
Monitor mode.

Quick Watch Tab

The Quick Watch tab is identical to the other Watch tabs except that its settings are not saved
and its contents are cleared on every halt or stop event. This is of use if you want to see a value
only once and it is a complex value (simple variables can be seen in the flyover). Quick Watch
entries do not clutter your Watch tabs with extra variables.

195

SourcePoint for AMD 1.0

General Features
Columns

The Watch or Quick Watch view displays up to four columns showing names, addresses, data
types, and values. The Name and Value columns are displayed by default. The Address and
Type columns can be enabled via the context menu. Alternatively, the address and data type of a
symbol can be viewed via the flyover tooltips, or by selecting Properties from the context menu.

Values

Variable and register values normally are colored black. If a value changes, either by running or
stepping the processor or by editing its value directly, then the value is colored green to indicate
the change. In addition, register values are colored gray to indicate a read-only register or are
displayed as asterisks to indicate write-only registers.

Values can be displayed in either decimal or hexadecimal. Select Hexadecimal in the context
menu to toggle between the two. Regardless of the display base, addresses are always displayed
in hexadecimal. In addition, values larger than 32 bits are always displayed in hexadecimal.

Adding Watches

Watches can be added to a Watch or Quick Watch view in several ways. To directly enter a
variable name, register name, or expression, select Add Watch from the context menu. Drag and
drop can also be used to add watches. Names and/or expressions can be dragged in from a
Symbols window or from the Code, Trace, or Command windows. Register names can be
dragged in from a Register window. The variables in a Watch or Quick Watch view can be
reordered by using drag and drop to reposition a watch in the list.

Editing Values

Variable and register values can be edited by double-clicking the left mouse button or by
selecting Edit from the context menu. To end editing a value, press the Enter key or select
another field. If a value is being edited when either Go or Step is selected, the edit is terminated,
the value is written, and then the Go or Step operation is performed. Values can be copied and
pasted by using the Edit menu items, by using Ctrl-C/Ctrl-V, or by using drag and drop.

ToolTips

Most items have flyover tooltips that display some of the information available in the Properties
dialog box, available via the context menu.

Keyboard Support
The arrow keys provide keyboard support for navigation through a tree:

e The Up Arrow and Down Arrow keys move between items.

e The Left arrow and Right arrow keys move along a particular branch. Pressing the Right
arrow expands a branch if it is not currently displayed. Pressing the Left arrow moves the
cursor to the first item in a branch; pressing it a second time collapses the branch.

e The Home and End keys move to the top or bottom of the tree.

e The Page Up and Page Down keys move a page at a time.

e The + and - keys expand and collapse the current tree node.

196

Watch Window

e The Enter key alternately expands and collapses the current note.
e The use of the asterisk (Shift and the number 8 on the keyboard) expands all tree nodes
beneath the currently selected note.

Printing

To print a view, select File|Print on the menu bar. The entire tree is printed, but only currently
expanded nodes are included.

Colors
Colors can be changed via the Colors tab under Options|Preferences.
Multi-processor

In multi-processor systems, register values and stack-relative variables are always associated
with the current viewpoint processor.

197

SourcePoint for AMD 1.0

Watch Window Menu
A context menu can be accessed by right-clicking on a variable.
Edit

Add...
Remove

e ey Windaw

v Hexadecimal Display
Show Addresses
Show Twpes

Load...
Save. ..

Remove Al
Expand Children
Zallapse Children
Refresh
Properties

Watch/Quick Watch window context menu

Edit menu item. The Edit menu item lets you edit values. Variable and register values can be
edited by double-clicking the left mouse button or by selecting Edit from the context menu.
Expression values are not editable. Watch names can also be edited.

Add menu item. The Add menu item opens an Add Watch dialog box into which you can put a
the name of a variable, expression, or register or browse for one. Once the dialog closes, the
name displays automatically in a Watch or Quick Watch view (depending on which tab you have
chosen), along with its value. If the Address and Type fields are enabled, data display in those
columns, too.

Remove menu item. This menu item removes a highlighted line.

Open Memory Window menu item. Enabling this menu item causes the Memory window to
open at the specified address listed in the Watch or Quick Watch tab.

Hexadecimal Display menu item. Select Hexadecimal to toggle between decimal and
hexadecimal. Regardless of the display base, addresses are always displayed in hexadecimal. In
addition, values larger than 32 bits are always displayed in hexadecimal.

Show Addresses menu item. The Show Addresses menu item displays the Addresses
column with the variable address in it.

Show Types menu item. The Show Types menu item displays the Type column with the
variable type listed.

Load menu item. You can load a watch or a group of watches you have saved in a ".brk" or ".prj"
file by clicking on the Load menu item.

198

Watch Window

< Note: Using this command replaces the watches that currently exist in the Watches tabs.

Save menu item. Clicking on the Save menu item opens a Save As dialog box. From there you
can create and save the current watch or group of watches in a ".brk" file.

Remove All menu item. This menu item removes all data from a Watch or Quick Watch tab.

Expand Children menu item. The Expand Children menu item expands all composite
variables, displaying their sub-elements.

Collapse Children menu item. This menu item causes the window to collapse all composite
variables that have been expanded to show their sub-elements..

Refresh menu item. Use this menu item if you are running in Monitor mode and want to refresh
your values.

Properties menu item. When this menu item is selected, a Properties dialog displays. The
information varies depending on the type of item selected.

How to Add and Expand Registers in a Watch View
Adding Registers to a Watch View

Open the Symbols window.

Select an empty Watch tab.

Open the Registers window.

Move the windows so that you can easily see both views.

In the left-hand pane of the Registers window, click on the type of register group you
want to view. From the right-hand pane, select the register you want to move into the
Watch view.

6. Click and drag that register into the Watch view.

arwONE

The register and its value move together. The register is fully editable in the Watch view.
Changes made in the Watch view are automatically updated in the Registers window.

199

SourcePoint for AMD 1.0

¥ General Registers PO~ [_ (O] x]
— Beneral Marre | Yalue
- Floating Point ~ FE&Z+ 00000000
- Segment Frs arannana
- Contral jal €4 Symbols - Watchl I [=]
- Diebug E
o B E E it
- Hh B - EBx, ODx00000000
- MSH B EECK ODx00000000
- User B | E EDX ODx00000000
1 | B EBP 0=0000CE10
O
=
E
E
i3
E
4 [» % Globals &, Locals A Stack A, Classes pwatchl Awatch2A W atch3 f

Example of some registers dropped into Watch view in Symbols window
Expanding Registers in a Watch View

To expand a register in the Watch view, double-click on the register.

200

' General Registers P

- Floating Pairnt E:
- S egment ER
- Control EC
- Debug ET
e MM EL
E=
M
- MSR EE
- Uzer E1
=
D=
5e
Ec
F=
5

Watch Window

iq Symbols - Watchl =] E

Dooo|/oloo|o|o|Io/H oo ol e

4 | »
A e r\ Globals A Locals &, Stack A Classes A atch] Awatch2 diwatcha /

[(ERERENE]

EFLAGS 00010002

EFLAGS register drug into Watch view of Symbols window and expanded

201

SourcePoint for AMD 1.0

How to Add Symbols to a Watch or Quick Watch View
Select Edit|Find Symbol from the menu bar.

For more information how to use this dialog box, see, "Edit Menu," part of "SourcePoint
Overview," found under SourcePoint Environment. Scroll down to the Find Symbol command.

202

Technical Notes

Descriptor Cache: Revealing Hidden Registers

Many developers are unfamiliar with a very important set of registers that play a crucial role in
memory access. These registers are sometimes referred to as "descriptor cache" or "hidden"
registers. They are accessible and modifiable only when using an in-circuit emulator such as
those produced by Arium. The information below explains how these registers are the true basis
for forming linear addresses rather than the segment registers, even in Real mode.

When code execution causes a descriptor table lookup, the processor goes into the descriptor
table once to access the descriptor’'s base, limit, and access rights. A group of three hidden
registers linked to each segment register retains this information. The processor does not need to
access this table entry again until a segment change is made.

The following figure shows an example of a Segment Registers window from SourcePoint. Note
that it displays the descriptor cache for all segment registers. We will discuss the code descriptor
cache (i.e., CSBAS, CSLIM, and CSAR), but this information generally applies to all descriptor
caches.

IN4 Seqgment Reqgizters P1= M=l
- General Mame “alue -
- Floating Point S oo1n
 fp— CSBAS 00000000
e CSLIM FFFFFFFF
- Debug CSAR CFIEB
e DS 0008
o DSBAS 00000000
o op DSLIM FFFFFFFF L

DSAR ZF93
o wm - It o5 000s
- M3H SSBAS 00000000
- User SSLIN FFFFFFFF
SSAR CFI3
ES noog
ESBAS ngooooono
ESLIM FFFFFFEF
ESAR CF93 -

Segment Registers window (I1A-32 processor)

The linear address where code is accessed is determined by the CSBAS register. CS simply
serves to convey the information into CSBAS. For example, if a Real mode program executes a
far call that loads a value of F800 into CS, a value of 000F8000 is loaded into CSBAS. The linear
address is derived by adding CSBAS to EIP.

These descriptor cache registers also explain why the reset vector is FFFFFFFO even though CS
is FOO0 and EIP is 0000FFFO0. The reset vector is produced by adding CSBAS (FFFF0000) to EIP
(OO00FFFO0). Since the address is derived in this manner, the reset value in CS has no effect. The
CS register is initialized to FOOO at reset solely for software compatibility with legacy processors.

203

SourcePoint for AMD 1.0

When entering Protected mode, system software must perform a far jump that loads CS to
reference the appropriate descriptor in the GDT. This causes the processor to access the code
descriptor and cache the base, limit, and access rights in CSBAS, CSLIM, and CSAR,
respectively. The values remain in these hidden registers until execution changes context by
loading another code descriptor.

Modifying a segment register (i.e., a segment selector) manually does not have the same effect
as when it is modified by program execution. For instance, CSBAS, CSLIM, and CSAR are not
automatically changed when CS is modified using an emulator. In most cases, all of these
registers will need to be changed to produce the desired effect.

204

Technical Notes

UEFI Framework Debugging

Overview

The Intel® Platform Innovation Framework for Unified Extensible Firmware Interface (UEFI),
commonly known as the UEFI Framework, is a new firmware architecture standard that defines a
set of software interfaces and replaces the legacy BIOS found on traditional PC computers. This
framework provides the kind of modularity, flexibility, and extensibility that were formerly
unavailable with traditional BIOS. With UEFI, BIOS developers can now write all their code in 'C’,
rather than assembly language. See Intel's web site at
http://www.intel.com/technology/framework or http://www.tianocore.org for more information on
UEFI Framework.

Along with this new firmware architecture and the 'C’ code that implements it comes the need for
source-level debugging. Arium's debugger, SourcePoint™ (versions 7.0 and later) for Intel and
AMD processors offers native debug support for UEFI Framework platforms. Users can set
breakpoints, single step, view variables, see the call stack, and access all of the feature-rich
functionality SourcePoint normally provides. This includes source-level debugging during the PEI,
DXE, and OS Boot phases of UEFI. Below is a set of instructions for setting up SourcePoint to
debug the UEFI Framework.

UEFI Macros

+ Note: The macros described below are installed in the Macro\UEFI sub-folder of the
SourcePoint install path. Several of the UEFI macro files contain directory paths to other macro
files. If you move the macro files or change the current working directory in SourcePoint (via the
‘cwd’ command), you will need to update the macros files with the new locations.

EFl.mac

After installing SourcePoint, run the EFl.mac macro file located in the Macro\UEFI directory. This
creates six custom toolbar buttons and associates each with a corresponding UEFI proc.

» The StartPEl icon resets the target, then runs to PeiMain and loads the PEI symbols.

» The PEIMs (Pre-UEFI Initialization Modules) icon loads the symbol files for the PEI modules
found in target memory.

» The DXEs (Driver Execution Environments) icon loads the symbol files for the DXE modules
found in target memory.

» The HOBs (Hand-Off Blocks) icon displays a list of UEFI HOBs found in target memory.
» The SysConfigTable icon displays the contents of the UEFI system configuration table.
» The DumpMemMap icon displays the UEFI Memory Map.

SAPEIMs HDREs SHOBs H8SvsConfigTable

EFIl.mac toolbar buttons

205

SourcePoint for AMD 1.0

PEI Debugging

The PEI environment requires a specialized configuration of SourcePoint. PEI gets control shortly
after target reset. PElI modules are dispatched and executed after cache RAM is mapped into
system memory and the stack is initialized. Having a stack this early allows 'C’ language code to
execute, but a special memory map must be configured to take advantage of it.

To configure SourcePoint for source-level debugging of PEI code, follow these steps.

1. Optional: Select Options|Target Configuration|Memory Map from the menu, and set it
similar to the following (your system may vary depending on your memory map):

Start End Type
00000000P | OOOFFFFFP | DRAM
FEFO0000P | FFEFFFFFP | SRAM
FFFO0000P | FFFFFFFFP | FLASH

The first entry in the table designates the first 1MB of system memory. The middle entry
designates the location of the cache RAM mapped into system memory. The third entry
designates the firmware ROM.

2. The StartPEI button will reset the target and step one instruction at a time until the
processor enters protected mode. It then will load the PEI module symbols and run until
PeiMain.

3. Alternatively, you can use the PEIs macro button at any time when the processor is in
protected mode.

Command = ||
loading D:~SREve?~Fw~Platformn~Intellpg~SantaRozaCrb~Build~IA32~S3IEndDiPost . efi at &

loading D:~SREve?~Fw~Platform~Intellpg~SantaRo=zaCrb~Build~IA32~S3Eesunse . efi at 0O0F
loading D:~SRve?~Fw~Flatform~IntelMpg~SantaFosaCrb~Build~IA3Z“PociExpress efi1 at 0
loading D:~SEws?~Fw~Flatformn~IntelMpg~SantaRozaCrb~Build~IA32~TpmPei =efi at 00FFF
loading D:~SEwe?~Fw~FPlatforn~IntelMpg~SantaRozaCrb~Build~IA32~TcgPei . =fi at 00FFF
loading D:~SRve?~Fw~Platformn~Intellpg~SantaRo=zaCrb~Build>~IA32~Dxelpl . efi at 0O0FFF
loading D:~SRv&7~Fv~FPlatform~Inteldpg-~SantaRosaCrb~Build~IA32~Cpus3.efi at 00FFFF
lDaFing L:~SEwve?~Fu~Flatform~Inteldpg~SantaFosaCrb~Build~IA32~PeiSmnkelocate efi 2
PO

L b3

Command window after running PEIMs macro function

206

Technical Notes

Marne Walue b
bonoStatuzCode. efi
PriClg.eh
PoiExpress.efi i
PeiCpulo.efi

Peitd ain. efi _J
PeiSmmBelocate. ef
FlatformStagel . efi 1|rj!

‘_j_ g". Globals ﬁ Locals ‘,}'\Stack‘f\ I_:lqs_ggsf

LH

n@@@@@@

E
E
E
E
E
E
-

(Ex g Edy By (RS g Ry B0

Symbols window after loading PEIM modules

\Ci Code PO*: Tracking IP: d:\srv67\fw\platform\generic\monostatusc... |Z : A

2222

22723 for (; =#=0utputString != 0; OutputString++) { T
=224 DebugSerialllrite (#0utputString);

2225 T

2226 T

2227

2228 EFI_STATUS

2229 EFIAPT

2230 SeriallReportStatusCode

2231 IN EFI_FEI_SERVICES **¥PeiServices,

2232 IN EFI_STATUS CODE_TYPE CodeType,

2233 IN EFI_STATUS CODE_VALUE Value,

2234 IN TINHT3Z In=tance.

2235 IN EFI_GUID * Callerld.

2236 IN EFI_STATUS_CODE_DATA * Data OPTICHAL

2237)

2238 B

2239

2240 Routine Description: =

2241

2247 Frovide a =s=erial port print 3

2247 b
< | b3

ODIDFFFDESC? w| [Sowce v| GoCusor | SetBresk | W Track P ViewlP

Code window after loading PEIM modules

DXE Debugging

Once system RAM is initialized and the PEI phase completes, the DXE environment is entered.
This is less specialized than PEI; nevertheless, it requires a few SourcePoint parameters to be
set.

To configure SourcePoint for source-level debugging of DXE code, follow these steps:

1. Run the target to the UEFI shell, or as far as it will go in DXE.

207

SourcePoint for AMD 1.0

2. Stop the target.

3. Click the DXEs toolbar icon to load the DXE symbols.

4. Browse the source code files using the Symbols window and set breakpoints in your
code.

5. Reset the target and go until you hit a breakpoint.

0010:1EEEES3E FOF ECKE

0010:1EESES36 JHE short ptr CpuloServiceRead+9f

ila T

319 brealk:

0010:1EERES38 JIMF zhort ptr CpuloSerwviceRsad+dl

an9 cazs EfiCpuloWidthUintd: -

310 for {; Count > 0; Count——, Buffer buf += Outt

0010 1EESES3A MOV EEX. dword ptr [EEF]+18

0010:1EESEGS3D TEST EBX, EBX

0010:1EESES3F JEE zhort ptr CpulocServiceRead+dl

311 #*Buffer uid = CpuloRead? ({(UINT16) Address’

0010:1EESES41 FUSH dvord ptr [EEF]+14

0010:1EESES44 CALL neards ptr CpuloReadB
=:0010:1EEBES49 ADD dvord ptr [EEF]+14 EDI

0010:1EESES4C HOV byte ptr [ESI].AL

b010:1EESES4E ADD ESI.dword ptr [EBEF]+1c

0010:1EESESSL DEC EBX

0010:1EEBESRSZ FOF ECHE

0010:1EESESS3 JHE short ptr CpulocServiceRead+bd

329 T

330

331 return EFI_SUCCESS:

0010:1EESESSE HORE EAX, EAX

0010:1EESBERS? FOF EDI

0010:1EESERSE FOF ESI

0010:1EESBERSS FOF EBX

i3z

0010:1EESERSA FOF EEF

0010:1EESESSE RETH »
B *
[00101EESESE v [Mied v| GoCusor | SetBresk | W Tiackip | WiewlP Refesh

HOBs

DXE Code window

Open the Command window, and then click the HOBs toolbar icon to display the hand-off blocks
on the target.

208

Technical Notes

Command ol
HOE Resource descriptor at 001DEBECOZF A
Fesource tvpe =0 (sv=tem mnenory) -
Attributes 0=3C03
Fresent
Initialized
Uncacheable =

Write—-comnbinable
Write—-through cacheable
Write-baclk cacheables

Baze address Q00000000000 OOODO0O

Length OzO0000o0ooO000OoADDOND
HOH Resource descriptor at 001DEEEC3IEFE

Feszource tvpe =5 (reszerved mnenory)

Attributes= 0=0 hat
£l *

Example of HOB display

System Configuration Table

Open the Command window, and then click the SysConfigTable toolbar icon to display the
contents of the UEFI system configuration table on the target.

Commanid = |l

PO ~
Loading User Defined Macro #3: C:~Program Files“American Arium~SourcePoint-IA™]
LXE Serwvices at 001F45C328FP GUID=05AD34BA-AF02-4214-95-2E—4D-A0-39-8E-
HOE Li=t at O01DEBEOIOP GUID=7739F24C-93D7-11D4-9A-3A-00-90-27-3F

Memory Twpe Table at O001F45CIF0F GUID=4C19049F-4137-4DD3-9C-10-3B-97-48-3F-
Loaded Images Table at 001F4SDOBCE GOID=49152E77-1ADA-4764-B7-A2-7A-FE-FE-D9-

ACFI Table at 001F&FEOOOR GUID=EB9D2D30-2D88-11D3-9A-16-00-590-27-3F-
ACPE 2.0-3.0 table at O01F&FE014F GUID=8868E8?1—E4F1—11D3—BC—22—DD—BD—C?—3C=;
P b
8 | >

Example of System Configuration Table

Notes
1. DXE Debugging Tip

To stop the target and load symbols just before a DXE module is dispatched, open the
Symbols window, choose the Globals tab, and drill down to:

program: DXEMAIN.efi
module: image (image.c)
function: CoreStartimage()

Right click on CoreStartimage and select Open Code Window from the pop-up menu.

Set a processor breakpoint in CoreStartimage() where Image->EntryPoint() is called.
This hits before each DXE module is dispatched, but afterwards its entry is placed in

209

SourcePoint for AMD 1.0

210

tables. Each time you hit this breakpoint, click the DXEs toolbar icon to load the DXE
symbols.

Now you can load symbols just before your DXE module runs instead of running to the
UEFI shell, then loading symbols, then resetting the target, then running to your
breakpoint.

Watchdog Timer on Intel Platforms

Some motherboards with Intel processors have a TCO timer that will assert RESET
independent of the emulator. See the Arium application note titled, "Disabling the TCO
Timer in an Intel I/O Controller Hub" for details. Resetting the target from SourcePoint can
cause a Target state undefined error message to appear because the timer asserts
RESET and confuses the emulator. The solution to this problem is to configure the
ICH_TCO_Timer_Disable.mac macro to run at every target reset.

The UEFI firmware on the target contains strings that hold the paths to the program
symbol files on your hard drive. SourcePoint macros read target memory, find these
strings, then load the symbol files specified in these paths. The symbol files must be
located in the path specified in the UEFI firmware.

For example, one path might look like this:
"Z:\Platform\IntelSsg\D845GRG\Build\IA32\DxeMain.efi"

This architecture, defined by Intel, presents a requirement for UEFI debugging. You must
have the UEFI symbol files on the host computer in the same directories as specified in the
firmware on the target. This should not be a problem if you build the UEFI firmware on the
same host from which you run SourcePoint.

If the drive letter or path doesn’t match exactly, you can use the 'subst’ command from the
Windows command prompt to map a drive letter to a desired path (example: 'subst d:
c:\working\EFI").

Technical Notes

Memory Casting

C/C++ developers can declare a SourcePoint debug variable to be a pointer to a specific type of
data where the type is defined in the user’s loaded program symbols. When casted to a new type,
the debug variable pointer acts just like a program variable pointer of that type. You can display a
block of memory as a data structure or use elements of the structure in expressions. You can
also display blocks of target memory as a specific symbolic type without defining a debug variable
as a pointer to that block.

Defining Debug Variables of a Symbol Type as Defined in a Loaded
Program

This is used to define debug variables for future use in expressions or for display. The basic
syntax is:

define symbol [variable_name] = ([type_name]) [address]
Example
define symbol myVar = (myStruct) 0x1234

Debug variables defined in this manner are not available if the program that defines the variable’s
type does not have symbols loaded.

Casting Blocks of Target Memory as a Symbol Type as Defined in a Loaded
Program

This is used to simply display the memory using the format of the data type. This is commonly
used in Watch window expressions. The basic syntax is:

([type_name]) [address]
Example

(myStruct) 0x5678

211

SourcePoint for AMD 1.0

Microsoft® PE Format Support in SourcePoint

Overview
Definition of PE

PE32/PE32+ defines the SP32 Portable Executable File Format. PE is a load time relocatable file
format that can contain multiple sections/segments inside of a single file. The Extensible
Firmware Interface (EFI) also utilizes the PE format for EFI applications and device drivers. For
details of the format, see the Microsoft PE32/COFF File Format Specification.

Definition of PDB

The .PDB extension stands for "program database." It holds the format for storing debugging
information that was introduced in Visual C++ version 1.0. One of the most important motivations
for the change in format was to allow incremental linking of debug versions of programs, a
change first introduced in Visual C++ version 2.0.

While earlier, 16-bit versions of Visual C++ used .PDB files, the debugging information stored in
them was appended to the end of the .EXE or .DLL file by the linker. In the versions of Visual C++
mentioned above, both the linker and the integrated debugger were modified to allow .PDB files
to be used directly during the debugging process, thereby eliminating substantial amounts of work
for the linker and also bypassing the cumbersome CVPACK limit of 64K types.

By default, when you build projects generated by the Visual Workbench, the compiler switch /Fd
is used to rename the .PDB file to <project>.PDB. Therefore, you will have only one .PDB file for
the entire project.

When you run makefiles that were not generated by the Visual Workbench, and the /Fd is not
used with /Zi, you will end up with two .PDB files:

e VCx0.PDB (where "x" refers to the major version of the corresponding Visual C++, either
"2" or "4"), which stores all debugging information for the individual .OBJ files. It resides
in the directory where the project makefile resides.

e <project>.PDB, which stores all debugging information for the resulting .EXE file. It
resides in the \WINDEBUG subdirectory.

Why two files? When the compiler is run, it doesn't know the name of the .EXE file into which the
.OBJ files will be linked, so the compiler can't put the information into <project>.PDB. The two
files store different information. Each time you compile an .OBJ file, the compiler merges the
debugging information into VCXO0.PDB. It does not put in symbol information such as function
definitions. It only puts in information concerning types. One benefit of this is that when every
source file includes common header files such as <windows.h>, all the typedefs from these
headers are only stored once, rather than in every .OBJ file.

When you run the linker, it creates <project>.PDB, which holds the debugging information for the
project's .EXE file. All debugging information, including function prototypes and everything else, is
placed into <project>.PDB, not just the type information found in VCX0.PDB. The two kinds of
.PDB files share the same extension because they are architecturally similar; they both allow
incremental updates. Nevertheless, they actually store different information.

The new Visual C++ debugger uses the <project>.PDB file created by the linker directly, and
embeds the absolute path to the .PDB in the .EXE or .DLL file. If the debugger can't find the .PDB

212

Technical Notes

file at that location or if the path is invalid (if, for example, the project was moved to another
computer), the debugger looks for it in the current directory.

FAQs
What tool-chains has the SourcePoint PE Loader been validated against?

May 2002 Microsoft platform SDK
compiler(cl) version 13.00.9500.7 (for 1A64)
linker (link) version 7.00.9500.7

Microsoft Visual Studio.Net (Visual C++ Version 7) (for 32hit)
compiler(cl) version 13.00.9466
linker (link) version 7.00.9466

Microsoft Window server 2003 DDK
compiler(cl) version 13.10.2240.8 for IA64
linker (link) version 7.10.2240.8 for IA64
compiler(cl) version 13.10.2207 for AMD64
linker (link) version 7.10.2207 for AMD64

PE supports several symbol formats. Which format is supported by SourcePoint?

SourcePoint supports Codeview both in .PDB format and “non-PDB” format. SourcePoint does
not support COFF symbols within a PE file.

Why are COFF symbols not supported?

COFF symbols were used with early versions of Microsoft® Windows® and with MASM. Although
the COFF format has line number information, the latest MS Linker does not generate line
number information when COFF is used. COFF symbols in a PE format file would not support the
display of source code in the Code window.

Does SourcePoint support C++ with PE format?

Not in the current version of SourcePoint. PE/PDB support in SourcePoint is for C language level
support is primarily intended for EFI debugging. However, SourcePoint can load the symbols of a
C++ application. Some of the symbols will be readable while others will be in a mangled format.
The user can differentiate "classes" from "structures," but the class properties and methods are
not directly associated.

Does SourcePoint support debugging 32-bit PE applications?
SourcePoint supports 32-bit (PE32) versions of the PE format.
What linker switch is used to create CodeView/PDB?

/DEBUG /DEBUGTYPE:CV for PDB

/DEBUG /DEBUGTYPE:CV /PDB:NONE for CodeView without PDB

/DEBUG /DEBUGTYPE:COFF for COFF

213

SourcePoint for AMD 1.0

Does SourcePoint support PE/PDB generated by SEPTYPE option?

No, SourcePoint does not support PDB generated by PDBTYPE:SEPTYPE. When the
PDBTYPE:SEPTYPE switch is used, type information is put into separate files other than the
PDB file. SourcePoint does not read these files. In Visual C++, the Separate Types button in
Category: "Debug" in Link page of Project|Settings must be unchecked to generate symbols
compatible with SourcePaint.

Does SourcePoint support .DBG format?
No. SourcePoint does not support the .DBG format.
Does SourcePoint support PE files containing multiple code sections (segments)?

Yes.
Known restrictions of PE/PDB support in SourcePoint

e Separate Typefile. Separate type information file is not supported as described above.

e Demand Loading. For PDB, demand loading is not supported in SourcePoint.

e Module Range. Since PDB does not provide an accurate module range, SourcePoint
guesses at the last address of module from last line number of the module. Codeview (
without PDB) provides the exact size of a module, and SourcePoint can have accurate
module range.

e SourcePoint does not support PDB formats generated by MS Linker ver 5.xx and older.

214

Registers Keyword Table

Data Registers

Pointer/Index
Registers

Code Segment
Registers

Data Segment
Registers

Extra Segment
Registers

EAX

AX
AH
AL
EBX
BX
BH
BL
ECX
CX
CH
CL
EDX
DX
DH
DL
EBP

BP
ESP
SP
EDI
DI
ESI
SI
CS

CSBAS
CSLIM
CSAR

DSBAS
DSLIM
DSAR
ES

ESBAS

extended accumulator register, bits O-
31

accumulator register, bits 0-15
accumulator register, bits 8-15
accumulator register, bits 0-7
extended BX register, bits 0-31
BX register, bits 0-15

BX register, bits 8-15

BX register, bits 0-7

extended CX register, bits 0-31
CX register, bits 0-15

CX register, bits 8-15

CX register, bits 0-7

extended DX register, bits 0-31
DX register, bits 0-15

DX register, bits 8-15

DX register, bits 0-7

extended base pointer

base pointer

extended stack pointer
stack pointer

extended destination index
destination index
extended source index
source index

code segment register

code segment register, base

code segment register, limit

code segment register, access rights
data segment register

data segment register, base

data segment register, limit

data segment register, access rights
extra segment register

extra segment register, base

ord4

ord2
ordl
ordl
ord4
ord2
ord 1
ordl
ord4
ord2
ordl
ordl
ord4
ord2
ordl
ordl
ord4

ord2
ord4
ord2
ord4
ord2
ord4
ord2
ord2

ord4
ord4
ordl
ord2

ord4
ord4
ordl
ord2

ord4

Technical Notes

215

SourcePoint for AMD 1.0

ESLIM
ESAR
F Segment Registers |FS
FSBAS
FSLIM
FSAR
G Segment Registers |GS
GSBAS
GSLIM
GSAR

Stack Segment SS
Registers

SSBAS
SSLIM
SSAR

Instruction Pointer and EIP
Flags Registers

IP
EFLAGS
FLAGS
Control Registers CRO
CR1
CR2
CR3
CR4

System Address GDTBAS
Registers

GDTLIM
LDTR
LDTBAS
LDTLIM
LDTAR
IDTBAS
IDTLIM
TR
TSSBAS
TSSLIM
TSSAR
Debug Registers DRO
DR1
DR2

216

extra segment register, limit

extra segment register, access rights

F segment register

F segment register, base

F segment register, limit

F segment register, access rights
G segment register

G segment register, base

G segment register, limit

G segment register, access rights
stack segment register

stack segment register, base
stack segment register, limit

stack segment register, access rights

extended instruction pointer

instruction pointer

extended flags register

flags register

machine status register

Intel reserved

page fault linear address register
page directory base register
processor extensions register
global descriptor table, base

global descriptor table, limit

local descriptor table register
local descriptor table, base

local descriptor table, limit

local descriptor table, access rights
interrupt descriptor table, base
interrupt descriptor table, limit
task state segment register

task state segment, base

task state segment, limit

task state segment, access rights
debug register

debug register

debug register

ord4
ordl
ord2
ord4
ord4
ordl
ord2
ord4
ord4
ordl
ord2

ord4
ord4
byte
ord4

ord2
ord4
ord2
ord4
ord4
ord4
ord4
ord4
ord4

ord2
ord2
ord4
ord2
ordl
ord4
ord2
ord2
ord4
ord4
ordl
ord4
ord4
ord4

Technical Notes

DR3 debug register ord4
DR4 debug register ord4
DR5 debug register ord4
DR6 debug register ord4
DR7 debug register ord4

217

SourcePoint for AMD 1.0

SourcePoint Licensing

ASSET InterTech uses FLEXIm to license its products. Both hardware (emulators) and software
(SourcePoint) are licensed. There are two licensing models, Perpetual and Subscription. The
decision of which model to use is made at purchase time.

Perpetual Model

In this mode, you own the hardware and the right to use the software on the purchased version.
For the exact definition of what is covered, please refer to the License Agreement. The purchase
price includes free SourcePoint updates for a period of one year. To receive additional updates
(for bug fixes) and phone/email support, a Starl service contract must be purchased.

Each emulator comes with a FLEXIm license file. The license file includes the emulator serial
number, which high-level features are enabled, and Starl information. Demo licenses also
include an expiration date. SourcePoint can be installed on as many computers as desired, but
can only connect to an emulator when it finds a valid license file (one with the correct emulator
serial number).

The licenses in these files are “uncounted” (as opposed to a pool of “counted” licenses
maintained by a FLEXIm license file server). The Perpetual model does not require a FLEXIm
license file server. License files can be stored locally on the machine running SourcePoint, or
can be located centrally on a server (not to be confused with a license file server).

Subscription Model

When you purchase a SourcePoint subscription, you have the right to use the software until the
subscription expires. Unlike the Perpetual model, SourcePoint will no longer run once a
subscription expires.

There are two ways that a subscription can be licensed. The typical method is with a FlexNet
(FLEXIm) license file server. The alternate approach is to lock the use of SourcePoint to a
particular emulator serial number.

License File Server:

The Subscription model uses two types of license files, one for emulators and one for
SourcePoint. The emulator license files are similar to ones used in the Perpetual model. The
SourcePoint license file contains the counted (floating) licenses for the SourcePoint software. For
example, if you buy 10 emulators and 5 SourcePoint licenses, you will receive 10 emulator
license files, and a single license file for SourcePoint. The SourcePoint license file will contain
the count of 5, which is the maximum number of SourcePoint instances that the license file server
will allow to run concurrently. The SourcePoint license file is used by a FLEXIm license file server
to manage usage.

Serial Number Locked License:

Only the emulator license file is used in this case. It contains the serial number of the emulator
that SourcePoint is locked to. Additional feature information (that would normally have been
obtained from the license file server) is included in this file

218

Technical Notes

In the Perpetual model, emulator license files can optionally enable high-level features. In the
Subscription model, most of these features are included in the subscription price. The only items
licensed separately in the Subscription model are:

1. ARM, AMD and Intel support are licensed separately.
2. Windows and Linux are licensed separately.

3. ARM flat OS support (e.g., ThreadX) is licensed separately.
Mobile Licensing

There are times when a license file server may not be available. An example of this is carrying a
laptop to a customer site where VPN access is not available.

FLEXIm allows the user to “borrow” a floating license from the pool of licenses. This creates a
temporary node-locked license that expires after a certain amount of time. When a license is
borrowed, the count of licenses available is decremented by one. When the license expires, the
count is incremented.

Installing the SourcePoint Vendor Daemon

Please refer to the email you received when the SourcePoint subscription license file was
generated. It includes directions for downloading and installing the vendor daemon.

Current License File Information

Select Help | License File to open the FLEXIm License File Information dialog. Refer to License
File dialog for more information.

219

SourcePoint for AMD 1.0

Stepping

There are three commands (menu items, toolbar buttons, commands) for stepping: step
into, step over, and step out of. These commands are described in detail below.

Step Into command. This single-steps the next instruction in the program and enters each
function call that is encountered. This is useful for detailed analysis of all execution paths in a
program.

Step Over command. This single-steps the next instruction in the program and runs through
each function call that is encountered without showing the steps in the function. This is useful for
analysis of the current routine while skipping the details of called routines.

Step Out Of command. This single-steps the next instruction in the program, and runs through
the end of an existing function context. This is useful for a quick way to get back to the parent
routine.

These commands may be interpreted in two ways, depending on whether source is available for
the current execution location. If source debugging information is available for the current
execution location, then it is possible to do a source-level step (step into or step over). A
source-level step differs from a low-level or machine-level step by the range of addresses
involved. In source-level stepping, the unit of interest is the source line (with its associated
address range). In low-level stepping, the unit of interest is the machine instruction. For assembly
code, source-level and low-level steps may be the same.

By using the stepping instructions in conjunction with the go/stop and breakpoint capabilities, a
user may effectively track through the execution of programs.

Strategies for Source Level Stepping

Most compilers output debugging information at the level of the source line. This means that
SourcePoint (or any other debugger for that matter) can source level step only a line at a time.
Many languages allow the construction of multiple source statements on a single line. While this
will not cause any difficulty in SourcePoint, for the purposes of stepping, it is a good idea to
separate out as much functionality as possible onto separate lines.

For instance, the following C language source fragment will source level step as one statement:

Command input:
for (i=1,i<function1(100), i++) {j = function2(i); k +=j; }

The intricacies of the internal execution of functionl and function2 will be missed. You could
always step through the machine language generated by the compiler, but this is often quite time
consuming and potentially confusing. The above C code might be rewritten as follows in order to
step through the execution of functionl1 and function2 and the parts of the for block at the source
level:

Command input:

for(i=1,

i <function1(100),
i++)

{

function2(i);

220

Technical Notes

k+=];
}

This rewriting of the code will not affect the execution performance or effect, but will enable more
effective debugging and perhaps a cleaner coding style. The rewriting is entirely optional. You
might consider selective rewrites on certain parts of code that are to be debugged.

The writing of code compressed onto single lines applies to all source languages. The use of
macros in assembly language, multiple statements on a line or defines in the C language, and
similar constructions in other languages present the same difficulties in stepping. The debugger
source level steps one source line at a time.

Stepping at source level or machine level

You can control whether stepping takes place at the source level or machine level via the Code
window. If a single Code window is open, then the display mode of that window controls how
stepping is performed. If the display mode is Source, stepping will take place at the source level.
If the display mode is Mixed or Disassembly, stepping will take place at the machine level.

If multiple Code windows are open, the rules are more complex. The general rule is the Code
window that is tracking the instruction pointer (has Track IP checked) and has the focus (contains
the flashing cursor and has a highlighted title bar) determines the method of stepping. Situations
where the Code window that has the focus is not tracking the instruction pointer may not conform
to these rules. If the method of stepping is not as expected, switch focus to a Code window that is
tracking the instruction pointer and select the desired display mode.

Step Into

The step into ability of the debugger can be invoked via a command, a toolbar button, or a menu
item. This single-steps the next instruction in the program, and enters each function call that is
encountered. This is useful for executing every path in a program.

Source Level Step Into

When the debugger performs a source level Step Into, machine instructions within the range of
addresses defined by the source statement at the current point of execution are repeatedly
executed until the point of execution lands outside the range. Upon execution of the source level
step into function, the debugger first remembers the range of addresses for the source statement
that contains the current execution point. Then, a machine-level step into is executed. The new
execution point is determined. If the execution point is still contained within the range described
by the source statement, then another machine-level Step Into is executed. This is repeated until
either execution falls outside the range of the source statement or 255 steps have been executed.
Note that 255 is the maximum number of steps allowed by the step command.

Machine Level Step Into

When the debugger performs a machine level Step Into, a machine instruction is executed. If
executed via the menu or the toolbar, only one step is performed. If executed as a command (or
macro), an optional repeat count is accepted. The repeat count can be between 1 and 255,
inclusive. This causes the requested number of steps to be executed.

Step Over

221

SourcePoint for AMD 1.0

The "step over" ability of the debugger can be invoked via a command, a toolbar button, or a
menu item. This single-steps through instructions in the program. If this command is used when
you reach a function call, the function is executed without stepping through the function
instructions. This is useful for skipping over the execution of a subroutine and continuing with the
execution of the current routine.

The step over capability may require the use of one of the four debug registers. It is always a
good idea not to use all of the debug registers in breakpoints if you intend on using the Step Over
command. If all of the debug registers are in use, a Step Over command will execute up to the
point where the use of the debug register is required, and then it will stop with an error message
dialog box.

Source Level Step Over

When the debugger performs a source level "step over," machine instructions within the range of
addresses defined by the source statement at the current point of execution are repeatedly
executed until the point of execution lands outside the range or a call is encountered. Upon
execution of the source level Step Over command, the debugger first remembers the range of
addresses for the source statement that contains the current execution point. Then, a machine-
level Step Over command is executed. The new execution point is determined. If the execution
point is still contained within the range described by the source statement, then another machine
level Step Over command is executed. This is repeated until either execution falls outside the
range of the source statement or 255 steps have been executed. Note that 255 is the maximum
number of steps allowed by the Step command.

Machine Level Step Over

When the debugger performs a machine level "step over," one of two operations is performed. If
the instruction at the current execution point is a call, a breakpoint is set after the call, and the
target machine is given a Go command. All of the instructions in the subroutine called and any
instructions recursively called will execute. The setting of a breakpoint requires the use of one of
the four debug registers. If a debug register is not available, an error message will be displayed. If
the instruction at the current execution point is not a call, a machine level "step into" is performed
(see above). If executed via the menu or the toolbar, only one step is performed. If executed as a
command (or macro), an optional repeat count is accepted. The repeat count can be between 1
and 255 inclusive. This causes the requested number of steps to be executed.

Step Out Of

Select the Step Out Of command to stop program execution at the next location after the return
from the current function. This command places a breakpoint on the instruction immediately
following the call instruction for the current routine. This is useful to skip over the rest of the
current function and all calls made by the function. In the process of debugging, when you have
determined that the current function does not contain the problem you're looking for, this provides
a rapid method of proceeding with debugging after the current function.

The Step Out Of command requires one hardware debug register for the breakpoint. If the
resource is unavailable, this routine does not change anything and produces a beep.

222

Technical Notes

Symbolic Text Format (Textsym)
This file format is a simple text file to specify symbolic debug information.

File Format
Field Separator

Each field is separated by the vertical bar ('|') character. White space around the bar is optional.
All leading and trailing white spaces between fields are ignored.

Signature

The first line of this text file contains a signature and version information. The "TEXTSYM format"
string and version number must be as shown. White space will be ignored. If a valid signature is
not found, the load will abort.

TEXTSYM format | V1.1 <eol>
Debug Information

Debug information for each symbol is specified on a separate line as specified below:

GLOBAL/LOCAL |Offset Value CODE/DATA Symbol Name Object Size

Where:

GLOBAL/LOCAL Usage is tool dependent. If symbol is specified as GLOBAL, then it must be
unigue within this module - no duplication is allowed. Some tools may ignore
symbols marked as LOCAL.

Offset Value 64-bit hex value treated as an unsigned number. The offset value is added to
the address where the symbol file is loaded.

CODE/DATA A required keyword. When the debug tool forms an IA-64 symbolic address,
this field is used to determine whether the resulting symbol has a data
address or an execution address. This field is ignored when reading 1A-32
symbols.

Symbol Name A contiguous ASCII string of characters that are legal to identify a
variable/function name in C/C++. Symbol names are case sensitive. Length is
not restricted but limited by the debug tool that consumes it.

Object Size The size of a data object in bytes. This field is optional. It is in bytes for code
and data symbols.
*This field is not allowed in version 1.0 and is optional in version 1.1. Both
versions 1.0 and 1.1 are currently supported.

High-level source display is not possible in the absence of line numbers. All the symbols are
treated as if they are public symbols. The file name will be used as the module name to associate
the symbol. De-referencing of symbols is not supported.

223

SourcePoint for AMD 1.0

Example

TEXTSYM format | V1.0 <eol>

GLOBAL
GLOBAL
LOCAL

GLOBAL

224

| 0000000c00000000
| 0000000000000430
| 0000000000001234
| 0000000000001238

| CODE
| DATA
| CODE
| DATA

| ENTER_RESET <eol>
| OSTypeFound <eol>

| BAR <eol>

| FOO

| 4 <eol>

Technical Notes

Target Configuration

Overview

The emulator communicates with the target through the JTAG chain. In order to do this, it needs
to know what devices are on the JTAG chain. The collective process of discovering these target
devices and configuring them for communication is referred to as "target configuration”.

Rather than hard-coding the target configuration process in SourcePoint or the emulator, a target
configuration macro file is used. This gives the user maximum flexibility to control the target
configuration process. For example, special JTAG commands might be required to unlock a
JTAG chain before the emulator can communicate with it. These commands can be inserted in
the target configuration macro.

Simple Targets
Simple targets can use the default target configuration files provided with SourcePoint.

Use the New Project Wizard (File | Project | New Project) to create a new project file. Under
"Settings basis” select "Use default settings”. This creates a project file with the target
configuration event macro set to run a debug procedure called Configure. The default version of
Configure is in config-utils.mac (in the macros directory). For simple targets it will work
unmodified.

Complex Targets

Examples of complex targets include targets that need special commands to unlock debug
capabilities, and targets that don’t scan properly. On these targets, the default Configure
procedure will need to be modified.

Targets that need to be unlocked. The changes required are target-dependent, but usually
consist of a series of msgscan commands to send special JTAG commands to the target.

Targets that don’t scan properly. In this case, one or more of the scan commands (jtagscan,
apscan, and/or devicescan) is omitted. The corresponding SourcePoint configure command is
used to send the configuration to the emulator. The configuration typically comes from a special
target configuration file created for the particular target, but it can also be manually generated
(see below).

Configuration Command Overview

The following is a list of the commands and control variables used in the target configuration
process. For more details refer to the separate command topics for each.

Configuration Commands

jtagtest Test the JTAG chain.

jtagscan Causes the emulator to scan the JTAG chain for
devices.

jtagconfigure Sends the SourcePoint JTAG configuration to the

225

SourcePoint for AMD 1.0

emulator.
jtagchain Display or define a JTAG configuration.
verifyjtagconfiguration Verifies that the SourcePoint and emulator
configurations match.
devicescan Causes the emulator to scan for devices.

deviceconfigure

Sends the SourcePoint device configuration to the
emulator.

verifydeviceconfiguration | Verifies that the SourcePoint and emulator

configurations match.

autoconfigure

Performs the same function as the default Configure

procedure.

disconnect Disconnect emulator from target (discard current
configuration).

reconnect Reconnect using the target configuration event macro.

Database Commands

jtagdevices

Display the JTAG device database.

jtagdeviceadd

Add a device to the JTAG database.

jtagdeviceclear

Remove a device from the JTAG database.

Control Variables

num_jtag chains

The number of JTAG chains.

num_jtag devices

The number of JTAG devices.

num _all devices

The number of all devices.

num_processors

The number of processors.

emulatorstate

The emulator connection state (0, 1 or 2; see below).

Advanced Topics

The JTAG Device Database

SourcePoint maintains a database of known JTAG devices in targets\jtag-devices.xml.

The Configuration

Info.

The command language also supports viewing and modifying the database. The jtagdevices
command displays the database. The jtagdeviceadd and jtagdeviceclear commands add and

remove devices.

If you install a new version of SourcePoint, it may include a newer version of the database file. In
this case SourcePoint merges the old and new files, so any user changes to the database are not

lost.

view is used to display and edit the database. It is accessible by pressing the
Configuration button in Options | Target Configuration | Target Devices, and then selecting JTAG

Manually Defining the JTAG chain

226

Technical Notes

If the JTAG chain cannot be scanned, and the target you are trying to connect to does not have a
target configuration file, then it is possible to manually define the JTAG chain configuration. This
can be accomplished in the JTAG Configuration tab in the Configuration view. All devices must
already exist in the JTAG device database (the JTAG info tab).

The command language also supports defining the JTAG chain configuration. The jtagchain
command displays or sets the devices on the JTAG chain. The jtagchainclear command clears
the devices on the JTAG chain.

What the Configure Procedure Does

The Configure debug procedure (in macros\config-utils.mac) is the default target configuration
method. It will work for most targets. Configuration consists of 2 or 3 phases.

The first phase uses the jtagscan and jtagconfigure commands to scan and configure the JTAG
chain. The jtagscan command automatically performs a jtagtest command prior to the scan.
After JTAG configuration is complete the emulatorstate control variable transitions from state 0
(disconnected) to state 1 (JTAG configured).

The last phase uses the devicescan and deviceconfigure commands to scan and configure
devices. After successful device configuration, the emulatorstate control variable transitions from
state 1 (JTAG configured) to state 2 (fully configured). The target is now ready for run control.

Manually Executing Configuration Commands and Creating a Target Configuration File

Connecting to a new kind of target for the first time can be a tricky process. The target may have
hardware issues, software issues, security issues, or a whole host of other problems that cannot
be anticipated.

By using a special target configuration file (manual.tc), and the command line commands listed in
previous sections, it is possible for a user to manually discover the target, step by step.

This has the huge benefit of allowing the user to pinpoint exactly where in the connection process
that the target is providing difficulties to the standard connection process.

The following describes the general process for manually discovering and configuring a new
target for the first time. If there are external requirements by the target (security unlock, physical
JTAG chain configuration, etc) at various stages during the process, it is the user’s job to know
what these requirements are, how to carry them out, and when to cause those processes to
occur. It is not possible for SourcePoint to know the implementation-specific requirements of any
given target, unless Arium has been previously informed of said requirements.

The emulator should be powered up and connected to the target, which should also be powered
up. The user should then create a new project file with the "manual.tc” file that is included in the
SourcePoint distribution. Tell SourcePoint the address of the emulator (TCP/IP or USB).

SourcePoint will connect to the emulator, and stop. No further automated configuration actions
will take place on the part of SourcePoint. From this point on, all steps will be carried out
manually by the user in the Command window. At this point, the emulator is in the disconnected
from the target state (emulatorstate control variable = 0).

227

SourcePoint for AMD 1.0

The user now has the option of using the jtagtest or the jtagscan command. The jtagtest
command may be used to manually run any one of the six JTAG tests individually. These tests
are:

1) Test for power currently on.

2) Test for reset currently asserted.

3) Determine the IR length of the JTAG chain.

4) Scan the JTAG ID’s on the JTAG chain.

5) Check the integrity of the JTAG chain.

6) Check whether the target supports Adaptive TCK.

If these tests are run one at a time via the jtagtest command, the user can determine, with very
fine granularity, what an exact problem may be with the JTAG chain. < Note: Enable logging
with aalog=20987 to view the test results in the Log window.

The jtagscan command runs tests 1 - 5 above automatically, in a predefined order, simulating the
automated test that was run in older versions of firmware. This may be done on targets whose
JTAG chain the user has confidence in.

Once the jtagscan command has been run successfully, SourcePoint will have sufficient
information (i.e. the list of JTAG ID’s) to proceed to the next step. This is to run the jtagconfigure
command at the command line.

Once this command has been issued, the firmware in the emulator will be in the JTAG Configured
state (emulatorstate control variable = 1), and will be ready to proceed to the next step.

The user should issue the devicescan command. This causes the emulator to discover what
"devices" are in the system (i.e. processors, ETM’s, etc). That information is reported to
SourcePoint.

After this information has been discovered, the user should issue the deviceconfigure command.
When this is done, the STS light on the front of the emulator should turn on. The emulator is now
fully configured (emulatorstate control variable = 2)

The last stage is to allow SourcePoint to configure itself by issuing the connect command. After a
short delay, SourcePoint should become connected to the emulator and display its debug
windows.

SourcePoint and emulator are now fully configured and should be able to debug the target.

The project file should be saved, and a configuration macro should be created (or an existing file
should be modified) to allow SourcePoint to carry out automated connection from now on. This
configuration file should include any target specific actions that are required to activate or connect
to the target, in the correct locations in the macro file.

228

Technical Notes

Using Bookmarks

Bookmarks are temporary placeholders that allow you to mark locations in the data. They are
supported in line view-based windows (e.g., Code, Memory, Trace, Log, and Command
windows). Bookmark options can be manipulated via the Edit menu in on the main menu bar or
via icons on the icon toolbar. The following outline provides brief information on how to use
bookmarks in SourcePoint.

Adding/Removing Bookmarks

1.

2.

Bookmarks can be set on any type of line-view line (state, disassembly, source, data,
etc.).

If display settings are changed such that a bookmarked line is no longer displayed, then
the bookmark is set invalid and ignored. If display settings are changed such that the
bookmarked line is displayed again, then the bookmark is marked valid and can be used
again.

Use Ctrl+F2 to toggle a bookmark.

Navigating Bookmarks

1.
2.

F2 moves you forward to the next bookmark.
Shift+F2 moves backwards to the previous bookmark.

Clearing Bookmarks

1.
2.

3.

5.

Bookmarks are cleared automatically when a view is closed.

Bookmarks are cleared automatically when SourcePoint is closed; they are not saved in
the project file.

For the Trace window only:

e Bookmarks are cleared automatically when new trace data are captured.
e Bookmarks are cleared automatically when you switch between displaying a
binary trace file and emulator trace.

For the Command and Log windows only:

e Bookmarks are cleared automatically when you clear one of these windows.

e |If enough lines are added to these windows, then it is possible for lines at the
beginning of the view to be discarded. If one of these lines is bookmarked, the
bookmarks is cleared.

Ctrl+Shift_F2 clears all bookmarks in all windows.

Bookmark Indications

Bookmarks are indicated by a changed background color in the line that is marked. The
background color is light blue unless you change it via the Color tab under
Options|Preferences.

229

SourcePoint for AMD 1.0

Which Processor Is Which

Introduction

SourcePoint orders processors from last to first on the JTAG chain. This follows the order in
which the JTAG device ID is shifted out. That is, since the last processor on the JTAG chain
outputs its data first, it is considered the first, or PO processor. The next-to-last processor shifts
out its data next and is considered the P1 processor, and so on.

What Does "Last on the Chain, First on the Chain" Mean?

The JTAG chain is a serial data flow from the emulator, through each processor, then back to the
emulator (See Figure 1, below). As data is shifted out of the emulator, existing data that are in the
processors are shifted back to the emulator. When the data goes back into the emulator, it goes
into a buffer, filling the buffer from top to bottom.

American Arium
TDI Emulator < TDO
TDI P4 TDO TDI . PO TDO
Figure 1

As an example, one of the first operations the emulator performs is getting device IDs from all the
processors in the JTAG chain (the serial circuit created by connecting all processor together as in
the diagram). Nearly all ARM processors have the capability to return a device ID. In their initial
state, processors have a 32-bit register that contains the device ID and is attached between TDI
and TDO. By shifting the data through the circuit, the device ID for the last processor (PO in the
diagram) is shifted out first and onto the top of the buffer inside the emulator. (The first device ID
has been shifted out from the last processor in the circuit, the device ID for the next-to-last
processor has been shifted into the last processor and more shifting needs to be done to shift it
through and into the emulator into the next available space in the buffer.) At that point, the

230

Technical Notes

emulator have the device ID for the last processor first, followed by the next-to-last processor.
That is why SourcePoint orders the processors from last to first on the chain.

How Is This Related to the PROCESSORCONTROL Variable in
SourcePoint?

The PROCESSORCONTROL variable contains a mask of which processors SourcePoint should
control. The mask is actually a bit pattern representing the processors that are on the JTAG
chain, the least significant bit representing PO, the next significant bit representing P1, and so on.
If a particular bit is 1, then SourcePoint is to control that processor. If 0, then SourcePoint is to
ignore that processor. By default, PROCESSORCONTROL has "on" all the bits that correspond
to the number of processors. That is to say, if there are two processors in the chain, similar to the
diagram above, then PROCESSORCONTROL is 0x03 by default. If there were four processors in
the chain, then PROCESSORCONTROL would be 0x0f by default.

By setting off the bits for the corresponding processor, you can make SourcePoint ignore certain
processors. For example, in the diagram above, if you only want to control P1, then you can set
PROCESSORCONTROL=0x02. Likewise, if you only want to control PO, then you can set
PROCESSORCONTROL=0x01.

Using another example where four processor are on the JTAG chain, they are labeled PO, P1, P2
and P3. Similar to the previous two processor examples above, PO is still be the last one in the
chain, P1 is the next to last, P2 the next to next-to-last (or the second) and P3 would be the first
in the chain. Then, for example, if you wanted only to control P3, you would set
PROCESSORCONTROL=0x08. Using the mask, you can control any combination of processors.
In the case of, say, four processors in the chain, then to control PO and P2, you could set
PROCESSORCONTROL=0x05.

What Does It Mean to Control More Than One Processor?

When you click on the Go button (or use the Go command) in SourcePoint, all processors that
SourcePoint is to control are started. When you click on the Stop button (or use the Halt
command), all processors that SourcePoint is to control are stopped. However, the single step
command will only single step a single processor.

231

SourcePoint Command Language

Introduction

This manual describes the SourcePoint command language. The command language is very
similar to the C language, with additional commands added for run control, target access, etc.

Commands can be typed one at a time in the Command window, or multiple commands can be
executed from a command file.

The Command window interface is described in the Command Window section of the User’s
Guide.

233

SourcePoint for AMD 1.0

Syntax Notation

GeneralGeneral

command verbatim text (case insensitive)
italics user-provided parameter

[item] item is optional

{item}* 0 or more instances of item

[1tem]+ 1 or more instances of item

{iteml | item 2} either item1 or item2 must be selected

[iteml | items 2] either item1 or item2 may be selected
.- indicates that the preceding item can be repeated

punctuation must be entered exactly as shown except for {}, [] and |.

SourcePoint specific

[pX] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set for this command to the specified
processor. The processor can be specified as px (where x is the
processor ID), or an alias you have defined for a given processor 1D
(using vpalias command). See Viewpoint Processor and Processor

Overrides.

[all] is a special viewpoint override specifying that all processors are
affected. The brackets are required punctuation

expr is an expression as described in expressions

234

SourcePoint Command Language

Comments

SourcePoint supports both old-style C comments (/*...*/), and new-style C comments (//).

Examples
go // this is a comment
wait /* this is another comment */

235

SourcePoint for AMD 1.0

Constants
Integer Constants

Integer constants are of the form:

[Oy | OY]{O-1}+[y | Y]

[Oo | 00J{0-7}+[q | Q]

[On | ONJ{0-9}+[t | T]

[Ox | 0X]{0-9 | a-f | A-F}+[h | H]
{0-9}+{k | K}

{0-9}+{m | M}

// binary constant
// octal constant
// decimal constant
// hex constant

// Kb

// Mb

In the absence of an explicit base prefix or suffix, the default number base is specified by the

base control variable.

Examples

10t // constant
On10 // constant
10y // constant

base = hex
10 // constant

base = dec
10 // constant

Floating Point Constants

Floating point constants are of the form:
[+ | -1{Digit}+.{Digit}*[Exp]
[+ | -1{Digit}*.{Digit}+[Exp]
[+ | -1{Digit}+[Exp]
Where:

Digit [0-9]

Exp [E | e]l- | +){Digit}+
Examples

.234
-1.1234
123 .45e3
10e-5

Character Constants

236

decimal and has value 10
decimal and has value 10
binary and has value 2

has value 16 decimal

has value 10 decimal

SourcePoint Command Language

Character constants follow the C language convention.

Examples

’a’ // value = 0x61

\t’ // tab character

A\~ // backslash character

\377~ // octal value 377 = 255 decimal

String Constants

String constants follow the C language convention. Constants longer than 256 characters are
truncated.

Examples

”abcd” // abcd

”ab\\cd”’ // ab\cd

”abcd\n”’ // abcd + newline character

237

SourcePoint for AMD 1.0

Data Types
The built-in data types supported by SourcePoint.
Discussion:

Data types are used when defining debug variables and when accessing target memory.

Type Description

ordl (byte) unsigned 8-bit quantity (byte is an alias)

ord2 (word) unsigned 16-bit quantity (word is an alias)

ord4 (uint, dword, offset) unsigned 32-bit quantity (uint, dword and offset are aliases)
ord8 (qword) unsigned 64-bit quantity (qword is an alias)

ord12 unsigned 96-bit quantity (supported but ord16 is used)
ord16 unsigned 128-bit quantity (Not available for memory access)
char ASCII character

nstring (string) a string object (similar to CString)

intl signed 8-bit quantity

int2 signed 16-bit quantity

int4 (int) signed 32-bit quantity (int is an alias)

int8 signed 64-bit quantity

int16 signed 128-bit quantity (not available for memory access)
reald (float) signed 32-bit floating point value (float is an alias)

real8 (double) signed 64-bit floating point value (double is an alias)

reall0 supported, but real8 is used

pointer represents an address in target memory

boolean (bool) true (non-zero value) or false (zero value)

Array of elements of any valid debug data type with the exception of
pointers. (Not available for memory access.)

Array
Example 1
To define a debug variable called o4Val and assign it a value of 5:

Command input:

define ord4 o4val = 5
o4val

Result:

5

Example 2

To display 20 bytes of memory at address 1000 as 16 bit quantities:

Command input:

238

SourcePoint Command Language

ord2 1000 len 10

Result:

00001000 0080 8D0O1 42B9 DOOA F8B4 03B8 EBO4 1000
00001010 F500 712E F3Cl1 018F F8AO 12A8 EO008 F8B4

239

SourcePoint for AMD 1.0

Expressions

Expressions consist of one or more operands combined with operators. The assignment operator
may be used once in an expression

Operands

Valid operands include constants, control variables, debug variables, debug procedures, symbolic
references (user-program symbols), register names, and memory accesses.

Operators

The following table lists the emulator operators in order of precedence and describe how
evaluation occurs. Precedence determination parallels the C programming language.
Expressions containing the logical operators &&, ||, and " evaluate left to right and terminate as
soon as a result is determined.

Emulator Operators in Order of Precedence

Category Symbol Associate Function
primary 0 left group expressions

[left index into string
right-unary ++ left post-increment

- - left post-decrement
left-unary * left indirection

- left unary minus

! left logical NOT

~ left bitwise NOT

++ left pre-increment

-- left pre-decrement
binary * left multiplication

/ left division

% left modulus

+ left addition

- left subtraction

<< left shift left

>> left shift right

< left less than

> left greater than

<= left less than or equal

>= left greater than or equal

== left equivalence

I=,<> left non-equivalence

& left bitwise AND

240

&&

JAVAN

assignment =

Type Conversions

left
left
left
left
left
right

right
right
right
right
right
right
right
right
right
right
right

SourcePoint Command Language

bitwise OR
bitwise XOR
logical AND
logical XOR
logical OR ternary

three-element conditional expression
(for example: (a>b)?(a):(b) displays the greater
value, a or b)

simple assignment

implied operand addition
implied operand subtraction
implied operand multiplication
implied operand division
implied operand modulus
implied operand right shift
implied operand left shift
implied operand bitwise AND
implied operand bitwise XOR
implied operand OR

Type conversions occur automatically. If the two operands associated with a binary operator are
of different types, an implicit type conversion is done to make the two the same type. Before a
conversion takes place, however, the object to be converted is expanded to its maximum
precision. An error message is generated if the conversion is not allowed.

241

SourcePoint for AMD 1.0

Debug Variables
There are two types of variables: control variables and debug variables.

Control variables are predefined variables in SourcePoint. See Control Variables for a list of
these variables and links to their individual help topics.

Debug variables are defined by the user with the define command. They can be displayed with
the show command, and removed with the remove command.

Debug variable types include integers, reals, strings, and pointers (for accessing target memory).
Pointers to debug variables are not supported.

Debug variables arrays are supported (see Debug Variable Arrays). Debug variable structures
are not supported.

Debug variable names are case sensitive. Names are of the form:
{Letter}[Letter | Digit]*

Where:

Digit [0-9]

Letter [a-zA-Z_@]

Examples:

define ord4 x1 = 100h // 32-bit unsigned integer variable
define intl6 y // 16-bit signed integer variable
define nstring foo = ”abcd” // string variable

define ptr addr = 0x1000 // pointer variable into target memory
define nstring names[10t] // 10 element array of strings

define real8 percent = 0.4 // 64-bit floating point variable
define bool bEnable = false // Boolean variable

242

SourcePoint Command Language

Debug Variable Arrays

The define command is used to create debug variable and debug variable arrays. Use a
bracketed expression suffixed to the debug variable name to create an array. The value of the
expression determines the size of the array. The definition type will determine the type of the
array elements. See the example below which illustrates how to define an array named
ValueArray with 32 elements of type ord4.

Command input

define ord4 ValueArray[0x20]

You can then use a for loop to assign values to this array:
Command input:

define ordl cnt =
define ord4 value OxOFf
for (cnt=0; cnt < 32t; cnt++)
{
ValueArray[cnt] = value
value = value * OxOf

}

0

Arrays can also be initialized at the time they are defined, such as:
Command input:

define nstring StrList[10] = "empty”

Notes on Defining Arrays

e Unless otherwise specified, all array elements are initialized to 0, or the type specific
equivalent.

e Arrays are global or local in scope under the same conditions as non-composite debug-
variable types.

e Attempting to access an array element using an invalid index value results in an error.

e Arrays can be passed as arguments to procs and also returned as the return value of a
proc. If a data type is specified, it should be followed with brackets, but without a
specified array size.

Array Elements

Each element of an array is a fully functional debug variable of the specified type. The individual
elements of the array behave the same as a regular debug variable in every respect. Array
elements are referenced by a bracketed zero-based index. For an array of n elements, the valid
indexes are 0..n-1.

Arrays as Variables

243

SourcePoint for AMD 1.0

Arrays are limited as to how they may be used as entities. Using an array hame without an
element reference (no bracketed value) refers to the complete array. The only expression
operator is the binary assignment operator. There are no unary operators for arrays. The
assignment operator is restricted in the following ways:

e Arrays can only be assigned the value of other arrays.
e Array-to-array assignment is only valid when the types are identical.
o If the arrays differ in size, then the destination array is resized to that of the source array.

Array Type with Debug Object Commands
Arrays are also limited as to how they are managed with debug object commands as follows:

e The show or remove commands operate on complete arrays but attempting to use these
commands to manage a single array element results in an error.

e The show command shows the type and size of the array but not the array element
values.

e The eval command accepts array elements but causes an error if you attempt to evaluate
an array as an entity.

244

SourcePoint Command Language

Debug Procedures

Debug procedures are the equivalent to functions in the C language. When a debug procedure is
defined, it is saved in memory for later execution. Debug procedures can accept arguments and
return values.

The define command is used to define a debug procedure. The show command lists debug
procedures, and the remove command can be used to remove debug procedures. The proc
command can be used to display a debug procedure definition.

Typically, a command file is loaded that contains one or more debug procedure definitions. The
user can type a procedure name at the command line to execute it, or assign the procedure to a
user-defined toolbar button, and press the button to execute it.

Syntax

define proc [data-type] proc-name (Jargument-name][,---1)
[define argument-type argument-name][--..]

{
commands [...]
[return expr]
}
Where:
define signals creation of a user-defined procedure or procedure
argument.
proc specifies a user-defined procedure.
data-type specifies the data type to be returned.
proc-name specifies the name of a debug procedure.
argument- specifies the name of an argument that is used in the
name procedure. Separates the names of arguments with commas.

argument-type specifies the data type of the argument.
commands any emulator commands (except for include).

return specifies an argument name whose value is returned upon
completion of proc execution.

Discussion:

Use debug procedures (procs) to define custom functions. Create a proc with the proc command.
You can use any text editor to initially create and edit a proc. You can also enter a proc at the
command line. A proc is executed when it is called by name, just as a built-in function is
executed.

You can define debug procedures that accept arguments. If an argument name is specified but
not an the argument type, the caller data type is used as the default. When executing a proc, an
error message is displayed if the proc requires arguments that have not been passed to it.

To define debug procedures that accept a variable number of arguments, use two predefined
local variables, argvector and argcount. The argcount variable tracks the number of arguments

245

SourcePoint for AMD 1.0

supplied when the function is called. The argvector variable (array) stores the actual arguments
passed when a function is called.

Recursive or reentrant debug procedures are supported to the extent of available host memory.
Debug procedures can also call other debug procedures that have been previously defined. Use
the forward option to reference debug objects (including other debug procedures) that have not
yet been defined. To define recursive debug procedures, the forward option must be used.

Debug variables defined inside the proc are local to the proc unless declared as global (see
define). Debug variables inside the proc not declared as global are automatically removed after
the execution of the proc.

Use the return command to return values from a proc. If the return command is not used or
executed, the proc returns a null value. If the return data type does not match the calling data
type, then an explicit data type conversion occurs. If a return datatype is not specified, then the
type comes from the value returned.

If a proc executes an emulation command (such as go or step), the statements after the
emulation command are executed immediately unless followed by the wait command. The wait
command prevents the emulator from executing any more commands until a breakpoint is
reached.

+«» Note: You can use debug procedures and macro files to create a library of frequently used
commands. The emulator displays a syntax error when a proc processes an undefined proc
symbol or variable. Define all program symbols before referencing.

Example 1

To define and then execute a procedure named avg that accepts three parameters and returns
their average:

< Note: Types are not specified for a, b and c, so the caller's data type is assumed.

Command input:
define proc avg(a,b,c)
return ((a + b + ¢) /7 3)

gvg(4, 6, 3)

Result:

AT

Example 2

To use the forward option to refer to undefined debug procedures:

Command input:

246

define proc int8 calc(a,b,c)
define int8 a
define int8 b
define int8 c
{
forward proc int8 min
forward proc Int8 max
if ((@a >0) && (b > 0))
return (max (a,b) * c) \
else iIf ((a<0) && (b <0))
return (min(a,b) * c) \
else return (0)

}

define proc int8 min(x,y)

{
return ((x <y) ? (X): (V)

}
define proc int8 max(x,y)
{
return ((x > y) ? (X): ¥))
}
base = 10t
calc(2,4,6)
Result:
24T
Example 3

SourcePoint Command Language

// Torward references procs
// min and max.

// define min proc

// define max proc.

// execute calc proc.

To use the forward option to create a recursive procedure:

Command input:

define proc ord4 factorial (n)
define ord4 n

forward proc ord4 factorial
if (n ==0)

return 1
else

return (n * factorial(n-1))

}

base = 10t
factorial (4)

Result:

24T

// recursive proc

// fTorward reference

247

SourcePoint for AMD 1.0

Example 4
A return data type is not specified, so the type comes from the value returned.
Command input:

define proc truefalse(b)

if(b) {

return "true"

} else {

return "false
b

Related Topics

define

248

SourcePoint Command Language

Control Variables

Control variables are predefined debug variables that are always defined in the SourcePoint
Command language.

Examples

base // display the base control variable
base=10t // set the display base to decimal
define ord4 svbase=base // save the current display base

Control variable names are case insensitive. Following is a list of control variables, and their
attributes.

Control variable Type Read/Write Options Default
advanced bool rw true, false true
asmmode int2 rw usel6, use32 usel6
base int2 rw bin, dec, oct, & hex

hex

breakall bool rw true, false false
cachememory bool rw true, false false
defaultpath nstring rw n/a n/a
displayflag bool rw true, false false
editor nstring rw editor filepath "notepad.exe"
execution point ($) ptr rw (address) n/a
first jtag device ord4 r n/a n/a
homepath nstring r n/a n/a
isem64t bool r true, false n/a
isrunning bool r true, false n/a
issleeping bool r true, false n/a
issmm bool r true, false n/a
last jtag device ord4 r n/a n/a
macropath nstring r n/a n/a
num_activeprocessors ord4 r n/a n/a
num_devices ord4 r n/a n/a
num_jtag devices ord4 r n/a n/a
num_processors ord4 r n/a n/a
processorcontrol int2 rw 0-2"-1 2"-1
processors int2 r 1l..n n/a
projectpath nstring r n/a n/a
safemode bool rw true, false false

249

SourcePoint for AMD 1.0

’m ’ int2 ’ rw ‘ 1-8 ’4

‘targ power ‘ bool ‘ r ‘true, false ‘ n/a
’targstatus ’ nstring ’ r ‘ n/a ’ n/a
‘@ ‘ nstring ‘ rw ‘varies ‘varies
‘@ ‘ int2 ‘ rw ‘use16, use32 ‘use16
‘m ‘bool ‘ rw ‘true, false ‘false
‘viewpoint (view) ‘int2 ‘ rw ‘pO...pn ‘pO
’m ’ nstring ’ rw ‘ n/a ’ n/a
‘yieldflag ‘bool ‘ rw ‘true, false ‘false

n = number of processors in system

250

SourcePoint Command Language

Command Files

Command files are text files containing multiple commands. Creating command files helps to
automate oft repeated operations. Command files are also referred to as macro files, script files
or include files. There are several ways to execute a command file:

Use the include command in the Command window.

Drag and drop a command file from Windows Explorer to the Command window.

Select File | Macro | Load Macro from the main menu.

Select File | Macro | Configure Macros to attach a command file to a user-defined
toolbar button, and then press the button.

Select File | Macro | Configure Macros to attach a command file to an event. Examples
of events include: go, stop, project load, power cycle, etc. When the event occurs the
macro will automatically execute.

6. Define a breakpoint and specify a command file to execute when the breakpoint hits.

PwonNPE

o

Recently executed macro files are shown in File | Recent Macros. Selecting a command file
from this list will re-execute the file. Breakpoint and event macros are excluded from this list.

When a command file is executing, the name of the file is shown in the SourcePoint Status bar (at
the bottom of the SourcePoint window).

« Note: When SourcePoint finishes executing a command from a file, it immediately begins to
execute the next command. In the case of the go command this may not be desired. To delay
execution of the command file until a breakpoint hits, you must use the wait command.

251

SourcePoint for AMD 1.0

Filenames

Many commands take a filename as an argument. A filename can be specified as a string
constant or by an nstring debug variable. Filenames with spaces must be enclosed in quotation
marks.

Filenames can be entered with absolute paths or with relative paths. SourcePoint takes a relative
path and converts it to an absolute path. There are two methods used:

1. If the command is typed into the Command view, then SourcePoint uses the defaultpath
control variable as the base portion of the filename.

2. If the command is part of a macro file, then SourcePoint uses the macropath control
variable as the base portion of the filename.

252

SourcePoint Command Language

Viewpoint Processor and Processor Overrides
The following applies to multi-processor targets only.
Viewpoint Processor

The viewpoint processor is a application-wide setting that indicates the default processor to use
when none is specified.

There are several ways to display and/or set the viewpoint processor:

1. The command line prompt in the Command view displays the viewpoint (e.g., P0>).

2. The Status Bar at the bottom of the SourcePoint main window shows the current
viewpoint processor.

3. The view control variable can be used to display or set the current viewpoint.

4. The viewpoint view displays and changes the current viewpoint.

There are several windows that display data from a particular processor (Code, Memory,
Registers, etc.). These views all have a viewpoint submenu that allows a particular processor to
be specified. In addition, these views can be configured to track the viewpoint processor, so that
when the viewpoint is changed, the window will automatically switch to displaying data from the
new viewpoint.

Processor Overrides

There are numerous commands that affect a single processor (e.g., read/write a processor
register, read/write processor memory, go, stop, step, etc.). By default, the viewpoint processor
is used.

A processor override can be specified to cause the command to act on a different processor than
the current viewpoint. The override is a prefix of the form [px].

Examples

stop // stop the viewpoint processor.

[pl]stop // stop P1

ord4 0x100 // read 4 bytes of memory at address 0x100 (viewpoint)
[p2]ord4 0x100 // read 4 bytes or memory at address 0x100 (P2)

[pO]pc // read the PC from processor PO

Certain commands can also use the All processor override (e.g., [all]stop stops all processors).
Processor Numbering

Processors are numbered PO, P1, ... Pn depending on the number of processors in the target.
PO is the first processor on the JTAG chain, P1 is the next, etc.

Processor names can be changed to more meaningful names in Options | Target Configuration
| Devices.

253

SourcePoint for AMD 1.0

Symbolic References
References to program addresses and variables

Syntax:

label

procedure

variable
variable[array-expr]
composite-variable._member
composite-variable->member
compound-variable
variable-ref=expr
*ptr-variable

&variable

Where:

label program label

procedure procedure name

variable variable name

composite-variable structure or union name

member structure or union member name

compound-variable a combination of other variable types

ptr-variable pointer variable name

[array-expr] specifies a number or expression identifying an element in an array

variable-ref specifies a variable, an array variable, a composite variable or a
compound-variable

expr specifies a number or expression

Discussion

A program symbol table contains the names of all objects in the program, including the type and
(for some objects) the length of each object. A symbolic reference identifies an object by name.
When you use a symbolic reference in a command or expression, the emulator returns the value
corresponding to the object. The value returned depends on the object type. This section reviews
the kinds of symbolic references and the value represented. It also discusses special operators
used with symbolic references, the address of operator (&) and the indirection operator (*), the
direct-selection operator (.) and the indirect selection operator (->).

Symbol Table

The load command reads information about the program symbols from the object file named in
the command. This information is stored internally in SourcePoint’s symbol table. Symbol
information is available in the Symbols window. Symbols can be used in place of addresses in
the Memory, Code and Breakpoints windows. In addition, symbolic references can be used
from within the Command window.

Names

254

SourcePoint Command Language

All symbolic references involve the names of objects. Symbol hames are case-sensitive. The
legal characters in a name are defined by the language used in generating the object file. If a
name conflicts with a reserved keyword, an emulator control variable, a debug variable, or a
processor register name, then preface the name with the reserved keyword override operator (\).
If a name exists more than once in a program, see Qualified Symbol Names.

Labels and Procedures

When you specify a label name or procedure name, the address associated with that object is
returned. The address of operator (&) is ignored when used with a label or procedure name.

Variables

When you specify a variable name, the value associated with that object is returned.
Command input:

usi // usi is an unsigned short int
Result:

0001H

Command input:

T // T is a float

Result:

1.234500

Command input:

=14_67
T

Result:
14 .670000
Array Variables

An array consists of elements of a given type. To read or write an individual element, specify the
index of the element. The address of operator (&) can be used to return the address of an array
element.

Command input:

ai // ai is an array of integers

Result:

255

SourcePoint for AMD 1.0

ai[0]: 0x00000000
ai[1]: 0x00000001
ai[2]: 0x00000002
ai[3]: 0x00000003
ai[4]: 0x00000004
ai[5]: 0x00000005

Command input:

[4] =0
ai[4]
Result:
0x00000000

Composite Variables

A composite variable contains a collection of different objects called members. In "C" these
include structures and unions. The direct-selection operator (.) is used to access individual
members of a composite variable. If a pointer to a composite variable is specified, then the
indirect-selection operator (->) is used to access members. The address of operator (&) can be
used to return the address of a member of a composite variable.

Command input:

ints // ints is a structure with 3 members: a, b and
c

Result:

a
b
c

[eNeoNe)

Command input:

ints.b=5 // change one member
ints

Result:

a
b
c

[eN¢ Ne)

Compound Variables

The program can contain compound forms such as arrays of arrays, arrays of structures,
structures of arrays, and structures of structures. The rules for references to these compound
forms are a combination of the previously discussed rules for variables.

256

Command input:

IntsArray
Result:
IntsArray[0]:
a: -1

b: -2

c: -3
IntsArray[1]:
a: 1

b: 2

c: 3

Command input:

IntsArray[1]-b = -5

IntsArray[1]

Result:

Pointer Variables

SourcePoint Command Language

// IntsArray is an array of structures

// change one member of one element

Pointer variables contain addresses that reference program variables. When a program variable
is defined as a pointer to another program variable that has a specific data type, use the
indirection operator (*) to obtain the value of the variable.

Command input:
ints

Result:

a
b
c

[eN¢) Ne)

Command input:

&ints

Result:

00000C78

Command input:

// ints is a structure with members a, b, and c

// display address of ints

257

SourcePoint for AMD 1.0

plnts // plnts points to int

Result:

00000C78

Command input:

*plInts // display ints through the pointer plnts

Result:

a
b
c

(e} Ne)

Command input:

plnts->b = 0 // change a member of ints through plnts

Result:

a
b
c

[cNeoNe)

Changing the Value of a Variable

Variables can be assigned new values from within the Command window or the Symbols
window. To change the value of a variable, the variable must be active (be in the current or global
scope). You cannot change the address corresponding to a procedure or label. The value
assigned is converted to the variable type.

258

SourcePoint Command Language

Qualified Symbol Names
Resolve ambiguities on a symbol file reference
Syntax

[\1[::program][:module.]symbol

Where

\ force symbol name lookup before keyword lookup
program specifies the program name containing the symbol
module specifies the module name containing the symbol
symbol specifies any symbolic reference expression
Discussion

When SourcePoint looks up a name it uses the current program scope. If the symbol name is not
found, it continues looking in containing scopes trying to find the symbol. It's possible there may
be more than one instance of a symbol name. This can occur when there is static data with the
same name in two different modules. It can also occur when multiple programs are loaded, and
more than one program has the same symbol name.

The qualified symbol name syntax allows SourcePoint to references the correct symbol.

If you have a symbol name that conflicts with a SourcePoint keyword, preface the name with the
‘' character. This forces SourcePoint to assume the name is a program symbol rather than a
keyword

Example 1

To display a structure ints found in the module csample:
Command Input:

:csample.ints

Result:

a
b
C

WN P

Example 2
To display a structure ints found in the module csample in the program flat:
Command Input:

:flat:csample.ints

259

SourcePoint for AMD 1.0

Result:

OT9O
WN P

Related Topics

Symbolic References

260

SourcePoint Command Language

Commands and Control Variables

aadump
Display the current configuration of SourcePoint and the emulator.
Syntax

[result =] aadump([Ffilename])

Where:

filename specifies a filename. See Filenames for details.

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

Discussion

The aadump function displays the current settings in SourcePoint and the emulator. The output
can optionally be written to a file.

Example 1

To save output to an nstring variable:
Command input:

define nstring foo=aadump()
Example 2

To display output in the Command window:
Command input:

aadump(Q

Example 3

To save output to a file called "dump.txt":
Command input:

aadump("'dump . txt')

261

SourcePoint for AMD 1.0

abort

Abort command file processing.
Syntax

abort

Discussion

The abort command aborts command file processing. If command file execution is nested (nested
include commands), all command files are terminated.

Example
To conditionally abort command file processing:
Command input:

if (getchar()=="x") abort

Related Topics:

include

262

SourcePoint Command Language

abs
Return the absolute value of an expression.
Syntax

[result =] abs(expr)

Where:

result specifies a debug object to which the function return value is assigned. If result is not
specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression that evaluates to an integer or real number.

Discussion

The abs function returns the absolute value of an expression.

< Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example 1
To take the absolute value of a number and display it on the Command line:
Command input:

define int4 myvVar = -23
abs(myVar)

Result:

00000023H

Example 2

To take the absolute value of a real number and assign it to a debug variable:

Command input:

define real8 varl = -1.23
define real8 var2 = abs(varl)
var2

Result:

1.23

263

SourcePoint for AMD 1.0

264

SourcePoint Command Language

acos

Return the arc cosine of an expression.
Syntax

[result =] acos(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.
Discussion

The acos function returns the arc cosine of an expression. The return value is in the range 0 to pi.
If expr is greater than 1 or less than -1, acos returns the value 0 (zero).

« Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example

Command input:

acos(-1)

Result:

3.14159

Related Topics:

asin
atan
atan2
cos
sin
sart

265

SourcePoint for AMD 1.0

advanced
Display or change the advanced mode setting.
Syntax

advanced [= true | false]

Where:

false advanced mode disabled.
true advanced mode enabled.
Discussion

The advanced control variable enables and disables advanced mode. When advanced mode is
enabled all configuration settings in SourcePoint are available. When advanced mode is disabled
only the most commonly used settings are displayed / enabled. This control variable has the
same effect as changing the checkbox in Options | Preferences | General.

Example 1
To display the current advanced mode state:

Command input:

printf("'Advanced mode is %s\n', advanced ? *on" : "off")

Result:

Advanced mode is on

Example 2

To change current advanced mode state:
Command input:

advanced = false

266

SourcePoint Command Language

asin

Return the arc sine of an expression.
Syntax

[result =] asin(expr)
Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.

Discussion

The asin function returns the arc sine of an expression. The return value is in the range -pi/2 to
pi/2. If expr is greater than 1 or less than -1, asin returns the value O (zero).

«» Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
asin(1)

Result:

1.5708

Related Topics:

acos
atan
atan2
cos
sin
tan

267

SourcePoint for AMD 1.0

asm

Display memory as disassembled instructions or assemble instructions in-line.
Syntax

Disassembler:

[[px]] asm addr-spec

Assembler:

[I[px]] asm addr-spec = "'statement™ [, "statement']

[[px]1] asm addr =

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

addr-spec { addr | addr to addr | addr length expr }

statement {instruction | directive }

addr specifies an address for display or assembly.
length specifies the number of instructions to be displayed.
expr specifies a number or an expression that indicates the number of instructions

to be displayed.
instruction is the Intel assembly language instruction.
directive is an assembly language directive or comment.

Discussion

Use the asm command to display memory as disassembled instructions or to in-line assemble
instructions into memory. The output from the asm command is a fixed format. For more control
of disassembler output, the Code window should be used. The in-line assembler is provided to
enable quick patches in active memory. The assembler uses a single pass, and therefore cannot
use labels that have not yet been defined; however, the command language offers the ability to
define labels, and the assembler offers the org directive for out-of-order assembly.

Disassembler

Displays memory as disassembled instructions. When disassembling, the displayed instructions
will be look something like this:

addr codebytes mnemonic [[operand,] operand]

Where:

268

SourcePoint Command Language

addr specifies the address of the start of the instruction.

codebytes is the byte encoding of the instruction.

mnemonic s the instruction mnemonic.

operand is an instruction operand. The number of operands is instruction specific. There
may be zero or more.

Example 1

To display a single instruction at offset Oah in the current code segment:

Command input:

asm Oah

Result:

O0O000000AH 0000 ADD [BX+SI] ,AL

Example 2

To display three instructions beginning at the current execution point:

Command input:

asm cs:ip length 3

Result:

00C3:00000000H 55 PUSH EBP
00C3:00000001H 8BEC MOVE EBP,ESP
00C3:00000003H 81EC04000000 SUB ESP,4H

Example 3

To display two instructions beginning at offset 0 in the code segment with selector 25 referenced
through the LDT with selector 98:

Command input:
asm 098:025:0000H length 2
Result:

0098:0025:00000000H 9A00000000D100 CALL 0OD1:OH
0098:0025:00000007H 66CF IRET

Example 4
To display instructions from linear address 11426 to 11430:
Command input:

269

SourcePoint for AMD 1.0

asm 11426L to 11430L

Result:

00011426L 0000 ADD [BX+SI] ,AL
00011428L 0000 ADD [BX+SI] ,AL
0001142AL 0000 ADD [BX+SI] ,AL
0001142CL 0000 ADD [BX+SI] ,AL
0001142EL 0000 ADD [BX+SI] ,AL

Assembler

The assembler assembles instructions in-line using the current processor modes and settings
and places the instruction code in memory. The current focus processor settings are used by
default, but may be overridden by the command language or assembler directives. The
assembler has been designed to accept all of the assembler forms output by the SourcePoint
disassembler as well as the common forms found in Intel assemblers.

mov | ax, table[bx][di]
mov | ax, table[di][bx]
mov | ax,table[bx+di]
mov | ax,[table+bx+di]
mov | ax,[bx][di]+table

Operand size can be explicitly represented with the PTR operator. The PTR keyword should be
preceded immediately by one of the size keywords.

byte ptr unsigned byte (8-bit)
sbyte ptr signed byte (8-bit)

word ptr unsigned word (16-bit)
sword ptr [signed word (16-bit)
dword ptr |doubleword (32-bit)
sdword ptr [signed doubleword (32-bit)
dfword ptr |farword (48-bit)

dgword ptr |quadword (64-bit)

tbyte ptr ten-byte (80-bits)

For instance:

mov |eax, byte ptr foo
mov |eax, word ptr bar

Jump size can be explicitly represented with one of the distance operators.

270

short
near
nearl6
near32
far
farl6
far32

For instance:

SourcePoint Command Language

jump short, relative

jump near, relative

jump near 16-bit, relative

jump near 32-bit, relative

jump far, absolute

jump far 16-bit, absolute

jump far 32-bit, absolute

jmp [near ptr target
jmp |far32 ptr thing+0x122

Numbers entered into the assembler have the default radix specified by the command language.
The default can be changed via the base command.

Radix overrides are allowed as either prefix or suffix operators. See constants.

The $ symbol may be used as a shorthand key for the current assembly address. The $ can be

used alone or inside an expression (e.g., $+10). This makes it easy to enter loops.

Example

To generate an infinite loop at the current execution point:

Command input:

asm $ = "jmp $"

Numeric expressions can be formed wherever a number or address is required. The following

expression operators are recognized

/ n/m integer divide

* n*m integer multiply

+ +n unary plus

+ n+m integer addition

- -n unary minus

- n-m integer
subtraction

@) (n*m)-p | precedence
grouping

When assembling, the instructions can be entered in one of two forms: batch and interactive.

Batch Assembly

271

SourcePoint for AMD 1.0

The first form allows multiple instructions to be entered on a single line. The instructions must be
enclosed in quotation marks and separated by commas. Multiple lines can be used; ending a line
with a comma indicates line continuation. The instructions are parsed and placed in memory. Any
errors encountered are reported at the end. This form is well suited to inclusion in macros or
procedures. This is also the form to use to fill a region of memory with an instruction sequence.

If a range of memory is given as the addr-spec using either the addr to addr or addr length expr,
then that range of memory is filled with the code bytes generated by the statements given. This is
very useful for rapidly filling memory with single or repeated instruction sequences.

Example 1

To patch 16 NOP instructions starting at address 5000:
Command input:

asm 5000 len 16t = "'nop"

Example 2

To fill a region of memory starting at physical address 4000 with 20 repetitions of a repeating
sequence of instructions:

Command input:
asm 4000 len 20t = "add bx,ax', "add cx,ax"
Interactive Assembly

The second form of in-line assembly provides an interactive interface. The first line gives the asm
command, the starting address, and the equals sign. Each successive line gives a single
instruction. To end assembly, the special command ENDASM can be used. Alternatively, if the
form is being typed interactively by the user, a blank line can be used to terminate assembly.
When used in a macro, debug procedure, or include file, the ENDASM command is required.

+« Note: Interactive assembly is not available within procedures.

Unlike the batch assembly mode, the interactive mode performs memory updates as the
statements are entered. The user can follow the progress by noting that the address prompt will
advance to the next address. If an error is encountered during interactive assembly, a message is
output, the address doesn't advance, and the user is given another chance to enter the
statement.

If a range of memory is given as the addr-spec using either the addr to addr or addr length expr
form, then that range of memory is filled with the code bytes generated by the statements given.
This is useful for rapidly filling memory with single or repeated instruction sequences.

Example
To patch code starting at address 4000:

Command input:

272

SourcePoint Command Language

asm 4000 =
@00004000>mov bx,ax
@00004004>mov bx,ax
@00004008>endasm

Assembler Directives

A number of assembly directives are supported. Most of the directives are meant for interactive
use, but all are available in batch.

Address Mode Directive { usel6 | use32}

Where:

usel6é temporarily overrides the code size indicated by the current processor state. This
allows you to input 16-bit code while the processor is in 32-bit mode.*

use32 temporarily overrides the code size indicated by the current processor state. This
allows you to input 32-bit code while the processor is in 16-bit mode.*

* The command language use control variable may have already overridden the current
processor setting. If so, then the assembler usel6 and use32 directives temporarily override the
mode set via the command language override and not the current processor default.

Address Directive
org addr-expr
Where:

addr- is the numeric and/or symbolic expression that evaluates to an address.
expr

Data Directive

data-op data-value

Where:

data-value { data | count dup ([data,] data) }
data { integer | float | string }

data-op is one the following:

db or byte Defines unsigned bytes of data (8-bit)
Defines unsigned numbers from 0 to 255
Also used for strings

sbyte Defines signed bytes of data (8-bit)
Defines signed numbers from -128 to +127

dw or word |Defines unsigned words of data (16-bit)
Defines unsigned numbers from 0 to 65, 535 (64K)

273

SourcePoint for AMD 1.0

sword Defines signed words of data (16-bit)
Defines signed numbers from -32,768 to +32,767

dd or dword |Defines doublewords of data (32-bit)
Defines unsigned numbers from 0 to 4,294,967,295 (4M)

sdword Define signed doublewords of data (32-bit)
Defines signed numbers from -2,147,483,648 to +2,147,483,647

df or dfword |Defines farword data (48-hit)
Defines pointer variables.

dq or dgword |Defines quadwords of data (64-bit)
Defines 8-byte integers used with floating-point instructions

dt or tbyte Defines ten-byte data (80-bits)
Defines 10-byte integers used with floating-point instructions

ddq or Defines 16-byte data (128-bit)

dgword

reald Defines short real data (32-bits)
1.18 x 10-38 to 3.40 x 1038

real8 Defines long real data (64-hits)
2.23 x10-308 to 1.79 x 10308

reall0 Defines ten-byte real data (80-bits)
3.37 x 10-4932 to 1.18 x 104932

reall6 Defines 16-byte real data (128-bit)

Assembler Directives

Example 1

To enter a string as data at linear address 1000:
Command input:

asm 1000L =
PO@00001000L>byte "This is a test string."
PO@00001016L>

Example 2

To clear 10 bytes to zero starting at linear address 5432:

asm 5432L =
PO@00005432L.>db 10 dup (0)
PO@0000543CL>

Example 3

To enter a few floating pointer numbers starting at physical address 4000:

asm 4000p=
PO@00004000P>real4 12.34
PO@00004004P>real8 5.234

274

SourcePoint Command Language

PO@0000400CP>reall6 543.34
PO@0000401CP>

Example 4

To enter data at one location (linear 1000) and then place instructions to use the data at another
location (linear 2000):

asm 10001=

PO@00001000L>dw 1

PO@00001002L>0rg 2000l
PO@00002000L>mov eax, word ptr [1000]
PO@00002004L>

Related Topics

Memory Access
use

verify

275

SourcePoint for AMD 1.0

asmmode

This control variable sets the default address size used by the asm command.
Syntax

asmmode = {expr | usel6 | use32}

Where:

usel6é indicates 16-bit addressing.
use32 indicates 32-bit addressing.

expr specifies a number or expression that must evaluate to 16 or 32
decimal. The default is determined by the current mode of the
processor.

Discussion

Use the asmmode control variable to set the default address size used by the asm command.
Entering the control variable without selecting an option displays the current setting.

When set to usel6 (the default) the debug tool interprets assembler addresses as 16-bit. When
set to use32, the debug tool interprets assembler addresses as 32-bit.

<+ Note: The asmmode control variable is identical in function to the use control variable.
Example

To set the asm control variable to interpret addresses as 32-bit:

Command input:

asmmode = use32

Related Topics

asm
Expressions
use

276

SourcePoint Command Language

atan

Return the arc tangent of an expression.
Syntax

[result =] atan(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.

Discussion

The atan command returns the arc tangent of an expression. The return value is in the range -pi/2
to pi/2.

«» Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
atan(1)
Result:

0.785398

Related Topics:

acos
asin
atan2
cos
sin
tan

277

SourcePoint for AMD 1.0

atan2
Return the second arc tangent of expr2 divided by exprl.
Syntax

[result =] atan2(exprl, expr2)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

exprl, specifies a number or an expression of type real8 evaluated in radians.

expr2

Discussion

The atan2 command returns the second arc tangent of expr2 divided by exprl. The return value
is in the range -pi to pi.

+ Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
atan2(1,2)
Result:

0.463648

Related Topics:

acos
asin
atan
cos
sin
tan

278

SourcePoint Command Language

autoconfigure

Automatically scan and configure target devices.
Syntax

[result =] autoconfigure([scan])

Where:

result specifies a boolean variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

scan indicates whether the emulator should scan the JTAG chain.

Discussion

The autoconfigure command is used to automatically configure the target. It verifies the integrity
of the JTAG chain, scans for JTAG devices and configures them. A return value of true indicates
the command was successful.

Example
Command Input:

autoconfigure(true) // configure target (force a JTAG chain scan)

Related topics

deviceconfigure
devicescan

jtagconfigure
jtagscan

279

SourcePoint for AMD 1.0

base

Display or change the default number base.

Syntax

base [= {expr | bin | oct | dec | hex}]
Where:

expr specifies a number or an expression that evaluates to one of the number base prefixes
{2, 8, 10 or 16}. If any other value is entered, an error message is displayed. The default
is 16 for hexadecimal.

bin sets the default number base to binary.

oct sets the default number base to octal.

dec sets the default number base to decimal.

hex sets the default number base to hexadecimal.
Discussion

Use the base control variable to display or change the default number base in the command
interpreter. All input is interpreted according to the current base except in the presence of a base
suffix or prefix. All numeric output displays in the current base except for some special cases
(e.g., real numbers always display in decimal). If you enter the base control variable without
options, the current value displays.

You can also use base as an expression within other commands and as a variable (e.g., variable
= base). The base control variable is type ord2.

The override prefixes and suffixes are shown in the following table.

Prefix Base Suffix

Oy Binary y
0o Octal g,0
On Decimal n,t

Ox |Hexadecimal| h

+ Note: Use a base suffix when setting the base to ensure correct results. For example, base =
10 will not change the base to decimal if the current base is hexadecimal. Use base = 10t
instead.

Example 1
To display the current number base:
Command input:

base

280

Result:

0010H

Example 2

To set the current number base to decimal:

Command input:

base = 10t
base
Result:

10T
Example 3

To set the current number base to hexadecimal:

Command input:

base = hex
base

Result:
0010H

Example 4

To save and then restore the current display base:

Command input:

define ord2 svBase = base
base = oct
base

Result:
0000100
Command input:

base = svBase
base

Result:

SourcePoint Command Language

281

SourcePoint for AMD 1.0

0010H

Related Topics:

Expressions

282

SourcePoint Command Language

bell (beep)

Cause an alert to sound.
Syntax

{bell | beep}
Discussion

The bell command can be used in scripts to signal that an event has occurred. Beep is a
synonym for bell.

Example

while (ord4 0x10000 != 1000)

{
go
wailt

}
bell

283

SourcePoint for AMD 1.0

bits
Access the contents of a bit-field within a register, MSR or debug variable.
Syntax

[[px]] bits(component, bit-offset, bit-size) [= expr]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override

component is a valid register name or debug variable.

bit-offset is a valid expression yielding the bit index where the bit field begins. This value
must be less than the size of the component specified.

bit-size is a valid expression yielding the size, in bits, of the bit field. This value must be
less than the size of the component specified minus the bit offset.

expr is a valid numeric expression which is to be assigned to the bit field. This
expression, if it results in a value greater than possible in the bit field, will be
truncated to the bit-size during assignment.

Discussion

Use the bits function to access the contents of a bit-field within a register, MSR or debug variable.
Use bits and #define together to define virtual registers or register components.

Example 1

To access bit 5 of register EAX:
Command input:

bits(eax, 5, 1)

Result:

1

Example 2

To clear bit 5 of register EAX:
Command input:

bits(eax, 5, 1) =0

Example 3

284

SourcePoint Command Language

To define a debug alias for bit 5 within the EAX register:

Command input:

#define magic_bit bits(eax, 5, 1)

magic_bit /*output which follows assumes bit
was clear*/

Result:

0

Command input:

magic_bit = OxFfFff /*value truncated to bit 0*/
magic_bit

Result:

1

Example 4

To define a virtual register mapped to the upper 16 bits of EAX:
Command input:

#define myReg bits(eax, 16t, 16t)

eax = 0

myReg = 1234
eax

Result:

12340000H

Example 5

To modify the upper 4 bits of a debug variable:

Command input:

define ord4 myData = O
bits(myData, 28t, 4) = 4
myData

Result:

40000000H

285

SourcePoint for AMD 1.0

break

Exit from a control block.
Syntax

break

Discussion

Use the break command to cause termination of the nearest enclosing while, do while, for, or
switch command.

Example
To use a break construct to terminate the while loop when the variable n equals 0:

Command input:

define int2 n = 3t // define integer variable

while (1) // begin infinite loop

{
n-=1 // decrement variable n
printf('n=%d\n"", n) // display value of n
if (n == 0) // break when n is zero

break

}

Result:

n=2

n=1

n=0

Related Topics:

do while
for
switch
while

286

SourcePoint Command Language

breakall

Display or change whether all target processors start and stop together in a multiprocessor
system.

Syntax

breakall [= bool-cond]

Where:

bool-cond specifies a number of an expression that must evaluate to true (non-zero) or
false (zero).

Discussion

Use the breakall control variable to control whether all target processors in a multiprocessor
system start and stop together. The default setting for breakall is true. Entering the control
variable without an option displays the current setting.

If breakall is set to false, each processor in a multiprocessor system can be controlled
independently of the others. A viewpoint override or the current viewpoint in which the go
command is used determines which processor is run.

If breakall is true, all processors in a multiprocessor system start when a go operation is
executed.

Example 1

Command input:

breakall // display the current setting
Result:

true

Example 2

Command input:

breakal l=false
go // only viewpoint processor IS run

Example 3

Command input:

287

SourcePoint for AMD 1.0

breakal lI=False

[pO]go // PO processor override used to run only PO
processor

Related Topics:

[¢[¢)

288

SourcePoint Command Language

cachememory

Display or change how command line memory accesses use cached memory.
Syntax

cachememory [= bool-cond]

Where:

bool-cond specifies a number or an expression that must evaluate to true (non-zero) or
false (zero).

Discussion

Use the cachememory control variable to control how SourcePoint handles command line
memory accesses. The default setting for cachememory is false. Entering the control variable
without an option displays the current setting.

When SourcePoint reads target memory, it normally reads blocks of 128 bytes at a time. This
minimizes the time it takes for refreshing Code and Memory windows. The data read is cached in
SourcePoint. Whenever a go or step operation is performed, this cache is cleared.

The Command window is an exception, however. Whenever a command is executed that results
in a memory access (asm, ord1, ord2, ord4, etc.), SourcePoint always reads from target memory,
even if it already has the data in its cache. It also reads only the amount of data requested (e.g.,
an ord4 command reads exactly four bytes). This is so that accesses to memory-mapped I/O
work properly.

There are times, however, primarily when executing command files that perform numerous
memory accesses, where it is preferable to use the block-read, cached-memaory approach. That
is the purpose of the cachememory control variable. When false, the Command window reads
and writes only the number of bytes specified and does not cache data read. When true, the
Command window reads memory in blocks and caches the data read. Command files that
perform a number of memory operations run much faster when cachememory is set to true.

Example 1

Command input:

cachememory // display the current setting
Result:

false

Example 2

Command input:

289

SourcePoint for AMD 1.0
cachememory = true
ord4 100

ord4 10
ord4 108

Example 3
Command input:

cachememory = false
ord4 100

ord4 10
ord4 108

290

// enable block memory reads and caching
// cachememory is true, only one target
// memory read at 100-17F will occur

// disable block memory reads and caching
// cachememory is false, three separate
// target memory reads will occur

SourcePoint Command Language

cause
Display the reason for the last target stop.
Syntax

[[px]] cause

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain.
The processor can be specified as px (where x is the processor ID), or
an alias you have defined for a given processor ID. ALL cannot be
used as a viewpoint override.

Discussion

The cause control variable returns a string indicating the reason for the last target stop.
SourcePoint usually can determine which code breakpoint caused execution to stop. This is not
always possible with data breakpoints or ETM breakpoints.

The information is also displayed automatically in the SourcePoint Status Bar immediately after
the stop (although it will be overwritten by later status information). Being able to determine the
cause of a target stop (which breakpoint hit), enables the use of breakpoint macros (e.g., a macro
file can be executed whenever a specific breakpoint occurs).

Possible return values include:

"Unknown reason"

"User stop”

"Step completed”

"Target reset"

"Processor breakpoint @ 00010004"
"Software breakpoint @ 00010008"

Example 1

To display the reason for the last target stop:
Command input:

cause

Result:

Software breakpoint @ 00010008
Example 2

To assign the cause string to a debug variable:

291

SourcePoint for AMD 1.0

Command input:

define nstring strReason=cause
strReason

Result:

Software breakpoint @ 00001020

292

SourcePoint Command Language

Character Functions
Built-in functions for character classification and transformation.
Syntax

[result =] function(char-expr)

Where:

result specifies the debug object to which the function return value is assigned. If
result is not specified, or the return value is not used by another command,
the return value is displayed on the next line of the screen.

function specifies the name of the character function (see the following table).

char-expr specifies a quoted character or an expression specifying a character.

Discussion

There are two classes of character functions: character classification and character
transformation.

The character classification functions return a boolean data type with the value non-zero (true) or
zero (false). These functions take a single argument (char-expr) that must be compatible with the
int4 data type.

The character transformation functions return an int4 containing an ASCIl-coded value. These
functions take a single argument that must be compatible with the int4 data type.

Character Functions

Function Discussion

isalpha Returns true when char-expr is alphabetic. The hexadecimal values for
these characters are 41 through 5a (A . .. Z) and 61 through 7a (a z).

isupper Returns true when char-expr is an uppercase alphabetic character. The
hexadecimal values for these characters are 41 through 5a (A . . . Z).

islower Returns true when char-expr is a lowercase alphabetic character. The
hexadecimal values for these characters are 61 through 7a (a. . . z).

isdigit Returns true when char-expr is a numeric digit. The hexadecimal values for
these characters are 30 through 39 (0. .. 9).

isxdigit Returns true when char-expr is a hexadecimal digit. The hexadecimal

values for these characters are 30 through 39 (0. .. 9), 41 through 46(A . . .
F), and 61 through 66 (a. .. f).

isalnum Returns true when char-expr is alphanumeric. The hexadecimal values for
these characters are 41 through 5a (A . .. Z), 61 through 7a (a. . . z), and
30 through 39 (0. .. 9).

isspace Returns true when char-expr is a blank. This blank can be a single space
(hexadecimal value 20), carriage return, line feed (new line or "\n"), tab ("\t"),
vertical tab, or form feed (new page or "\p").

293

SourcePoint for AMD 1.0

ispunct

isprint

iscntrl

isascii

toupper

tolower

toint

toascii

Examples

Returns true when char-expr is a punctuation mark (neither a control nor an
alphanumeric character). The hexadecimal values for these characters are
21 through 2f, 3a through 40, 5b through 60, and 7b through 7e.

Returns true when char-expr is a printable character. The hexadecimal
values for these characters are 20 through 7e.

Returns true when char-expr is a delete character (hexadecimal 7f) or any
control character (hexadecimal 0 through 1f).

Returns true when char-expr is a coded value (hexadecimal 0 through 7f).

Returns the uppercase value of char-expr. If char-expr does not contain a
lowercase letter, the result is the original char-expr, unchanged. The char-
expr itself is not changed.

Returns the lowercase value of char-expr. If char-expr does not contain a
uppercase letter, the result is the original char-expr, unchanged. The char-
expr itself is not changed.

Returns the "weight" of a hexadecimal digit: O - 9 for the characters "0"
through "9", respectively, and 10 - 15 for the letters "a" through "f* (or "A"
through "F"), respectively.

Clears all bits of char-expr that are not part of a standard ASCII character
and returns this value. The char-expr itself is not changed.

Character classification functions:

Command input:

define char cvar = "a
ivar

define int4
ivar = cvar
ivar

Result:
00000061H
Command input:
isalpha(cvar)
Result:

TRUE

Command input:
isalpha(ivar)
Result:

TRUE

294

SourcePoint Command Language

Command input:

define int4 answer = isalpha(cvar)
answer

Result:
00000001H
Command input:
cvar

Result:

a
Command input:
isupper(cvar)
Result:

FALSE
Command input:
islower(cvar)
Result:

TRUE

Command input:

cvar = "a
isupper(cvar)
Result:

TRUE

Command input:
isdigit(cvar)
Result:
FALSE
Command input:

295

SourcePoint for AMD 1.0

isxdigit(cvar)
Result:

TRUE

Command input:
isalnum(cvar)
Result:

TRUE

Command input:
isspace(cvar)
Result:

FALSE

Command input:

ivar = 20H
isspace(ivar)
Result:

TRUE

Command input:

cvar = "I*"
ispunct(cvar)

Result:

TRUE

Command input:
isprint(ivar)
Result:

TRUE

Command input:

296

cvar = 5
cvar

Result:

"\005"
Command input:
isprint(cvar)
Result:

FALSE
Command input:
iscntrl(cvar)
Result:

TRUE

Command input:
isascii(cvar)
Result:

TRUE

Character transformation functions:

Command input:

define int4 ivar = 5
define char cvar
cvar = toascii(ivar)
cvar

Result:
"\005"

Command input:

cvar = toascii(61H)
cvar

Result:

SourcePoint Command Language

297

SourcePoint for AMD 1.0

a
Command input:
toascii(cvar)
Result:
00000061H
Command input:
toupper(cvar)
Result:
00000041H
Command input:
cvar

Result:

a
Command input:

cvar = toupper(cvar)
cvar

Result:
A"

Command input:

ivar = 41H

cvar = tolower(ivar)
cvar

Result:

"ar

Related Topics:
Expressions

298

SourcePoint Command Language

299

SourcePoint for AMD 1.0

clock

Return the elapsed time (in ms) since SourcePoint started.
Syntax

[result =] clock()

Where:

result specifies an ord4 variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

The clock function returns the elapsed time (in ms) since SourcePoint was started. The return
value can be assigned to an ord4 variable, or displayed on the command line.

Example 1

Command Input:

clock(Q)

Result:

OO0O0O0F124H

Example 2

To measure the elapsed time of an operation:
Command Input:

define ord4 startTime = clock()
(some operations...)
printf (“elapsed time
1000.0)

%.3F seconds\n", (clock() - startTime) /

Result:

elapsed time = 3.2 seconds

Related Topics:

ctime
time

300

SourcePoint Command Language

continue

Transfer control from within a control block to the end of the block.
Syntax

continue

Discussion

Use the continue command to cause a jump to the end of the immediately enclosing iteration
statement (while, do while or for).

Example

This example shows a continue command within a for loop. The variable x contains the sum of
numbers between 0 and 12 whose modulus equals 2.

Command input:

define int2 a

define int2 x = 0

for (a = 0; a<=12; a += 1)

if (@ % 3) 1= 2)

continue
X =x+1
b
X
Result:
0014H

Related Topics:

break
do while
for
while

301

SourcePoint for AMD 1.0

CcOoSs

Return the cosine of a radian expression.
Syntax

[result =] cos(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.

Discussion
The cos command returns the cosine of expr.

«» Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
cos(0)

Result:

1.000

Related Topics:

acos
asin
atan
atan2
sin
tan

302

SourcePoint Command Language

cpubreak, cpuremove, cpudisable, cpuenable
Set, clear, display, enable and disable processor breakpoints.
Syntax

cpubreak
cpubreak = [sts,] type [, name] [, processor-spec]

cpuremove [all]
cpuremove = {type | proc} [,--- 1

cpuenable = {type | name | proc} [,--- 1

cpudisable Jall]
cpudisable = {type | proc} [,--- 1

Where:

sts { e[nabled] | d[isabled] }

proc plrocessor] ={PO|P1|P2]...}

type {smm entry | smm exit | power cycle | machine check}
name n[ame] = breakpoint name

Discussion

The cpubreak command sets and displays processor breaks. Cpubreak with no arguments
displays a list of the current processor breakpoints.

The cpuremove command removes any or all of the processor breaks. Arguments to this
command qualify which processor breakpoints are to be removed. For instance, cpuremove =
p=PO0 removes all processor breakpoints associated with processor 0. Cpuremove with no
arguments removes all processor breakpoints.

The cpuenable command selectively enables processor breakpoints. Arguments to this command
qualify which processor breakpoints are to be affected. For instance, cpuenable = p=P1 enables
only processor breakpoints associated with processor 1.

The cpudisable command selectively disables processor breakpoints. Arguments to this
command qualify which processor breakpoints are to be affected. For instance, cpudisable =
smm entry, disables only processor breakpoints with the type set to smm entry. If no arguments
are specified, all processor breakpoints are disabled.

Processor breakpoints can also be set, displayed, etc. from the Breakpoints Window.

Examples
To display all processor breaks:

cpubreak

303

SourcePoint for AMD 1.0

To break when a processor enters smm:
cpubreak = smm entry

To break when processor 1 exits smm:
cpubreak = smm exit, p=P1

To remove all processor breaks:
cpuremove

To remove the smm entry catch break:
cpuremove = smm entry

To remove all breaks associated with processor 1:
cpuremove = p=P1

To disable all processor breaks:

cpudisable

Related Topics:

Breakpoints View
dbgbreak commands
softbreak commands

304

SourcePoint Command Language

cpuid_eax
Execute the CPUID assembly instruction and return the value in EAX.
Syntax:

[result =] [[px]1] cpuid_eax [(eax[,ecx])]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

eax is the value to be stored in EAX before the CPUID instruction is executed. If no
value is specified, 1 is used by default.

ecx is the value to be stored in ECX before the CPUID instruction is executed. If no
value is specified, 0 is used by default.

result is an ord4 variable to receive the value of EAX.

Discussion

Execute the CPUID instruction with the specified values of EAX and ECX. The return value
(EAX) can be assigned to a debug variable, or displayed on the command line.

Example 1

To run cpuid_eax on the viewpoint processor with EAX=1 and display the value obtained in EAX:
Command input:

cpuid_eax

Result:

00020652H

Example 2

To run cpuid_eax on the viewpoint processor with EAX=10 and display the value obtained in
EAX:

Command input:
cpuid_eax(10)
Result:

00000001H

305

SourcePoint for AMD 1.0

Example 3

To run cpuid_eax on the viewpoint processor with EAX=10 and ECX=5 and store the result
obtained in EAX to a variable:

Command input:

define ord4 o4dcpuideax = cpuid_eax(10,5)
O4cpuideax

Result:

00000000

Related Topics

cpuid_ebx
cpuid_ecx
cpuid_edx

306

SourcePoint Command Language

cpuid_ebx
Execute the CPUID assembly instruction and return the value in EBX.
Syntax:

[result =] [[px]1]1 cpuid_ebx [(eax[,ecx])]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

eax is the value to be stored in EAX before the CPUID instruction is executed. If no
value is specified, 1 is used by default.

ecx is the value to be stored in ECX before the CPUID instruction is executed. If no
value is specified, 0 is used by default.

result is an ord4 variable to receive the value of EBX.

Discussion

Execute the CPUID instruction with the specified values of EAX and ECX. The return value
(EBX) can be assigned to a debug variable, or displayed on the command line.

Example 1

To run cpuid_ebx on the viewpoint processor with EAX=1 and display the value obtained in EBX:
Command input:

cpuid_ebx

Result:

04100800H

Example 2

To run cpuid_ebx on the viewpoint processor with EAX=10 and display the value obtained in
EBX:

Command input:
cpuid_ebx(10)
Result:
00000002H

307

SourcePoint for AMD 1.0

Example 3

To run cpuid_ebx on the viewpoint processor with EAX=10 and ECX=5 and store the result
obtained in EBX to a variable:

Command input:

define ord4 odcpuidebx = cpuid_ebx(10,5)
O4cpuidebx

Result:

00000000

Related Topics

cpuid_eax
cpuid_ecx
cpuid_edx

308

SourcePoint Command Language

cpuid_ecx
Execute the CPUID assembly instruction and return the value in ECX.
Syntax:

[result =] [[px]1]1 cpuid_ecx [(eax[,ecx])]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

eax is the value to be stored in EAX before the CPUID instruction is executed. If no
value is specified, 1 is used by default.

ecx is the value to be stored in ECX before the CPUID instruction is executed. If no
value is specified, 0 is used by default.

result is an ord4 variable to receive the value of ECX.

Discussion

Execute the CPUID instruction with the specified values of EAX and ECX. The return value
(ECX) can be assigned to a debug variable, or displayed on the command line.

Example 1

To run cpuid_ecx on the viewpoint processor with EAX=1 and display the value obtained in ECX:
Command input:

cpuid_ecx

Result:

0298E3FFH

Example 2

To run cpuid_ecx on the viewpoint processor with EAX=10 and display the value obtained in
ECX:

Command input:
cpuid_ecx(10)
Result:

00000100H

309

SourcePoint for AMD 1.0

Example 3

To run cpuid_ecx on the viewpoint processor with EAX=10 and ECX=5 and store the result
obtained in ECX to a variable:

Command input:

define ord4 odcpuidecx = cpuid_ecx(10,5)
O4cpuidecx

Result:

00000005H

Related Topics

cpuid_eax
cpuid_ebx
cpuid_edx

310

SourcePoint Command Language

cpuid_edx
Execute the CPUID assembly instruction and return the value in EDX.

Syntax:

[result =] [[px]1] cpuid_edx [(eax[,ecx])]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

eax is the value to be stored in EAX before the CPUID instruction is executed. If no
value is specified, 1 is used by default.

ecx is the value to be stored in ECX before the CPUID instruction is executed. If no
value is specified, 0 is used by default.

result is an ord4 variable to receive the value of EDX.

Discussion

Execute the CPUID instruction with the specified values of EAX and ECX. The return value
(EDX) can be assigned to a debug variable, or displayed on the command line.

Example 1

To run cpuid_edx on the viewpoint processor with EAX=1 and display the value obtained in EDX:
Command input:

cpuid_edx

Result:

BFEBFBFFH

Example 2

To run cpuid_edx on the viewpoint processor with EAX=10 and display the value obtained in
EDX:

Command input:
cpuid_edx(10)
Result:

00000004H

311

SourcePoint for AMD 1.0

Example 3

To run cpuid_edx on the viewpoint processor with EAX=10 and ECX=5 and store the result
obtained in EDX to a variable:

Command input:

define ord4 odcpuidedx = cpuid_edx(10,5)
O4cpuidedx

Result:

00000004H

Related Topics

cpuid_eax
cpuid_ebx
cpuid_ecx

312

SourcePoint Command Language

createprocess

createprocess(command, waitforcompletion)

Where:

command is a command line string to create the process.

waitforcompletion is a boolean indicating whether SourcePoint should wait for the
process to complete.

Discussion

The createprocess function call can be used to start another program. The command string
includes the program name, along with any arguments to pass to the program.

Examples
Command input:

createprocess('notepad c:\\temp\\foo.txt", false) // start notepad,
do not wait for it to be closed

Command input:

createProcess('c:\\temp\\unlock.bat", true) // run a batch
file, wait for it to complete

Related Topics:

shell

313

SourcePoint for AMD 1.0

ctime
Convert the output of the time command into a null-terminated ASCII string.
Syntax

[result =] ctime(expr)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression.

Discussion

The ctime function converts the output of the time command into a null-terminated ASCII string.
The input expression is a value (such as one returned by the time function). The output string
has the form "day month date hh:mm:ss year.

Example
Command input:

define ord4 now = time()
ctime(now) // answer will be current day and time

Result:

Wed Jun 07 16:26:07 2008

Related Topics:

strdate
strtime
time

314

SourcePoint Command Language

cwd

Set or display the current working directory.
Syntax

cwd [pathname]

Discussion

The current working directory is the default path that SourcePoint uses to locate files. This
applies to all commands that accept a filename as an input. The cwd command without an
argument displays the current working directory.

+ Note: The cwd command is deprecated. Use the defaultpath control variable instead.
Example 1

To display the current working directory:

Command input:

cwd

Result:

c:\Program Files\Arium\SourcePoint

Example 2

To set the current working directory:

Command input:

cwd c:\temp
cwd

Result:

c:\temp

Example 3

To change to a new cwd relative to the existing cwd:
Command input:

cwd samples
cwd

315

SourcePoint for AMD 1.0

Result:

c:\Program Files\Arium\SourcePoint\Samples

Related Topics:

defaultpath
homepath

macropath
projectpath

316

SourcePoint Command Language

dbgbreak, dbgremove, dbgdisable, dbgenable
Set, clear, display, enable, and disable debug register breakpoints.

Syntax

dbgbreak
dbgbreak = [sts,]{type}, location[,name][,proc][,translate]

dbgremove [all]
dbgremove = {type | name | location | size | proc} [,---]

dbgenable = {type | name | location | size | proc} [,---1

dbgdisable [all]
dbgdisable = {type | name | location | size | proc} [,---]

Where:

sts { e[nabled] | d[isabled] }

type { execute | data access | data write | 1/0O access } [in smm]
name n[ame] = breakpoint name

proc p[rocessor] ={PO |P1|P2|...| All}

location [[ocation] = address

size slize] = { b[yte] | h[alf-word] | w[ord] }

translate x ={once | every go}
Discussion

The dbgbreak command sets and displays debug register (hardware) breakpoints. Dbgbreak with
no arguments displays a list of the current debug register breaks.

The dbgremove command removes any or all of the debug register breaks. Arguments to this
command qualify which debug register breaks are to be removed. For instance, dbgremove=data
write, s=byte, removes all debug register breaks with the type set to data write and size set to
byte. Dbgremove with no arguments removes all debug register breaks.

The dbgenable command selectively enables debug register breaks. Arguments to this command
qualify which debug register breaks are to be affected. For instance, dbgenable=execute enables
only debug register breaks with the type set to execute.

The dbgdisable command selectively disables debug register breaks. Arguments to this
command qualify which debug register breaks are to be affected. For instance,
dbgdisable=execute disables only debug register breaks with the type set to execute. If no
arguments are specified, all debug register breaks are disabled.

Debug register breaks can also be set, displayed, etc. from the Breakpoints window.
Examples
To set a debug register break on a word access at location 1234:

317

SourcePoint for AMD 1.0

dbgbreak = data access, location=1234, size=word
To set a debug register break on a word read at address 1000p:
dbgbreak = data read, location=1000p, size=word
To remove all debug register breaks:

dbgremove

To remove all debug register breaks with type set to data write and size set to bytes:
dbgremove = data write, size=byte

To disable all debug register breaks:

dbgdisable

To disable all debug register breaks with type set to execute:
dbgdisable = execute

To enable all debug register breaks with location set to 1234:

dbgenable = 1=1234

Related Topics:

Breakpoints View
cpubreak commands
softbreak commands

318

SourcePoint Command Language

defaultpath
Set or display the current working directory.
Syntax

[result =] defaultpath [= newpath]

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

newpath is an nstring variable or string constant specifying a new working directory.

Discussion

The defaultpath control variable displays the default path that SourcePoint uses to locate files.
This applies to all commands that accept a filename as an input.

Example 1

To display the current working directory:
Command input:

defaultpath

Result:

c:\Program Files\Arium\SourcePoint
Example 2

To set the current working directory:
Command input:

defaultpath = "c:\\temp"
defaultpath

Result:

c:\temp

Example 3

To assign the current working directory to a debug variable:

Command input:

319

SourcePoint for AMD 1.0

define nstring strpath = defaultpath
strpath

Result:

c:\Program Files\Arium\SourcePoint

Related Topics:

cwd
homepath
macropath
projectpath

320

SourcePoint Command Language

#define

Create a debug alias.

Syntax

#define alias-name commands

Where:

alias-name is an identifier that serves as an alias for the given command string.
commands is a command or commands that are referenced by the alias name.

Discussion

Use the #define command to define a debug alias. A debug alias is a new string or alias for a
command line string that can be one or more commands. SourcePoint reserved words cannot be
used as aliases.

The debug alias can be defined inside or outside a control construct, a compound statement, or a
debug procedure and is always global.

The show command displays a list of currently defined aliases. The remove and #undef
commands can be used to remove alias definitions.

Example
To define an alias for an often-used load command:
Command input:

#define Id load c:\src\targdev
show alias

Result:

id alias "load c:\src\targdev"

Related Topics:

321

SourcePoint for AMD 1.0

define
Create a debug object.
Syntax

define debug-proc
define [global] data-type name [=expr]
define [global] data-type name [array-size]

Where:

debug-proc specifies a debug procedure definition.

name specifies a unique, user-defined name for the object being defined.

global indicates that a debug variable is globally recognized. Data types are
global unless defined inside a debug procedure.

data-type specifies an emulator data type.

expr is an expression that assigns an initial value to the object.

array-size is an expression indicating the size of a debug variable array.

Discussion

Use the define command to define a debug variable or a debug procedure. A debug object name
cannot be the same as a reserved keyword in the command language. If the name specified is
the same as a previously defined debug object, then that object is overwritten.

An initial value may be assigned to a debug variable. If no initial value is specified, the variable is
assigned a default value, depending on its data type:

Type Default Value
ordn, intn 0
nstring
bool false
ptr invalid

Arrays of debug variables can also be created. For more information see Debug Variables. For
more information on defining a debug procedure, see Debug Procedures.

Example 1
To define a debug variable:
Command input:

define Int2 max = 400
max

Result:

322

SourcePoint Command Language

0400H
Example 2

The following example shows how to define a procedure named "power." This proc returns the
result of a value and its exponent.

Command input:

define proc power(argl, arg2)
define intl argl
define intl arg2
{
define intl index
define ord4 result =1
for (index = 1 ; index <= arg2 ; index += 1)
result = result * argl
return result

}
power(2,4) // execute the proc

Result:

16T

Related Topics:

Debug Procedures
Debug Variables

Expressions

323

SourcePoint for AMD 1.0

definemacro

Assign macros (include files) to user-definable buttons on the Macro toolbar.
Syntax

definemacro(id, filename[, echo, text])

Where:

id is an integer (0-19) indicating the toolbar button to assign. If a button already has
an assigned macro, then the previous definition is overwritten.

filename specifies a filename. See Filenames for details.

echo is a boolean indicating whether the contents of the command file should be
echoed to the Command window. If this argument is omitted, then the contents
are not echoed.

text is a string indicating the text to assign to the toolbar button. The text is displayed
only if Icons and text is selected (on the Macro toolbar context menu). This
argument is optional.

Discussion

The defineMacro function is used to assign macros (include files) to user-definable buttons on the
Macro toolbar. (The Macro toolbar is enabled by selecting View|Toolbars|Macro). Macro files
greatly speed up repetitive debug tasks. Assigning macros to toolbar buttons makes them even
easier to use. A simple setup macro can be used to assign multiple toolbar buttons.

The Macro toolbar displays up to 20 user-definable buttons. By default, four are displayed. You
can right-click on the macro toolbar, and select Customize to change the number of buttons
displayed. If you assign a macro to a button not already displayed, then it is displayed
automatically.

Example 1

To assign the macro "c:\test\qa.mac" to the first button in the toolbar:

Command input:

defineMacro(0, "c:\\test\\ga.mac', true, "Run QA tests"')

«» Note: The contents of this macro are echoed to the Command window when the button is
clicked. The button is labeled Run QA tests.

Example 2

To assign the macro "loop.txt" (found in the current working directory) to the ninth button in the
macro toolbar (the index is 0 based):

Command input:

324

SourcePoint Command Language

defineMacro(8, "loop.txt'™)

+» Note: The contents of this macro are not echoed to the Command window. The button does
not have a text label (icon only).

Example 3
To clear the macro definition of the first toolbar button:
Command input:

defineMacro(0, ")

Related Topics:

include

325

SourcePoint for AMD 1.0

deviceconfigure
Synchronize the device configurations between SourcePoint and the emulator.
Syntax

[result =] deviceconfigure([force])

Where:

result specifies a boolean variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

force indicates whether the Device configuration table should be forced into the emulator
when the existing emulator configuration differs.

Discussion

The deviceconfigure function synchronizes the device configurations between SourcePoint and
the emulator. If the "force” flag is true, SourcePoint’'s device configuration replaces any existing
configuration in the emulator. If the "force” flag is false the configurations are verified for
consistency. In the event of a mismatch, the configurations are presented to the user to select
which configuration is to be used. This operation is valid when the emulatorstate control variable
is setto 1 or 2. If it succeeds, the emulatorstate control variable transitions to state 2.

Related Topics

autoconfigure
devicescan

emulatorstate
Target Configuration
verifydeviceconfiguration

326

SourcePoint Command Language

devicescan

Direct the emulator to perform device discovery on the target.
Syntax

[result =] devicescan()

Where:

result specifies a boolean variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

The devicescan function directs the emulator to perform device discovery on the target. While the
implementation varies on different target types, the results of this operation are used to populate
the SourcePoint Device configuration table, which is the source for the deviceconfigure function.

This command is acceptable only when the emulatorstate control variable is set to 1, following a
successful jtagconfigure or uncoreconfigure operation.

The devicelist command can be used to display a list of discovered devices.
Example

Command Input:

devicescan()

Result:

TRUE // command succeeded

Related Topics

autoconfigure

deviceconfigure
emulatorstate

Target Configuration

327

SourcePoint for AMD 1.0

disconnect

Disconnect the emulator from the target.
Syntax

disconnect

Discussion

The disconnect command disconnects the emulator from the target. The emulatorstate control
variable transitions to state 0 (disconnected). This command has the same effect as pressing the
Disconnect button in the Processor toolbar.

A common use of the disconnect command is when changing to a different target. This forces
the emulator to discard its current target configuration and either scan the target for a new one or
have SourcePoint download a new configuration.

Example
Command Input:

disconnect // disconnect from target
reconnect // reconnect to target

Related Topics

emulatorstate
reconnect
Target Configuration

328

SourcePoint Command Language

displayflag

Determine if the value resulting from an assignment operation is to be displayed.
Syntax

displayflag [= bool-cond]

Where:

bool-cond specifies a number or an expression that must evaluate to true (non-zero) or
false (zero).

Discussion

Use the displayflag control variable to control whether or not the value resulting after an
assignment operation is displayed. If bool-cond is true, the results of assignment operations are
displayed. The default value for displayflag is false. If you enter the displayflag control variable by
itself, the current value is displayed.

Example

The following example demonstrates the effect of the displayflag control variable.
Command input:

displayflag = true

Result:

TRUE

Command input:

define byte a
a=3

Result:

O3H *.*

Command input:

displayflag = false // set to false, the result is not

displayed
a=>5

329

SourcePoint for AMD 1.0

330

SourcePoint Command Language

do while
Group and conditionally execute emulator commands.
Syntax

do {commands} while(bool-cond)

Where:

commands specifies one or more emulator commands. The braces are required
when you enter multiple commands.

bool-cond specifies that the loop ends when bool-cond is false. The bool-cond
option specifies a number or an expression that must evaluate to true
(non-zero) or false (zero).

Discussion

Use the do while control construct to define a loop that is executed at least once. The test for
continued execution (evaluation of bool-cond) comes after the command (or group of commands)
is executed. Always enclose the loop body {commands} in braces when there is more than one
command. The commands are re-executed while the expression evaluates to true. The include
command is not executable inside the do while control construct.

Example

The following example shows how to display uppercase alphabetic characters using a do while
loop.

Command input:

define int4 a = 41h
define char c

do

{
c = toascii(a)
c
a+=1

}
while (a <= 5Ah)
Result:

A"
"B*

"y
7.

331

SourcePoint for AMD 1.0

Related Topics:

break
continue
for
while

332

SourcePoint Command Language

dos

Execute a DOS command.

Syntax

dos [dos-command]

Where:

dos-command specifies any valid DOS command
Discussion

Use the dos command to execute a DOS command. When you enter the dos command without
an argument, a DOS window is opened. Key in "exit" (without the quotation marks) to return to
the emulator.

Text to be passed to the host operating system is expanded with the currently defined literally
definitions. To suppress this literally substitution, enclose aliases in single quotes.

+ Note: This command was formerly called the "@" command. Shell is a synonym for DOS.
Example 1

To copy a file to a different directory:

Command input:

dos copy c:\tmp\test.list c:\save

Example 2

To open a DOS window:

Command input:

dos

Related Topics:

shell

333

SourcePoint for AMD 1.0

dport

Display or change the contents of a 32-bit I/0 port.
Syntax

[result =] [[px]1] dport(io-addr) [= expr]
Where:

result specifies an debug variable of type ord4 to which the function return
value is assigned. If result is not specified, the return value is displayed
on the next line of the screen.

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain.
The processor can be specified as px (where x is the processor ID), or an
alias you have defined for a given processor ID. ALL cannot be used as
a viewpoint override.

io-addr specifies a 16-bit address in the processor I/O space. The available io-
addr range is 0 to Offffh. Parentheses are optional.

expr specifies a 32-bit number or expression. Using this option writes the data
to the specified 1/0 port.

Discussion:

Use the dport command to read from and write to the specified I/O port with the specified 32-bit
data.

Example 1
To assign a 32-bit value to a port and assign one port value to another:

Command input:

dport 88h = 87654321h
dport 90h = dport 88h
Example 2

To create a debug variable named portvar and assign a port value to it:
Command input:

define ord4 portvar
portvar = dport 90 ; portvar

Result:

FFFFFFFFH

334

SourcePoint Command Language

335

SourcePoint for AMD 1.0

drscan
Scan the data registers of devices on the JTAG chain.
Syntax

drscan(device, bitCount, readArray [, writeArray])
drscan(device, writeArray)

Where:

device is an int4 that specifies the position of the device to access. Device positions
are displayed by the devicelist command.

bitCount is an expression that evaluates to the number of bits to scan to or from the data
register of the designated device as selected by the current instruction register
value.

readArray is a debug array you have defined that is large enough to hold the scanned

data register. This array must be equal to or larger than the number of bits
specified to scan from the data register. Array elements that are not used are
unchanged.

writeArray is a debug array you have defined that holds the value you want to scan into
the data register. If this array is smaller than the number of bits to be scanned
into the data register, an error occurs.

Description

Use drscan to read or write the data registers of devices on the JTAG chain. The device
specification determines which device in the chain is scanned. All other devices are in bypass.

The instruction current in the instruction register of the specified device determines the data
register that is scanned. Use the irscan command to write an instruction to the instruction register.

The bitCount value determines the number of bits that will be scanned. A debug array that will
read these scanned bits must contain at least as many bits as are to be scanned. A debug array
that will write the scanned bits also must have at least as many bits as the number of bits to be
scanned in. The drscan command will only use array types for parameters, you cannot use a
signed or unsigned value (e.g., ord8) even though it may contain enough bits.

The drscan command can be used to either read a data register, write a data register, or both
read and write a data register. When writing only from a device data register you must use the
extra comma (,) placeholder to specify the write-array parameter position. The following are
acceptable forms for the drscan command:

drscan(0, 1, ReadArray)
drscan(0, 1, , WriteArray)
drscan(0, 1, ReadArray, WriteArray)

Example 1

To write instruction and data to device 0 and ignore return data:

336

SourcePoint Command Language

Command input:
irscan(0, 1)
define ordl a_olWriteToDeviceArray[0n20] // big enough to hold 159

bits
drscan(0, 0Onl159, , a olWriteToDeviceArray)

Example 2
To write instruction and data to device 5 and save return data:
Command Input:

irscan(5, 0x10)

define ordl ReadFromDeviceArray|[0Onl7] // enough to hold 0x82 bits
define ordl WriteToDeviceArray[Onl7] // fTilled with 0"s to write
drscan(5, 0x82, ReadFromDeviceArray, WriteToDeviceArray)

Example 3

To write instruction and data to device 0 and save return (note that write data is not specified and
will default to all 0's):

Command Input:
irscan(b, 2)
define ord4 ReadFromDeviceArray[1] // enough to hold 32 bits

drscan(5, 0x20, ReadFromDeviceArray)
ReadFromDeviceArray[O]

Result:

182C1013

Related Topics

irscan
msgscan
tapdateset
tapdatashift

337

SourcePoint for AMD 1.0

edit

Open a file for edit.

Syntax

edit [proc] [filename]

Where:

proc indicates the file should be processed after edit.
filename specifies a filename. See Filenames for details.

Discussion

The edit command opens the file name specified for edit. The default editor is "notepad.exe" but
this can be overridden by specifying a different editor with the editor control variable. If the proc
keyword is specified, then the file is automatically re-parsed (as if the user has typed "include
nolist filename").

Example

Command input:

editor=""c:\vslick\win\vs.exe" // change editor to slick
cwd cmd\test // change working directory
edit proc Ffileio.cmd // edit fileio.cmd and re-parse

Related Topics:

editor

338

SourcePoint Command Language

editor
Specify which editor is invoked with the edit command.
Syntax

editor [="string"}

Where:

"string" specifies the invocation string (optional path, invocation name, and invocation
options) of an editor available on the host.

Discussion

Use the editor control variable to specify which editor is invoked when you enter the edit
command. Entering the editor control variable without options displays the current value.

Example
To specify an editor:

Command input:

editor=""c:\vslick\win\vs.exe" // change editor to slick
cwd cmd\test // change working directory
edit fileio.cmd // edit fileio.cmd

Related Topics:

edit

339

SourcePoint for AMD 1.0

emulatorstate

Return an integer representing the emulator connection state.

Syntax

[result =] emulatorstate

Discussion

The emulatorstate control variable returns an integer representing the emulator connection state.

0 Not configured. The disconnect command changes emulatorstate to this value.

1 JTAG chain(s) configured and ready for device configuration The jtagconfigure
command changes emulatorstate to this value.

2 Devices configured and ready for debug session. The deviceconfigure command
changes emulatorstate from 1 to 2. The reconnect command changes emulator
state from O or 1 to 2.

Example

Command Input:

printf("Emulator state is %d', emulatorstate)
Result:

00000002H // fully connected

Related Topics

deviceconfigure
disconnect

jtagconfigure
reconnect
Target Configuration

340

SourcePoint Command Language

encrypt

Encrypt an include (macro) file. The file can be executed normally with the include command, but
the contents of the file are not readable.

Syntax
encrypt(input_file, output_Ffile)
Where:

input_file is an nstring variable or string constant specifying the file to encrypt.
output_file is an nstring variable or string constant specifying the encrypted file.

Discussion

The encrypt command allows "include" files to be distributed to users without them being able to
examine the contents of the file. This is sometimes required when proprietary code is used to
unlock the debug capabilities of a device.

Example
Command input:

encrypt(*'c:\unlock.mac™"™, "c:\secret.mac')
include c:\secret.mac // run the encrypted
include file

341

SourcePoint for AMD 1.0

error

Change the severity of a SourcePoint error.

Syntax
error(error-number, severity)
Where:

error-number is a SourcePoint error number.
severity is the new severity for the specified error number: nodisplay, warning, severe,
error, fatal.

Use the error function to change the severity of a SourcePoint error to any of the 5 possible
levels:

Discussion

Severity Description

nodisplay The error message will not be displayed in the Command window.

warning The error message will be displayed as a warning but will not affect the execution
of SourcePoint scripts.

severe The error message will be displayed as a severe error but will not affect the
execution of SourcePoint scripts.

error The error message will be displayed as a normal error and will cause the current
script control block to be stopped.

fatal The error message will be displayed and cause SourcePoint to exit.

« Note: The error numbers displayed in the error message are in decimal. However, the error-
number base depends on the current number base setting of SourcePoint. To ensure the error
function can find the correct error number, you need to make sure that the value of error-number
corresponds to the correct error number in decimal (see example below).

< Note: This function is provided for ITP script compatibility. Currently, the only severities

supported are nodisplay and error. Currently, the only error number supported is On325 (syntax
error).

Example
Command input:
error(0On325, nodisplay)

it (PCI) { ich_inc="blank.itp"” }
error(0On325, error)

342

SourcePoint Command Language

eval

Evaluate an expression and display the results.

Syntax

eval expr

Where:

expr specifies the expression to be evaluated.
Discussion

Use the eval command to calculate and display the result of an expression. The result is
displayed in hexadecimal, decimal, octal and binary.

< Note: Typing an expression by itself at the command line will also evaluate the expression.
The result will be displayed in the current display base (as specified by the base control variable).

Example
Command input:
eval 2 * 3 + 1
Result:

00000007H 7T 000000000070 00000000000000000000000000000111Y

Related Topics:

base
Expressions

343

SourcePoint for AMD 1.0

evalprogramsymbol
Return the value of the symbol.
Syntax

[result =] evalprogramsymbol (symbol)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

symbol is a constant string or nstring specifying the symbol to look up.

Discussion

The evalprogramsymbol function searches each program loaded in the current context for the
specified symbol. If the symbol is found, its value is returned. Otherwise, an error message is
displayed.

The value returned for a data symbol (variable) is its current state in the target. The value of a
code symbol is its address.

Examples

The following examples demonstrate the evalprogramsymbol function. Here it is assumed that a
program is loaded that contains the data symbol mydata with a value of '7' and a procedure
symbol mycode at address C0008000

Example 1

Command input:
EvalProgramSymbol (*'mydata')
Result:

7

Example 2

Command input:

define nstring s = "mydata"
EvalProgramSymbol (s)

Result:

7

344

SourcePoint Command Language

Example 3

Command input:
EvalProgramSymbol (*'mycode'")
Result:

0xC0008000

Example 4

Command input:
EvalProgramSymbol (*"test')
Result:

Error '"test" is not a program symbol

Related Topics:

getprogramsymboladdress
isprogramsymbol

345

SourcePoint for AMD 1.0

execution point ($)

Display or change the current execution point (CS:EIP).
Syntax

$ [=addr]

Where:

addr is the address of the next instruction to be executed. The $ control variable is a
shorthand way of referring to the LDT:CS:EIP.

Discussion

When an address including an LDT-selector, a segment-selector, and an offset is assigned to the
execution point control variable, the LDT:CS:EIP register is set to that address. If an offset only is
assigned to the control variable, the EIP is changed and the LDT and CS remain the same.

I Caution: When you change the execution address with the execution point control variable, your
disruption of the normal program flow can invalidate the run-time stack.

Examples 1
To display the current execution point:
Command input:
$
Result:
0008:0030D611
Example 2
To change the current execution point to the main procedure in the p_main module:
Command input:
=Ip_main.main
Example 3
To hand-patch a test case at the address 0x0008:000f:000005ff:

Command input:

346

SourcePoint Command Language

$ = 0x0008:000f:000005FF
asm $ = "mov ax,word ptr [0]", "mov ebx,eax"

347

SourcePoint for AMD 1.0

exit

Exit SourcePoint.

Discussion

Use the exit command to close all open files and terminate the debug session.

348

SourcePoint Command Language

exp
Return the exponential function of an expression.
Syntax

[result =] exp(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.
expr specifies a number or an expression of type real8.

Discussion

The exp command returns the exponential function of an expression; that is, the number e raised
to the expr power, where e is the base of the natural logarithm. The exp function returns infinite
when the correct return value would overflow.

+» Note: Values returned by this command (a math function) are in real8 or 64-bit floating point
precision. These values are displayed in the Command window rounded to 6 decimal digits.
However, assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
exp(1)

Result:

2.71828

Related Topics:

pow

349

SourcePoint for AMD 1.0

fc
Compare two text files.
Syntax

[result =] fc(C'filel”, "file2"[, start column[, end column]])

Where:

result specifies a debug variable to which the function return value is assigned. If result
is not specified, the return value is displayed on the next line of the screen.

filel, file2 specifies a filename. See Filenames for details.

start column is the first column of each line to compare, start column = 0 equals the first
column of the line.

end column s the last column of the line to compare.

Discussion

The fc function is used to compare two text files. The function returns "true" if the files are
identical within and including the start and end columns of every line. If the files mismatch, the
mismatched line of each file is displayed with an underscore character indicating the first column
of the mismatch.

+» Note: "Start column" and "end column" are optional input parameters. If not specified, the
entire line is compared.

Example
Command input:

define bool result = fc(''good.txt", "new.txt")
if (result == true)
puts('files match\n™)

350

SourcePoint Command Language

fclose

Close afile.

Syntax

fclose(file_handle)

Where:

file_handle is a file handle returned from a previous fopen command
Discussion

The fclose function closes a file previously opened by an fopen command.

If an fopen function is executed within a procedure, then the file handle returned is valid only
within that procedure. Files opened outside of a procedure have global scope and may be
accessed anywhere. Any files left open when SourcePoint terminates are automatically closed.

Example

Command input:

define ord4 filel

filel = fopen('"test.dat"™, "w')
fputs('this is a test”, filel)
fclose(filel)

define nstring buf

filel = fopen(''test.dat", 'r'")
fgets(buf, filel)

Result:

"this is a test”

Related Topics:

—h |=h [=h

(9%

@ |O

e~ |+ |=—h
O

—h |=h [=h
o
E":. F
SR8
==

?T:"F
[
AT

fseek

|n
o

351

SourcePoint for AMD 1.0

fwrite

352

SourcePoint Command Language

feof

Test for end of file (EOF).

Syntax

[result =] feof(file_handle)
Where:

result specifies an debug variable of type int4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

file_handle is returned from a previous fopen command
Discussion

The feof function is used to test for the end of file condition. If a file input function has attempted
to read past the end of a file, calling the feof function returns a value of 00000010H; otherwise, a
null value is returned.

Example
To read a binary file and write its contents into target memory at address 0:

Command input:

define ord4 filel
define ord4 nltemsRead
define ord4 buf[1000]
define ptr pMem = 0

filel = fopen(“test.dat”, "'r")
while (feof(filel) == 0)

,.A.,

nltemsRead = fread(buf, filel)
ordl pMem length nltemsRead = buf
pMem += nltemsRead

3
fclose(filel)

Related Topics:

—h—hah—h—h

E:. E’E

SR8 IwIe
(=2

353

SourcePoint for AMD 1.0

fputs
fread

fseek
ftell
fwrite

354

SourcePoint Command Language

fgetc
Read a character from a file.
Syntax

[result =] fgetc(File_handle)

Where:

result specifies a debug variable of type int4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next
line of the screen.

file_handle is the file handle returned from a previous fopen command

Discussion

The fgetc function reads a character from a file previously opened by fopen. A -1 is returned upon
reading end of file.

Example

Command input:

define ord4 filel

filel = fopen(''test.dat","w')
fputc (A" ,filel)
fclose(filel)

filel = fopen('test.dat”,"r')
fgetc(filel)

Result:

00000041H

Related Topics:

fclose
feof

—h |=h [=h |=h
o
E":. E"
S22
(=2

F*D"F“
c
Sla

fseek
ftell
fwrite

355

SourcePoint for AMD 1.0

356

SourcePoint Command Language

fgets
Read a string from a file.
Syntax

[result =] fgets(string, Ffile_handle)

Where:

result specifies an nstring variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

string is an nstring variable to receive the string read.

file_handle is a file handle returned from a previous fopen command.
Discussion

The fgets function reads a string from a file previously opened by fopen. The string is stored in
the first argument specified and is also the return value of the function. Multiple fgets commands
will get consecutive, new line-delimited strings. Strings longer than 1024 characters are
truncated. Fgets returns an empty string on end of file. The feof function can also be used to
detect end of file.

Example

Command input:

define ord4 filel

filel = fopen('test.dat", "w"
fputs('this is a test", filel)
fclose(filel)

define nstring buf

filel = fopen('test.dat™, 'r')
fgets(buf, Ffilel)

Result:

"this is a test"

Related Topics:

357

SourcePoint for AMD 1.0

fread
fseek
ftell

fwrite

358

SourcePoint Command Language

first_jtag _device

Return the device ID of the first JTAG device.
Syntax

[result =] first_jtag device
Where:

result specifies a debug variable to which the function return value is
assigned. If result is not specified, the return value is displayed on the
next line of the screen.

Discussion

first_jtag_device returns the device ID of the first JTAG device. It can be used with
num_jtag_devices and/or last_jtag_device to iterate over JTAG devices.

Example
To create a custom-format devicelist command:
Command input:

define proc devlist()
{
define ord4 nliD
if (num_jtag devices > 0)

for (nID=First_jtag device; nID <= last_jtag device; nlD++)

printF(""%4x %8s (%-11s) port %d, scanchain %d, idcode %x\n',
devicelist[nlD].did,
devicelist[nlID].alias,
devicelist[nlID] .devicetype,
devicelist[nlID] .debugport,
devicelist[nlID].scanchain,
devicelist[nlID].idcode)

Related Topics

last_jtag_device
num _jtag devices

359

SourcePoint for AMD 1.0

flist

Log command line input and responses to a file.

Syntax

flist([filename [,append]l])

Where:

filename specifies a filename. See Filenames for details.

append is a boolean indicating whether new log data should be appended to or overwrite an
existing file. The default is to overwrite.

Discussion

The flist function opens a log file. The function performs an action similar to the list or log
commands, except that an nstring variable may be used to specify a file name. The nolist
command turns logging off. Executing flist without specifying a filename displays the currently
open log file.

Example 1

To display the current log file:

Command input:

flist(Q)

Result:

"c:\log.-txt"

Example 2

To open a log file and overwrite an existing file:
Command input:
Flist("c:\temp\log.txt')

Example 3

To open a log file and append to an existing file:
Command input:

flist('c:\temp\log.txt", true)

360

SourcePoint Command Language

Related Topics:

list, nolist
log, nolog

361

SourcePoint for AMD 1.0

flush

Invalidate the processor's internal caches.
Syntax

[[px]1] flush [nowriteback]
Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias
you have defined for a given processor ID. ALL cannot be used as a
viewpoint override.

nowriteback clears writeback, which is the default condition for the flush command.

Discussion

Use the flush command to invalidate the processor's internal caches. In a multiprocessor system,
only the caches for the current viewpoint are invalidated. The flush command can only be used
when the target is stopped.

The invd and wbinvd instructions are equivalent to flush nowriteback and flush, respectively.
Examples
Command inputs:

flush // same as wbinvd instruction
Flush nowriteback // same as invd instruction

Related Topics

invd
whinvd

362

SourcePoint Command Language

fopen
Open a file for input or output.
Syntax

file_handle = fopen(filename, type)

Where:
file_handle specifies a debug variable of type ord4 to receive the file
handle.
filename specifies a filename. See Filenames for details.
type “r" opens an existing file for input.
"w" creates a new file, or overwrites an existing one for output.
"a" creates a new file, or appends to an existing one for output.
Discussion

The fopen function opens a file for input or output. It is similar to the "C" language fopen
command except that it returns a file handle of type ord4, rather than a file pointer. This file
handle is used in subsequent file I/O commands. If the file could not be opened, then 0 is
returned. If a relative path is specified for a filename, then the current working directory (specified
with the cwd command) is prepended to the path. If the mode includes "b" after the initial letter,
as in "rb" or "w+b", a binary file is indicated. There is no limit to the number of files that may be
open.

Use fclose to close a file. If an fopen command is executed within a procedure, then the file
handle returned is valid only within that procedure. Open files are closed automatically when the
procedure finishes execution. Files opened outside of a procedure have global scope and may be
accessed anywhere. Any files left open when SourcePoint terminates are automatically closed.

Example
Command input:

define ord4 filel

filel = fopen(''test.dat”, "w')
fputs('this is a test", filel)
fclose(filel)

define nstring buf

filel = fopen(''test.dat", 'r'")
fgets(buf, filel)

Result:

this is a test

363

SourcePoint for AMD 1.0

Related Topics:

364

for

SourcePoint Command Language

Group and execute commands in a loop.

Syntax

for(commandl; bool-cond; command2) {commands}

Where:

commandl

bool-cond

command2

commands

Discussion

is usually an assignment statement or a function call, but can be any valid
emulator command. If you omit the command1 option, the semicolon (;) must
remain as a place holder.

specifies the test condition. The bool-cond option must evaluate to true (non-
zero) or false (zero). If you omit the bool-cond option, the test condition
defaults to true, and the semicolon (;) must remain as a placeholder.

is usually a re-assignment, an increment, or a function call, but can be any
emulator command. If you omit the command2 option, the semicolon (;) must
remain as a placeholder.

is one or more emulator commands that are executed when the test
condition bool-cond is true. Braces ({ }) indicate the start and end of multiple
commands controlled by the for construct. At least one command is required.
However, you can enter an empty command, indicated by a semicolon (;).

Use the for control construct to execute a block of commands one or more times. The iteration
continues as long as bool-cond evaluates to non-zero (true) in the following order: commandl is
executed once; then if bool-cond evaluates to true, {commands} is executed. After that,
command? is executed and bool-cond is evaluated. This process is repeated as long as bool-
cond evaluates to true. To break out of a loop press ctrl+break.

< Note: You cannot use the include command within a for control construct.

Example

Command input:

define int i
for (i = 0;
printf('%\n",

Result:

00000000H
00000001H
00000002H

i <3;1=1i0+1)
i)

365

SourcePoint for AMD 1.0

Related Topics:

break
continue
do while
while

366

SourcePoint Command Language

forward
Declare a forward reference to a debug procedure.
Syntax

forward proc [return-type] name

Where:

proc specifies a procedure is being declared.
return-type specifies the procedure data type returned.
name specifies the procedure name.

Discussion

Debug procedures must be defined before they can be referenced. Sometimes this isn’t
practical. The forward command can be used to declare a debug procedure type, so that it can
be referenced (without a syntax error), before it is actually defined.

+» Note: forward is only allowed within a debug procedure definition
Example 1

To reference a debug procedure named max before it is defined.
Command Input:

define proc myProc()

{
forward proc ord4 max // max returns an ord4
printfF("'max = %x\n", max())

}

define proc ord4 max()

{
return 0x10

}

myProc

Result:

max = 0x10

Related Topics

Data Types
367

SourcePoint for AMD 1.0

Debug Procedures
define

368

SourcePoint Command Language

fprintf

Write formatted output to a file.

Syntax

fprintf(Ffile_handle, format [, expr [,---1 1)
Where:

file_handle is a file handle returned from a previous fopen command

format is a string constant or nstring variable which determines the format of the display
expr is an expression that is evaluated and displayed
Discussion

Use the fprintf function to write formatted output to a file. The fprintf function is similar to the C-
language fprintf routine. (See printf for more information.)

Example
Command input:

define ord4 filel

filel = fopen('"test.dat”, "w')

define nstring myStr = "this is a test”

define ord4 myNum = 1234

define char myChar = "A"

fprintf(Filel, "%s %d %c', myStr, myNum, myChar)
fclose(filel)

Related Topics:

369

SourcePoint for AMD 1.0

fputc

Write a character to a file.
Syntax

fputc(char, file_handle)

Where:

char is the character to write.
file_handle is the file handle returned from a previous fopen command

Discussion

The fputc function writes a character to a file previously opened by an fopen command.
Example

Command input:

define ord4 filel

filel = fopen('test.dat"”™, "w')

fputc("A", File 1)

fclose(filel)

filel = fopen('test.dat™, "r™)

fgetc(Filel)

Result:

[0}

5T

Related Topics:

w

70

SourcePoint Command Language

fputs

Write a string to a file.

Syntax

fputs(string, file_handle)
Where:

string is a string constant or nstring variable to write.
file_handle is the file handle returned from a previous fopen command

Discussion

The fputs function writes a string to a file previously opened by an fopen command.
Example

Command input:

define ord4 filel

filel = fopen('test.dat", "w"
fputs('this is a test", filel)
fclose(filel)

define nstring buf

filel = fopen('test.dat™, 'r')
fgets(buf, Filel)

Result:

"this is a test"

Related Topics:

fclose
feof

fgetc

371

SourcePoint for AMD 1.0

fread

Read binary data from a file into an array.

Syntax

[result =] fread(buffer, file_handle)
Where:

result specifies a debug variable of type ord4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

buffer is an array variable to receive the data read.
file_handle is the file handle returned from a previous fopen command

Discussion

The fread function reads binary data from a file previously opened by an fopen command. The
data is stored in the array. The length of each item of data read is specified by the size of the
array. The returned value is the number of items or data read.

+ Note: The feof command should be used to detect end of file.
Example

To read a binary file and write into target memory at address 0:
Command input:

define ord4 filel

define ord4 nltemsRead

define ord4 Buf[1000]

define ptr pMem = 0O

filel = fopen('test.dat™, "r')
while (feof(filel) == 0)

{
nltemsRead = fread(Buf, filel)
ordl pMem length nltemsRead = Buf
pMem += nltemsRead

}

fclose (filel)

Related Topics:

fclose
feof

372

—h |—h
ﬁ
~+ |—+
(@]

—h |—h [=h
o
E":. F
G238 lw
==

—h |—h
(%]

SE
X o

ftell
fwrite

SourcePoint Command Language

373

SourcePoint for AMD 1.0

fseek

Position at a new location in a file.

Syntax

[result =] fseek(File _handle, offset, wherefrom)
Where:

result specifies a debug variable of type int4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

file_handle is afile handle returned from a previous fopen command.
offset is a signed integer specifying a number of bytes.
wherefrom 0 = beginning of file, 1 = current location, 2 = end of file.
Discussion

The fseek function allows random access within a file. The first argument is a file that is open for
input or output. The second argument specifies a position. The third argument is a "seek code,"
indicating from what point in the file the offset should be measured.

The return value is 0 if successful or nonzero if an error occurs.
Example

To determine the size of a file:

Command input:

define int4 hFile = fopen('test.dat","r')
fseek(hFile,0,2) // seek to end of file
ftell(hFile)

Result:

000079A8H // Tile size

Related Topics:

_.,
o
o
1)
@

—h |=h |=h |=h
o (9%
. @ [D O
® |7 5 =
5

—
=
>
—
(=N

w

74

SourcePoint Command Language

375

SourcePoint for AMD 1.0

ftell

Return the current offset within a file.
Syntax

[result =] ftell(File_handle)
Where:

result specifies a debug variable of type int4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

file_handle is the file handle returned from a previous fopen command.

Discussion

The ftell function takes a file that is open for input or output and returns the position in the file.
The return value is -1 if an error occurs.

Example
To determine the size of a file:
Command input:

define int4 hFile = fopen('test.dat", ''r')
fseek(hFile, 0, 2) // seek to end of file
ftell(hFile)

Result:

000079A8H // Tile size

Related Topics:

_,,
o
o
)
@

—h |=h |[=h

(9%

@ |O

~+ |+ |=—h
O

—h |—h [=h
o
E":. F
G218 lw
==

?3"‘5’
c
AT

fseek
fwrite

w

76

SourcePoint Command Language

377

SourcePoint for AMD 1.0

fwrite

Write binary data from an array into a file.

Syntax

[result =] fwrite(buffer, file handle)
Where:

result specifies a debug variable of type ord4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

buffer is an array variable containing the data to write.
file_handle is afile handle returned from a previous fopen command.

Discussion

The fwrite function writes binary data to a file previously opened by an fopen command. The data
is stored in the array. The returned value is true if successful.

Example
To write 512 bytes of memory at location 0 to a binary file:
Command input:

define ord4 i

define ord4 filel

define ordl Buf[0x200]
define ord4 MEM_BUFFER = O

filel = fopen("test.dat", "wb')

for (i=0 ; 1 < Ox200; i++)
Buf[i] = ordl1(MEM_BUFFER + 1)

fwrite(Buf, filel)

fclose(filel)

Related Topics:

_,,
e
)
)
®

)
|m

o

-

—h—h—hah—h—h
Bl 2181w 15
=

w

78

SourcePoint Command Language

fread
fseek
ftell

379

SourcePoint for AMD 1.0

getc
Read a character from the Command window.
Syntax

[result =] getc()

Where:

result specifies a debug variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

Discussion

The getc function reads a character from the Command window. The character is the return value
of the function. getchar is an alias for getc.

Example
Command input:

define ordl ch
ch = getc(Q // wait for key
ch

Result:

6BH “k*

Related Topics:

gets
putchar
QutS

380

SourcePoint Command Language

getchar

The getchar command is an alias for the getc command.

381

SourcePoint for AMD 1.0

getnearestprogramsymbol
Return the nearest program symbol from a given address.
Syntax

[result =] getnearestprogramsymbol(addr, [proc])

Where:

addr is the address to search.

proc is the processor to use (default = current viewpoint).

result specifies an nstring variable to which the function return value is assigned. If result
is not specified, the return value is displayed on the next line of the screen.

Discussion

The getnearestprogramsymbol function searches each program loaded in the current context for
the specified address. It returns the nearest symbol (either code or data) as a string in "symbol +
hex_offset” format.

The optional processor parameter is only meaningful when target memory is configured as not
SMP.

An empty string is returned when SP cannot find a symbol.
Example 1

To search the programs loaded on the current viewpoint processor for the symbol nearest to
address 0x120:

Command input:
GetNearestProgramSymbol (0x120)
Result:

main+0x20

Example 2

To search the programs loaded on the current viewpoint processor for the symbol nearest to
address 0x100:

Command input:

define nstring s
s = GetNearestProgramSymbol (0x100)
s

382

Related Topics:

evalprogramsymbol
getprogramsymboladdress

isprogramsymbol

SourcePoint Command Language

383

SourcePoint for AMD 1.0

getprogramsymboladdress
Return the address of the symbol referenced by symbol name.
Syntax

[result =] GetProgramSymbolAddress(symbol_name)

Where:

result specifies a Pointer variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

symbol_name is a constant string, nstring, or debug variable specifying the symbol to look
up.

Discussion

The getprogramsymboladdress command searches each program loaded in the current context
for the specified symbol. If the symbol is found, its address is returned. Otherwise, an error is
raised. This function is intended to be used in conjunction with Isprogramsymbol() in macro
procedure scenarios where program symbols may not be present when the macro is interpreted.

The following examples demonstrate the getprogramsymboladdress command. Here it is
assumed that a program is loaded which contains the data symbol mydata at address C0001000
and a procedure symbol mycode at address C0008000.

Example 1
Command input:

if (IsProgramSymbol ("'mydata’™))
getProgramSymbolAddress(‘'mydata'™)

Result:
0xC0001000
Example 2
Command input:

define nstring s = "mydata"
getProgramSymbolAddress(s)

Result:

0xC0001000

Example 3

384

SourcePoint Command Language

Command input:
getProgramSymbolAddress(‘'mycode™)
Result:

0xC0008000

Example 4

Command input:
getProgramSymbolAddress('"test')
Result:

Error "test” is not a program symbol

Related Topics:

evalprogramsymbol
getnearestprogramsymbol
isprogramsymbol

385

SourcePoint for AMD 1.0

gets

Read a string from the user via the Command window.

Syntax

[result =] gets(string)

Where:

result specifies a debug variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

string is an nstring variable to receive the string read.

Discussion

The gets function reads a string from the Command window. The string is stored in the first
argument specified and is also the return value of the function.

Example
Command input:

define nstring strinput
gets(strinput) // user types a line of text

Result:

this is a line of text

Related Topics:

fgetc
putchar
puts

386

SourcePoint Command Language

globalsourcepath

Display or edit the global source path map.
Syntax

globalsourcepath [= path mappings]
Discussion

The globalsourcepath control variable contains a list of source file path mappings. These
mappings translate source file paths embedded in program files to actual source file paths on the
host computer. The list is a comma-delimited string of the form:

programFilePathl = hostFilePathl; programFilePath2 =
hostFilePath2; etc.

The path map can also be specified in the Program Load dialog (when the program is loaded), or
from Options | Preferences | Program.

+« Note: This control variable only has an effect when the "Share source file path map among all
programs" option is enabled in Options | Preferences | Program.

Example 1

To set the source file path mappings:

Command input:

globalsourcepath = ""C:\\AA\\WDB\\6.9.2\\wdb32=C:\\AA\WDB\\6.9.1"
Example 2

To display the current source file path mappings:

Command input:

globalsourcepath

Result:

C:\AA\WDB\6.9.2\wdb32=C:\AA\WDB\6.9.1

Related Topics:

File Menu - Program Menu ltem

387

SourcePoint for AMD 1.0

Options Menu - Preferences Menu ltem

388

go

SourcePoint Command Language

Start program execution and optionally set a breakpoint.

Syntax

[[px]] go [forever | tilswb | til addr-event]

Where:

[px]

addr-event
length
type

acc

exe

forever
io

smmacc

smmexe

smmio
smmwr

til
tilswb

vis-addr

wr

byte,word,
dword

is a viewpoint override, including punctuation ([]), specifying that the viewpoint
is temporarily set to processor x of the boundary scan chain. The processor can
be specified as px (where x is the processor ID), or an alias you have defined for
a given processor ID. ALL cannot be used as a viewpoint override.

addr [length] [type]

{byte | word | dword}

{acc | exe | wr | io | rd | smmacc | smmexe | smmwr | Smmio}

specifies that the event to be recognized is a data access (read or write)
operation at the specified vis-addr. The default segment of vis-addr is DS.
specifies that the event to be recognized is based on the execution of an
instruction at vis-addr. The execute option is the default setting if a type is not
specified. The specified vls-addr must identify the first byte of an instruction
opcode for it to be recognized. The default segment selector of vis-addr is the
current CS.

temporarily disables all breakpoints and begins emulation.

specifies that the event to be recognized is an 1/O access (read or write)
operation at the corresponding port address.

specifies that the event to be recognized is a data access (read or write)
operation in the SMM address space at the specified vis-addr. The default
segment of vis-addr is DS.

specifies that the event to be recognized is based on the execution of an
instruction in the SMM address space at vis-addr. The execute option is the
default setting if a type is not specified. The specified vis-addr must identify the
first byte of an instruction opcode for it to be recognized. The default segment
selector of vis-addr is the current CS.

specifies that the event to be recognized is an 1/0O access (read or write)
operation in the SMM address space at the corresponding port address.
specifies that the event to be recognized is a memory write operation in the SMM
address space. The default segment selector is the current DS.

specifies the following event is to be recognized.

specifies that emulation continues until a software break is executed. Other
breakpoint types are temporarily disabled.

specifies a virtual, linear, or symbolic address (a physical address cannot be
entered). If vis-addr is followed by either a write or an access option, then the
default segment selector is the current DS. If vis-addr is followed by either the
execute option or nothing, the default segment selector is the current CS.
specifies that the event to be recognized is a memory write operation. The default
segment selector is the current DS.

specifies the range of the addresses that will cause a break. The byte option is
the default setting if a length is not specified.

389

SourcePoint for AMD 1.0

Discussion

Use the go command to control emulation. The go command uses the processor debug registers
for setting address events.

Hardware breaks are implemented using the on-chip debug registers of the processor. Emulation
stops before the instruction at addr-event is executed. However, if addr-event is qualified with a
write or an access option, the break occurs immediately after the event that caused the match.

When software breakpoints are set, emulation stops before the instruction is executed.

The emulator uses debug registers 0 through 7 and the "Interrupt 1" facilities of the processor . If
the target software uses "Interrupt 1" during emulation, an unexpected break occurs. If the target
software modifies the processor debug registers while in emulation, the results may be
unpredictable.

When the go command is entered without any specifications, any breakpoints specified in the
Breakpoints window are in effect.

Example 1

Go til inst @ 1000p is fetched:

Command input:

go til 1000p

Example 2

Go til a byte read @ 12000p occurs:
Command input:

go til 12000p byte rd

Example 3

Temporarily disable all breakpoints and go:
Command input:

go forever

Example 4

Temporarily disable all breakpoints except for softbreaks and go:
Command input:

go tilswb

390

Example 5
Start processor P1:
Command input:

[p1] go

Related Topics

step
stop

SourcePoint Command Language

391

SourcePoint for AMD 1.0

halt

Cause the processor to terminate program execution.
Syntax

halt

Discussion

The halt command stops target program execution. The halt command and the stop command
perform the same function.

Example
Command input:

go
halt

Related Topics:

392

SourcePoint Command Language

help

Display the online help index.
Syntax

help [topic]
Discussion:

The help command opens the SourcePoint Help index. If a topic is specified, the index is opened
at the closest match to that topic. A topic can be a partial name. Topics are not limited to
command language keywords.

Example 1

To open the Help index:

Command input:

help

Example 2

To open the Help index with the dbgbreak topic selected:
Command input:

help dbgbreak

Example 3

To open the Help window with the memory window topic selected:
Command input:

help memory window

393

SourcePoint for AMD 1.0

homepath

Return the full path of the directory containing the current SourcePoint .ini file.
Syntax

homepath

Discussion

The homepath control variable contains a string that is the full path to the directory where the
SourcePoint .ini file is installed. The string is terminated with a final slash/backslash path
delimiter. This variable can be used to avoid hard-coded file paths by referencing them relative to
the SourcePoint directory.

Example
Assume SourcePoint .ini file exists at c:\\Program Files\Arium\SourcePoint\sp.ini
Command input:

define nstring mymac = homepath + "mac\\big.mac";
mymac

Result:

c:\Program Files\Arium\SourcePoint\mac\big.mac

Related Topics:

defaultpath
macropath
projectpath

394

SourcePoint Command Language

idcode
Display the boundary scan idcode for a device.
Syntax

[result =][[px]] idcode [(device-number)]

Where:

[px] is a viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias
you have defined for a given processor ID. ALL cannot be used as a
viewpoint override.

device-number is the zero-based position of the device in the scan chain.

result specifies an ord4 debug variable to which the function return value is
assigned. If result is not specified, the return value is displayed on the next
line of the screen.

Discussion

Use the idcode command to display the boundary scan idcode for a device. By default, this
command displays the viewpoint processor's idcode. If the device number is specified, the idcode
of that particular device is displayed. If both viewpoint override and device number are entered,
the viewpoint override is ignored. If an invalid device number or processor override is entered, an
error message is displayed.

Example 1

To display current viewpoint processor idcode:
Command input:

idcode

Result:

082E1013H

Example 2

To display a particular device's idcode (in the following example, the idcode of device 1 in the
boundary scan chain is displayed):

Command input:
idcode(1)

Result:

395

SourcePoint for AMD 1.0

084C5013H

Example 3

In the following example, the idcode of the viewpoint processor is assigned to a debug variable.
Command input:

define ord4 vplD = idcode
vplD

Result:

082E1013H

396

SourcePoint Command Language

if
Group and conditionally execute emulator commands.
Syntax

if (bool-cond) {commandsl} [else {commands2}]

Where:

bool-cond specifies a number or an expression which must evaluate as either true
(non-zero) or false (zero).

commandsl specifies one or more emulator commands (commands1) that are executed
when bool-cond evaluates to true. The braces ({}) are required when you
enter multiple commands.

commands?2 specifies one or more emulator commands that are executed if bool-cond
evaluates to false. The braces ({}) are required when you enter multiple
commands.

Discussion

Use the if control construct to conditionally execute commands. The if control construct tests the
bool-cond condition and, if true (non-zero), executes the commands in the commands1
specification. When using the else option, any commands in the commands2 specification are
executed when the specified condition evaluates to false (zero).

If constructs can be nested. When nested, the optional else clause associates with the closest if
clause. The if control construct resembles the C language if control construct.

The else option must be on the same command line as the end of the {commands1} block.
If desired, you can use the continuation character (\) followed by the Enter key at the end of the
last line of the {commands1} block to move the else option to the next line.

The include command is not executable inside the if control construct.
Example 1

The following example shows how to use the if control construct to test a condition. If the test
condition (a > b) evaluates to true, then z takes the value of a. If the test condition evaluates to
false, z takes the value of b. Assume that aa, bb, and zz have been previously defined as intl
values.

Command input:

define intl aa
define intl bb
define intl zz
if (aa > bb)

I
=

ZZ = aa

397

SourcePoint for AMD 1.0

} else {
zz = bb

}

zz

Result:

O2H

Example 2

The following example shows how to use the if control construct with the else clause.

Command input:

iT (bState)

printf("'bState is true\n')

} else {
printf("’'bState is false\n™)

}

398

SourcePoint Command Language

include
Execute emulator commands from a text file.
Syntax

include [nolist] filename

Where:

nolist suppresses the echoing of commands to the Command window. Nolog has
the same effect as nolist.

filename specifies a filename. See Filenames for details.

Discussion

Use the include command to cause the emulator input to be taken from the named text file. For
example, use the include command to do the following:

e Load debug procedures (procs), such as pre-defined sets of tests
e Create debug variables and execute commands
e Create literally (alias) definitions

The output of the include command is the same as if the commands had been directly entered in
the Command window. With the nolist option, command echoing is suppressed, but the
responses are still displayed. Error messages are displayed if errors occur while processing a
command in the file. If the error is severe, inclusion of the file and any nested include files is
terminated.

Press Ctrl-Break to abort execution of an include file.

< Note: If an include command appears on a line with multiple commands, it must be the last
command on the line. If an include command appears within a block (for, if, etc.) or proc, it must
be the last command in the block.

< Note: The emulator displays a syntax error when the include command processes an
undefined debug variable. Define all debug variables before referencing.

Example 1

To include a file without echoing commands to the screen:
Command input:

include nolist myfile.mac

Example 2

To include a file and echo the commands to the Command window:

Command input:

399

SourcePoint for AMD 1.0

include myfile.mac

Related Topics:

Command Window Introduction

400

SourcePoint Command Language

invd
Invalidate the processor's internal caches.

Syntax

L[px1] invd

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

Discussion

Use the invd command to invalidate the processor's internal caches. Data held in internal caches
is not written back to main memory. In a multiprocessor system, only the caches for the current
viewpoint are invalidated. The invd command can only be used when the target is stopped.

Examples
To invalidate P2's internal caches:
Command input:

[p2] invd

Related Topics

flush
wbinvd

401

SourcePoint for AMD 1.0

irscan
Scan the instruction registers of devices on the JTAG chain.
Syntax

irscan(device, instruction)

Where:

device is an int4 that specifies the position of the device to access. Device positions
are displayed by the devicelist command.

instruction is the instruction to be scanned into the instruction register of the device. The
instruction can be of any type except strings or arrays.

Description:

Use the irscan command with the drscan command to read from or write to the data register of a
device on the target system boundary scan chain. The irscan command writes the designated
instruction value into the instruction register of the specified device.

Example 1

To scan an instruction to device 4 on the JTAG chain:
Command Input:

irscan(4,5)

Example 2

To emulate idcode for device 0 on the JTAG chain:
Command input:

idcode(0)

Result:

182C1013

Command input:

define ord4 ReadArray[1]
irscan(0,2)

drscan(0, 0x20, ReadArray)
ReadArray[0]

Result:

402

SourcePoint Command Language

182C1013

Related Topics

drscan
msgscan
tapdateset
tapdatashift

403

SourcePoint for AMD 1.0

isdebugsymbol

Determine if a string is the name of a debug variable.

Syntax

[result =] isdebugsymbol(symbol)

Where:

result is a boolean variable to which the return value is assigned. It is TRUE if the symbol
exists, or FALSE if it does not exist.

symbol is a string constant or nstring variable specifying the debug variable name to look
up.

Discussion

The isdebugsymbol function checks to see if a debug variable of that name has been defined.

Example 1

Command input:

define ord4 x = 5
isdebugsymbol (*'x'")

Result:

TRUE

Example 2
Command input:

define nstring s = "X
isdebugsymbol (s)

Result:

TRUE

Related Topics:

isprogramsymbol

404

SourcePoint Command Language

isem64t

Display whether the specified processor supports Extended Memory 64 Technology.
Syntax

[result =] [[px]]isem64t

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a given
processor ID. ALL cannot be used as a viewpoint override.

result specifies a debug variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

The isem64t control variable displays whether the specified processor supports Extended
Memory 64 Technology (now more commonly known as Intel 64).

Example
Command input:

printF("'The processor %s Intel 64\n', isem64t ? "supports" : "does not
support')

Result:

The processor supports Intel 64

405

SourcePoint for AMD 1.0

isprogramsymbol
Determine if a string is a symbol within a currently loaded program.
Syntax

[result =] isprogramsymbol(symbol)

Where:

result is a boolean variable to which the return value is assigned. It is TRUE if the
symbol exists, or FALSE if it does not exist.

symbol is a string constant or nstring variable specifying the symbol to look up.

Discussion

The isprogramsymbol function looks in each currently loaded program until it finds the specified
symbol. When the first occurrence is found, it stops searching and returns TRUE. It returns
FALSE if no instance of that symbol is found within any currently loaded program.

Examples

The following examples demonstrate the isprogramsymbol function. Here it is assumed that a
program is loaded which contains the symbols foo and fun.

Example 1

Command input:
isprogramsymbol (**foo™)
Result:

TRUE

Example 2

Command input:

define nstring s = "fun
isprogramsymbol (s)

Result:

TRUE

Example 3

Command input:
isprogramsymbol (*"test')

406

Result:

FALSE

Related Topics:

evalprogramsymbol
getprogramsymboladdress

isprogramsymbol

SourcePoint Command Language

407

SourcePoint for AMD 1.0

isrunning

Display whether the specified processor is running.
Syntax

[result =] [[px]] isrunning

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint
is temporarily set to processor x of the boundary scan chain. The processor can
be specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL cannot be used as a viewpoint override.

result specifies a debug variable to which the function return value is assigned. If result
is not specified, the return value is displayed on the next line of the screen.

Discussion

Use the isrunning control variable to determine if a specific target processor is running. This
returns false for threads (or processors) that are either halted or disabled. Entering the command
at the command line or in an expression returns O (false for halted or disabled) or 1 (true for
running).

Example 1

To display the state of the viewpoint processor:
Command input:

isrunning

Result:

FALSE

Command input:

go
isrunning

Result:

TRUE

Example 2

To display the state of processor P3:

Command input:

408

SourcePoint Command Language

[P3]isrunning

Result:

TRUE

Example 3

To save the current viewpoint processor state in a user defined variable:
Command input:

define ordl _isrunning
_isrunning = isrunning

Example
To use isrunning in an expression:
Command input:

go
printf("'processor is %s\n'', isrunning ? "running" : "stopped™)

Result:

processor is running

409

SourcePoint for AMD 1.0

issleeping

Display whether the specified processor is sleeping.
Syntax

[result =] [[px]1] issleeping

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint
is temporarily set to processor x of the boundary scan chain. The processor can
be specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL cannot be used as a viewpoint override.

result specifies a debug variable to which the function return value is assigned. If result
is not specified, the return value is displayed on the next line of the screen.
Discussion

Use the issleeping control variable to determine if a specific target processor is sleeping. Entering
the command at the command line or in an expression returns 0 for stopped or running or 1 for
sleeping.

Example 1

To display the state of the viewpoint processor:
Command input:

issleeping

Result:

FALSE

Example 2

To display the state of processor P3:
Command input:
[P3]issleeping

Result:

TRUE

Example 3

To use issleeping in an expression:

410

SourcePoint Command Language

Command input:
printF("'processor is %s\n', issleeping ? "sleeping"” : ""not sleeping™)
Result:

processor is sleeping

411

SourcePoint for AMD 1.0

issmm

Display whether the specified processor is in system management mode.
Syntax

[result =] [[px]] issmm

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a given
processor ID. ALL cannot be used as a viewpoint override.

result specifies a debug variable to which the function return value is assigned. If result is not
specified, the return value is displayed on the next line of the screen.

Discussion

Use the issmm control variable to determine if a specific target processor is in system
management mode. Entering the command at the command line or in an expression returns 0 for
normal mode or 1 for smm.

Example 1

To display the state of the viewpoint processor:
Command input:

issmm

Result:

FALSE

Example 2

To display the state of processor P3:
Command input:

[P3]issmm

Result:

TRUE

Example 3

412

SourcePoint Command Language

To use issmm in an expression:

Command input:

printf("’processor is %s\n", issmm ? "in smm"” : not in smm')
Result:

processor is in smm

413

SourcePoint for AMD 1.0

jtagchain

Display and define the target JTAG configuration.

Syntax

Jtagchain([jtag_id][,jtag_id]+)

Where:

jtag_id is an expression resolving to a 32-bit JTAG ID

Discussion

The jtagchain function is used to both display and define the target JTAG configuration.

If no arguments are specified, then the current JTAG configuration is displayed. There is one line
of display per JTAG device. If SourcePoint is not connected to a target, then an error message is
displayed.

If JTAG ID values are specified, then this command defines the target JTAG configuration. The
order of IDs listed indicates the order of devices on the JTAG chain. This configuration is sent to
the emulator with the jtagconfigure command as part of target configuration. See Target

Configuration.

Example 1

To display the target JTAG chain:
Command input:
Jtagchain()

Result:

JTAG Chain:
1d=0x0FOFOFOF, IR length=4, max jtag rate=16 Mhz, processor=0x0704-
ARM720T

Example 2
To define the target JTAG chain with a single device:
Command input:

Jtagchain(Ox0OFOFOFOF)

414

SourcePoint Command Language

Related Topics:

jtagconfigure
jtagdeviceadd
jtagdeviceclear
jtagdevices

jtagscan
Target Configuration

415

SourcePoint for AMD 1.0

jtagconfigure
Synchronize the JTAG configurations between SourcePoint and the emulator.
Syntax

[result =] jtagconfigure([force])

Where:

result specifies a boolean variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

force indicates whether the JTAG configuration table should be forced into the
emulator when the existing emulator configuration differs. Default = true.

Discussion

The jtagconfigure function synchronizes the JTAG configurations between SourcePoint and the
emulator. If the "force” flag is true, SourcePoint’'s JTAG configuration replaces any existing
configuration in the emulator. If the "force" flag is false the configurations are verified for
consistency. In the event of a mismatch, the configurations are presented to the user to select
which configuration is to be used. If it succeeds, the emulatorState control variable transitions to
state 1.

Example

Command Input:

JtagConfigure() // send JTAG configuration to emulator
Result:
TRUE // command succeeded

Related Topics

autoconfigure
emulatorstate

num_jtag chains
num _jtag devices
Target Configuration

416

SourcePoint Command Language

jtagdeviceadd
Add a JTAG ID to the JTAG database.
Syntax

Jtagdeviceadd(jtag_id, ir_length, processor_id [, max_rate])

Where:

jtag_id is an expression resolving to a 32 bit JTAG ID.

ir_length is an expression resolving to an integer between 1 and 128.
processor_id is an expression resolving to a processor id value.

max_rate is an expression resolving to an integer between 0-40 (MHz).
Discussion

The jtagdeviceadd function is used to add a JTAG device definition to SourcePoint. This action is
persistent. Cycling power on the emulator or restarting SourcePoint does not remove the new ID.

Processor ID is a hex value that indicates to SourcePoint the processor type of the new device.
Legal ID values can be obtained from the jtagdevices command. A value of O (zero) indicates a
non-processor device.

The max_rate argument specifies the maximum JTAG rate that may be specified (via the JTAG
tab under the Options|Emulator Configuration main toolbar).). This argument is optional. If a
value is not specified, then 16 MHz is assumed.

Example

In this example, a JTAG ID of 0x09271013 is added. Its IR length is 10 (decimal). Its processor
type is 0x60D.

Command input:

Jtagdeviceadd(0x9271013,10t,0x60D)

Related Topics:

jtagchain
jtagdeviceclear

jtagdevices
Options Menu - Configure Emulator

417

SourcePoint for AMD 1.0

jtagdeviceclear

Remove a JTAG ID from the JTAG database.
Syntax

Jtagdeviceclear(jtag_id)

Where:

jtag_id is an expression resolving to a 32 bit JTAG ID.
Discussion

The jtagdeviceclear function is useful for dealing with processors that have either duplicate or un-
initialized JTAG IDs. This action is persistent. Cycling power on the emulator or restarting
SourcePoint does not restore the deleted ID.

Example
Command input:

Jtagdeviceclear(0)

Related Topics:

jtagdeviceadd
jtagdevices

418

SourcePoint Command Language

jtagdevices

Display the JTAG device database.
Syntax

Jjtagdevices

Discussion

The jtagdevices command displays device information from the JTAG device database. There is
one line of display per device. The database is maintained in targets\jtag-devices.xml. For each
device, the JTAG ID, IR length, max JTAG rate, processor ID and type are shown.

Example
Command input:
Jtagdevices
Result:

[all JTAG device definitions]

Related Topics:

jtagdeviceadd

jtagdeviceclear
Target Configuration

419

SourcePoint for AMD 1.0

jtagscan
Direct the emulator to perform device discovery on the JTAG chain.
Syntax

[result =] jtagscan([chain])

Where:

result specifies a boolean variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

chain JTAG chain number {0 | 1 | -1 = all (default)}

Discussion

The jtagscan command causes the emulator to scan the target JTAG chain to determine the
devices (e.g. processors) on the chain. If the chain argument is omitted, all chains are scanned.
A return value of true indicates the command was successful.

The jtagchain command displays the results of the scan.
Example

Command Input:

Jtagscan() // scan all JTAG chains for devices
Result:
TRUE // scan succeeded

Related Topics

autoconfigure
jtagchain
jtagconfigure

jtagtest

num jtag chains
num _jtag devices
Target Configuration
verifyjtagconfiguration

420

SourcePoint Command Language

jtagtest
Test the target JTAG chain.
Syntax|

[result =] jtagtest([chain [, iterations [, test]]l])

Where:

result specifies a boolean variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

chain JTAG chain number {0 | 1] -1 = all (default)}

iterations number of iterations (default =1)

test {0-5] -1}

Where the values of test are:

0 is the target powered

1 is the target currently held in reset

2 return total IR length of the JTAG chain
3 scan JTAG ID codes

4 test JTAG integrity

5 test for adaptive TCK

-1 run all tests except adaptive TCKI

Discussion

The jtagtest command tests the target JTAG chain. Normally it is run with no arguments which
does a complete JTAG test. A return value of TRUE indicates the test passed.

Advanced: Tests that return values (e.g., IR length and scan ID codes) require the user to look in
the Log window for results. The value of aalog should be 0x20987.

Examples

Command Input:

Jtagtest() // run all JTAG tests
Result:
TRUE // tests passed

Command Input:

Jjtagtest(0, 1, 1) // check if the target is being held in reset

Result:

421

SourcePoint for AMD 1.0

TRUE // test succeeded (target is not held reset)

Related Topics

jtagconfigure

jtagscan
verifyjtagconfiguration

Target Configuration

422

SourcePoint Command Language

keys

Simulate keyboard input from within a command file.
Syntax

keys(“'keystring” [, "keystring']+)
Where:

keystring is a key name:
F1-F12
control (ctrl), alt (menu), shift
up, down, left, right
insert, delete
home, end
pgup (next), pgdn (prior)
bs, tab, enter (return), esc, pause
apps (displays context menu)
One or more of the following characters:
a-z
A-Z
0-9
~l@H#SUNNE*()
=[N

, . <>/[? (space)
Discussion

The keys function is used to simulate keyboard input from within a command file. The three mode
keys (Control, Alt, and Shift) apply to all the rest of the keys in the command, e.g., keys ("ctrl", "f",
"g") simulate pressing the keys ctrl-f followed by ctrl-g, not ctrl-f followed by a "g". Simple, single
character keys can be combined within a single keystring, e.g., keys("123") is the same as
keys("1", "2", "3").

Examples

Command input:

keys('alt'", "'v', ''c') // opens a Code window

Command input:

keys('ctril', "f'") // opens the Find dialog box
keys(''123", "'enter') // searches for the string 123

423

SourcePoint for AMD 1.0

last

Return the last address of a symbol.

Syntax

[result =] last(symbol)
[result =] last(:module.procedure)

Where:

result

symbol

module

specifies a pointer variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

is a symbolic reference to a program item (label, variable, array, structure,
constant, procedure, module, or program).

is a symbolic reference to a module.

procedure is a symbolic reference to a procedure.

Discussion

The last function returns the last address occupied by a program item. This function may be used
in SourcePoint wherever an address is used.

There are some caveats to using the last function:

The return value of last when the argument is a label is the same address you get when
you just type the label.

Local variables are stack variables and do not have an address that can be determined
beforehand, so the last function does not work unless those variables are in scope.
Register variables do not have addresses so the last function will not work with them.
The return value of last when the argument is a non-external procedure in a module that
has not been analyzed will be the same address that is returned when just then
procedure name is typed, which is incorrect. Because the module has not been analyzed,
the symbol for the procedure is just a label and does not return an address that is the last
address of the procedure (see Bullet 1). To insure that the module is analyzed, use the
second syntax shown above.

Example 1

To find the first and last address of the global structure fooStruct (note that an '&’ must be
prepended to the symbol fooStruct; otherwise, the command language evaluates fooStruct and
return its contents):

Command input:

&fooStruct

Result:

424

SourcePoint Command Language

000080C8
Command input:
last(fooStruct)
Result:

000080D3
Example 2

To find the first and last address of the procedure fooFunk:
Command input:
fooFunk

Result:

00000240
Command input:
last(fooFunk)
Result:

00000273

Related Topics

sizeof

425

SourcePoint for AMD 1.0

last_jtag_device

Return the device ID of the last JTAG device.
Syntax

[result =] last_jtag device
Where:

result specifies a debug variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

Discussion

last_jtag_device returns the device ID of the last JTAG device. It can be used with
num_jtag_devices and/or first_jtag_device to iterate over JTAG devices.

Example 1
To create a custom-format devicelist command:
Command input:

define proc devlist()
{
define ord4 nliD
if (num_jtag devices > 0)

for (nID=First_jtag device; nID <= last_jtag device; nlD++)

printfF("'%4x %8s (%-11s) port %d, scanchain %d, idcode %x\n"
devicelist[nlD].did,
devicelist[nlID].alias,
devicelist[nlID] .devicetype,
devicelist[nlID] .debugport,
devicelist[nlID].scanchain,
devicelist[nlID].idcode)

Related Topics

first jtag device
num _jtag devices

426

left

SourcePoint Command Language

Extract a number of characters from the beginning of a string.

Syntax

[result =] left(string-expr, n)

Where:

result

string-expr
n

Discussion

specifies an nstring variable to which the function return value is assigned.
If result is not specified, the return value is displayed on the next line of the
screen.

specifies an nstring variable or string constant.
specifies the number of characters to extract.

The left function returns a substring from the beginning of a string. If the number of characters to
extract is greater than the length of the string, then the entire string is returned.

Example
Command input:

define nstring
define nstring
temp

Result:

“Jan''

Related Topics

=3
g

=
0
—

month = ""January"
temp = left(month, 3)

427

SourcePoint for AMD 1.0

license

Provide information on the license available with your SourcePoint software.
Syntax

license

Example

Command input:

license

Result:

FLEXIm License File Information
Certified: yes
File path: C:\program Ffiles\arium\2463._1lic
Emulator serial number: 1311
Starl: vyes
Date: 12-18-2010
Features: NDA Feature 4

428

SourcePoint Command Language

linear
Translate an address to a linear address.

Syntax

[Lpx1]1 linear(addr)

Where:

[pX] is a viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a given
processor ID. ALL cannot be used as a viewpoint override.

addr specifies an address to be translated to a linear address.

Discussion

Use the linear command to translate the specified addr to a linear address using the address
translation rules currently in force in the target system (e.g., paging or current processor mode).

e When you enter a linear address, it is returned unchanged.
e When entering a virtual address, it's translated to a linear address.

Example 1

To translate a real mode virtual address:
Command input:
linear(1234:5678)

Result:

000179b8L

Example 2

To translate a protected mode virtual address:
Command input:
linear(18h:14h:0)

Result:

00C03000L

429

SourcePoint for AMD 1.0
Related Topics

Expressions
physical

430

SourcePoint Command Language

list, nolist
Record command line activity to a file.
Syntax

list [[append | overwrite] filename]
nolist

Where:

append appends results to the end of an existing file.
overwrite overwrites an existing file.

filename specifies a filename. See Filenames for details.

Discussion

Use the list command to log command line activity to a file. This includes commands and any
resulting output. Data can be appended to an existing file, an existing file can be overwritten, or a
new list file can be created. If the list command is entered without options, the current list file is
used.

The nolist command is used to stop logging and close the log file.
Log and nolog are synonyms for list and nolist.

Example 1

To log the results of a memory operation to a file:

Command input:

list c:\temp\mem.log
ord4 0 length 1000
nolist

Example 2
To append the results of a memory operation to an existing file:
Command input:

list append "c:\temp\data results.log”
ord2 1000h length 20h
nolist

Related Topics:

431

SourcePoint for AMD 1.0

log, nolog commands
Log Window Introduction
flist

432

SourcePoint Command Language

load

Load a user program into target memory.

Syntax

[[px]] load filename [init] [nocode] [nosym] [AT address | OFFSET expr]
Where:

[px] specifies an optional viewpoint override. If the viewpoint override is

omitted, the current viewpoint is used.
filename specifies a filename. See Filenames for details.

init specifies that registers are to be initialized from values in the
loaded file.

nocode specifies that object code is not loaded into memory during a load
operation.

address specifies the load address for a non-relocatable file.

expr specifies a relocation offset for a relocatable file.

nosym specifies that symbols are not loaded into SourcePoint.
Discussion

The following table shows the supported file types. Use the load command to read an executable
file into target memory and/or to load a file's symbols onto the host for symbolic display.

Memory writes are verified depending on the state of the verify control variable.

elf aout | bin exe hex omf86 | omf386 | PE textsym
load X X X X X
symbols
load X X X X X X X
target
relocate X X
address
relocate X X X X
offset
initialize * X

*Limited processor initialization

« Note: If both nosymbols and nocode options are specified, the file gets loaded as if nocode
were specified (symbols only).

Example 1
To load text.elf and initialize processor registers:

Command input:

433

SourcePoint for AMD 1.0

load c:\test\test.elf init
Example 2
To load text.elf onto processor 1:

Command input:

[p1l] load c:\test\test.elf

Related Topics:

reload
unload

verify

434

SourcePoint Command Language

loadbreakpoints

Load breakpoint information from a file.

Syntax

loadbreakpoints(filename)

Where:

filename specifies a filename. See Filenames for details.
Discussion

The loadbreakpoints function loads a list of breakpoints from a file. This function is the equivalent
of selecting Load from the Breakpoints window context menu. Any existing breakpoints are
overwritten.

Use the savebreakpoints function to generate a breakpoint file. Breakpoints can also be loaded
from an existing project file.

Example
Command input:

loadbreakpoints(''c:\\temp\\myBreakpoints.brk')

Related Topics:

savebreakpoints

435

SourcePoint for AMD 1.0

loadlayout

Load a previously saved SourcePoint window layout.
Syntax

loadlayout(filename)

Where:

filename specifies a filename. See Filenames for details.
Discussion

The loadlayout function loads a SourcePoint window layout. A window layout is a set of open
SourcePoint windows along with their locations, sizes, docking style, etc. The default file
extension is .LYT. A set of layout files can be developed, each with a specific debugging purpose
in mind, which can be quickly accessed. Although multiple project files can be used to
accomplish this same functionality, loading a layout is less disruptive because it only affects
windows from the View menu that are open.

Keying in the command closes all existing windows, then opens the windows specified in the
layout file in the same size, position, and docking style in which they were saved.

« Note: If the loadlayout command is executed from a macro file, it must be the last command in
the file.

Example
Command input:

loadlayout("mylayout. lyt')

Related Topics:

savelayout

436

loadproject

Load a SourcePoint project file.
Syntax
loadproject([filename])

Where:

filename specifies a filename. See Filenames for details.

Discussion

SourcePoint Command Language

The loadproject function loads the specified project file. A project file contains all SourcePoint
settings including the position and size of each window. If a project file is not specified, then the

name of the currently loaded project file is displayed.
Example 1
To load a project file:

Command input:

loadProject(*'c:\\test\\test.prj')

Example 2

To display the name of the currently loaded project file:

Command input:
loadproject()
Result:

"c:\test\test.prj"

Related Topics:

reloadproject
unloadproject

437

SourcePoint for AMD 1.0

loadtarget

Load a target configuration.

Syntax

loadtarget(filename)

Where:

filename specifies a filename. See Filenames for details.
Discussion

The loadtarget command loads the specified target configuration. A target configuration includes
memory map settings, safe mode settings, flash programming parameters, emulator configuration
parameters, event macro, and Device window files to load. Target configurations are provided by
Arium. User-defined target configurations can be created by selecting Options | Save Target
Configuration.

Example
Command input:

loadtarget("'mytargetconfig'™)

438

SourcePoint Command Language

loadwatches
Load a set of variables to watch.
Syntax

loadwatches(filename, tab)

Where:

filename specifies a filename. See Filenames for details.

tab is a constant or expression specifying the tab number (1-4)
Discussion

The loadwatches command loads the specified watches into a Watch window tab. Watch files can
be created by adding variables to the Watch window and either selecting Save in the view, or by
using the savewatches command.

Example
To load a set of watches into the Watch 2 tab:
Command input:

loadwatches("'mywatches", 2)

Related Topics:

savewatches

439

SourcePoint for AMD 1.0

log, nolog

See list, nolist.

440

SourcePoint Command Language

log10

Return the base 10 logarithm of an expression.

Syntax

[result =] loglO0(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If

name is not specified, the return value is displayed on the next line of the screen.
expr specifies a number or an expression of type real8.

+» Note: Values returned by this function are in real8 (64-bit floating point) precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
10g10(0x20)
Result:

1.50515

Related Topics:

exp
loge
pow
sart

441

SourcePoint for AMD 1.0

loge

Return the natural logarithm of an expression.

Syntax

[result =] loge(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If

name is not specified, the return value is displayed on the next line of the screen.
expr Specifies a number or an expression of type real8.

+ Note: Values returned by this function are in real8 (64-bit floating point) precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
loge (0x20)
Result:

3.46574

Related Topics:

logl0

442

SourcePoint Command Language

logmessage
Display a user-defined message in the Log window.
Syntax

logmessage(type, string-exprl, string-expr2)

Where:

type specifies the type of message (see below).

string-exprl specifies the text to display in the component field; can be an nstring
variable or string constant.

string-expr2 specifies the text to display in the message field; can be an nstring
variable or string constant.

Discussion

The logmessage function adds a user-defined message in the Log window.

The type argument specifies the log message type:

LOG_ERROR Display an error message
LOG_WARNING Display a warning message
LOG_INFO Display an informational message
Example

To add an error log message in the Log window:
Command input:

logmessage(LOG_ERROR, 'user macro', "This is a test")

443

SourcePoint for AMD 1.0

macropath

Display the path of the macro currently being executed.
Syntax

macropath

Discussion

The macropath control variable is a string that contains the full path to the directory where the
currently executing macro is located. The string is terminated with a final slash/backslash path
delimiter. If this variable is referenced from a context outside of macro file execution, the result is
an empty string.

Example
Assume the currently executing macro C:\Program Files\Arium\SourcePoint\mac\big.mac.
Command input:

define nstring mymac = macropath + "other.mac';
mymac

Result:

"C:\Program Files\Arium\SourcePoint\mac\other._.mac"

Related Topics:

defaultpath
macropath
projectpath

444

SourcePoint Command Language

Memory Access
Display and modify memory.
Syntax
To display memory:
[[px]] data-type addr-spec [display-base]
To modify memory:

[[px]] data-type addr-spec = {expr[,---] | data-type addr-spec |
debug-var-array}

To fill memory:

[[px]] data-type destination-range = expr
To copy memory:

[[px]] data-type destination-range = data-type source-range

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias
you have defined for a given processor ID. ALL cannot be used as a
viewpoint override.

data-type specifies the data type used to access memory (e.g., ordl, ord2, ord4, etc.).
For more information, see Data Types.

expr specifies a number or an expression. You can enter more than one
expression by using a comma as a separator.

addr-spec {addr | addr-range}

addr specifies an address. For more information, see Memory Access: Addresses,
found later in this topic.

addr-range is an address range. There are two ways to specify a range: addrl to addr2

or addr length expr.
destination-range is a range of memory to write.
source-range is a range or memory to read.

addrl to addr2 specifies a range of memory beginning with address addrl and including
address addr2. Addr2 must be greater than addrl.

addr length expr specifies a range of memory beginning with address addrl. The range
includes a number of items (specified by expr).

expr specifies a number or an expression. You can enter more than one
expression by using a comma as a separator.

debug-var-array is an array of debug variables to write to memory (e.g., ord4 data[10]).
display-base specifies a temporary override of the current display base (bin | oct | dec |

445

SourcePoint for AMD 1.0

hex).
Discussion

For memory read commands, the requested data is displayed in the current base (specified by
the base control variable), unless an override is specified. Addresses are always displayed in
hexadecimal. If the data-type is ordl (or byte), the ASCII representation of the data is shown on
the right-hand side of the screen with non-printing characters displayed as a period.

Memory is read using the viewpoint processor unless a processor override is specified.

For a memory copy command, the source and destination ranges may not overlap, and the
destination range must be equal to or greater than the source range. If the destination range is
larger, the source data are repeated to fill the destination range of memory.

The data-type size is the resolution used for copy or fill. Only complete data items are written to
the destination, and the source and destination data-types must match.

You can also use memory access commands in an expression. For example, define ord4 varl =
byte 100hp takes the value at location 100hp, translates it to an ord4, and puts in a debug
variable name varl.

When a memory access operation is part of an expression, ranges of addresses are not allowed.
< Note: If verify=true, the emulator reads back what is written.
Example 1

To display a byte of memory:

Command input:

intl 20000h

Result:

42H

Example 2

To write 32 bits of memory at address 100:

Command input:

ord4 100 = 12345678
ord4 100

Result:

12345678H

446

SourcePoint Command Language

Example 3

To set a debug variable from 4 bytes of memory at addr 1000p:
Command input:

define ord4 myData = ord4 1000p

Example 4

To fill a range of memory with a single value and then display the range:
Command input:

ordl 100h length 20h = 30h
ordl 100h length 20h

Result:

00000100 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
00000110 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

Example 5
To copy a range of memory:

Command input:

ordl 200h length 20h
ordl 100h length 10h
ordl 100h length 10h

42
ordl 200h length 10h

Result:

00000100 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42
Example 6

To write a repeating sequence of values and display the new values:

Command input:

ord2 700h length 5t = 1,2,3
ord2 700h length 5t

Result:

00000700 0001 0002 0003 0001 0002

Example 7

447

SourcePoint for AMD 1.0

To copy a value from one memory location to another and read the new value:
Command input:

ordl 200hp = ordl 100hp
ordl 200hp

Result:

42H "'B™

Example 8

To copy the contents of a file to target memory at address O:
Command input:

define ord4 filel
define ord4 nltemsRead
define ordl buf[1000]
define ptr pMem = 0O

filel = fopen(“test.dat”, "'r")

while (feof(filel) == 0)

{
nltemsRead = fread(buf, filel)

ordl pMem length nltemsRead = buf
pMem += nltemsRead

}

fclose(filel)

Example 9

To copy the first 50 bytes of an array to target memory at address 0:
Command input:

define ordl buf[1000]

define ptr pMem = 0

ordl pMem length 50 = buf // copy FTirst 50 bytes

Example 10

To copy target memory beginning at address 1000h into an nstring variable (note that memory is
read until a terminating null character is found, or until 1000 characters have been read):

Command input:

define nstring filename = nstring 1000h
filename

448

SourcePoint Command Language

Result:

"c:\doc\test.txt"

Memory Access: Addresses

This section describes addresses used for memory access commands.
Syntax

expr [p]

Where:

expr specifies a number or an expression that will evaluate to a virtual address .
p causes an address to be interpreted as a physical address.

Discussion

Use memory access commands to access memory in the target system. When the <addr> option
appears in the syntax guide, enter an appropriate address, pointer debug variable, or an
expression that evaluates to an address.

The emulator supports physical and virtual addressing. It assumes that numeric addresses are
virtual unless overridden by a "p" (without quotation marks) suffix for physical address.

Virtual Address

A virtual address is the default emulator address type. The Memory Management Unit allows an
address to be mapped to a different physical address. This is frequently used to manage physical
memory allocation, as in the case where memory allocation of multiple processes with potentially
conflicting address mappings is needed.

Physical Address

A physical address is the address used as an index into physical memory.

Related Topics:

Data Types

449

SourcePoint for AMD 1.0

messagebox

Display a user-defined message box.

Syntax

[result =] messagebox(string-expr [, icon, buttons])
Where:

result is an ord4 return value containing the key

pressed by the user.

string-expr specifies the text to display; can be an
nstring variable or string constant.

icon specifies the icon type to display in the
message box.

buttons specifies the button layout of the message
box.

Discussion

The messagebox function displays a user-defined message box with variable text, icons, and
button layouts.

The icon argument is optional. If not specified, then MB_ICONEXCLAMATION is assumed.
Possible icons include:

MB_ICONINFORMATION | Displays an information icon

MB_ICONEXCLAMATION | Displays an exclamation mark
icon

MB_ICONQUESTION Displays a question mark icon

The button argument is optional. If not specified, then MB_OK is assumed. Possible button
layouts include:

MB_OK Display a single OK button

MB_OKCANCEL Displays OK and Cancel
buttons

MB_YESNO Displays Yes and No buttons

MB_YESNOCANCEL Displays Yes, No, and
Cancel buttons

MB_RETRYCANCEL Displays Retry and Cancel
buttons

MB_ABORTRETRYIGNORE | Displays Abort, Retry, and
Ignore buttons

The messagebox function returns a value corresponding to which button was pressed. Possible
return values include:

450

SourcePoint Command Language

ID_OK OK button was pressed
ID_YES Yes button was pressed
ID_NO No button was pressed
ID_RETRY Retry button was pressed
ID_IGNORE Ignore button was pressed
ID_CANCEL Cancel button was pressed
ID_ABORT Abort button was pressed
Example 1

To open a message box with a single OK button.

Command input:

messagebox(*'This is a test™)

Example 2

To open a multi-line message box:

Command input:

messagebox(*'This is line 1\n\nAnd this is line 2")

Example 3

To open a message box with Yes and No buttons (messagebox checks whether the Yes button

was pressed):

Command input:

if (messagebox('Yes or No?', MB_ICONQUESTION, MB_YESNO) == ID_YES)

{

// execute some additional code

}

451

SourcePoint for AMD 1.0

mid
Extract a number of characters from the middle of a string.
Syntax

[result =] mid(string-expr, n, m)

Where:

result specifies an nstring variable to which the function return value is assigned.
If result is not specified, the return value is displayed on the next line of the
screen.

string-expr specifies an nstring variable or string constant.

n specifies the 0-based index of the first character to extract.

m specifies the number of characters to extract.

Discussion

The mid function returns a substring from the middle of a string. If the number of characters to
extract exceeds the number of characters in the string, then the command behaves like the right
command.

Example

Command input:

define nstring month = "January"
define nstring temp = mid(month, 3, 3)
temp

Result:

“uar''

Related Topics:

o}
=

=
=0
—

452

SourcePoint Command Language

msgclose

Complete the construction of a JTAG message.
Syntax

[result =] msgclose(msg-handle)
Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the JTAG message was successfully closed. FALSE indicates an
error occurred, such as the JTAG message was not found.

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was
created.

Discussion

Use the msgclose command after all the scans have been added to the message. No more scans
can be added to the JTAG message after msgclose executes. An error is returned if the JTAG
message contains no scans.

Example
Command input:

// Create a JTAG message
define handle h
msgopen(h)

msgir(h, 7, 2)

msgdr(h, 20, 2)
msgclose(h)

Related Topics:

msgopen
msgreturndatasize

msgscan

453

SourcePoint for AMD 1.0

msgdata

Retrieve the return data of all scans in a JTAG message previously scanned to the target
device(s).

Syntax

[result =] msgdata(msg-handle, return-array)

Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the command was successful. FALSE indicates an error occurred
(e.g., the specified JTAG message was not found).

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG command was
created.

return-array is the previously defined array of ord1, ord2, or ord4 in which the data
returned from the scan of target device(s) is stored.

Discussion

Use the msgdata command to retrieve the data that was generated by the msgscan command.
The scan data is associated with the JTAG message specified by handle. The return array used
to store the scan data can be of type ordl, ord2 or ord4. An error is returned if the msgscan
command has not been run on the JTAG message specified by handle.

If multiple read scans are done and more than one set of scan data is expected, the sets of scan
data are packed bit-aligned (not separated by any bits). For example, if two read scans are
performed and a 5-bit data set containing 10001 and a 7-bit data set containing 0111110 are
expected, then an ord1 return array of size 2 (two bytes) would contain all 12 bits next to each
other with the four extra bits set to zero as follows. Note that the actual data is in bold and the
filler O bits are normal.

MSB 1000101111100000 LSB
data [0]=EOH "."
data [1]=8BH "."

Example

Command input:

// Read JTAG ID from processor

define handle h

define ord2 device = 0

msgopen(h)

msgir¢h, 8, 2) // 8=ir length, 2=idcode
msgdr(h, 0n32, 2)

454

SourcePoint Command Language

msgclose(h)

msgscan(h, device)

define ord4 count = 0
msgreturndatasize(h, count, device)
define ordl data[count]

msgdata(h, data)

data

msgdelete(h)

Related Topics:

msgclose
msgdelete
msqgdr
msqir

msgopen
msgreturndatasize

msgscan

455

SourcePoint for AMD 1.0

msgdelete

Delete a JTAG message.

Syntax

[result =] msgdelete(msg-handle)
Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the JTAG message was successfully deleted. FALSE indicates an
error occurred, such as the JTAG message was not found

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was created

Discussion

Use the msgdelete command to release a JTAG message handle so it can be used again.
Example

Command input:

define handle h
msgopen(h)
msgir(h, 4, 2)
msgclose(h)
msgscan(h)
msgdelete(h)

Related Topics:

msgclose
msgdata
msqdr
msqir

msgopen
msgreturndatasize

msgscan

SourcePoint Command Language

msgdr

Add a DR scan into an existing JTAG message.

Syntax

[result =] msgdr(msg-handle, dr-length, readwrite[drscan-option])
Where drscan-option is one of the following:

[drscan-option] = [, write-array, [scan-chain, [0, [stop-state[, O]1111
[drscan-option] = [, write-value, [scan-chain, [0, [stop-state[, O]11111

Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the DR scan was successfully added to the JTAG message. FALSE
indicates an error occurred, such as the JTAG message was not found.

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was

created.

dr-length is an ord4 that contains the number of bits to be scanned to a data register
(DR).

readwrite is an ordl that specifies the type of DR scan. See valid readwrite values
below.

write-array is an array of type ordl, ord2, or ord4, of bits to scan to the data register. If no
write-array is specified, then zeros are scanned.

write-value is an ord1, ord2, or ord4 value to scan to the data register. If no write-value is
specified, then zeros are scanned.

scan-chain is an ordl that specifies which scan chain to select on the debug port. This
may only be either O or 1. If scan-chain is not specified, then scan chain 0 is
used.

stop-state is an ordl that specifies the TAP state in which to stop at the end of the scan.

If stop-state is not specified, then 0 (RTI) is used.
Discussion

Use the msgdr command to add a data register (DR) scan to the open JTAG message. The DR
length must be specified. The additional section of parameters, drscan-option, is optional. This
command returns an error if the JTAG message has been closed.

The legal readwrite values for DR scans are:

write-only

readwrite

read0 (read by writing Os to DR)
readl (by writing 1s to DR)

WIN|F|O

The legal stop-state values are:

457

SourcePoint for AMD 1.0

RTI : default

CAPTURE-PAUSE: stop in the DR pause state, no data are shifted

PAUSE: stop in the DR pause state

WIN|F|O

CAPTURE-RTI: force through the DR capture state, no data are
shifted and stop in RTI

4 RTI-DUAL: go to RTI from the DR PAUSE, clocks both time bases, no
data are shifted

5 CAPTURE-PAUSE-DUAL: stop in the DR pause state, clocks both
time bases, no data are shifted

Example
Command input:

// Read JTAG ID from processor
define handle h

define ord2 device = 0

msgopen(h)

msgir(h, 8, 2) // 8=ir length, 2=idcode
msgdr(h, 0n32, 2)

msgclose(h)

msgscan(h, device)

define ord4 count = 0O
msgreturndatasize(h, count, device)
define ordl data[count]

msgdata(h, data)

data

msgdelete(h)

Related Topics:

msgclose
msgdata
msgdelete

msqir

msgopen
msgreturndatasize

msgscan

458

SourcePoint Command Language

msgdump

Display all scan operations defined in a JTAG message.
Syntax

[result =] msgdump([msg-handle])

Where:

result is an nstring debug variable that contains the string representations of each
scan operation.

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was created

Discussion

Use the msgdump command to display a textual form of the contents of the specified message
including any scan results. If msg-handle is not specified, then all existing messages are
displayed.

Example
Command input:

define handle h
msgopen(h)
msgir(h, 4, 2)
msgclose(h)
msgdump(h)

Result:

State: Open
Scanned: No

Scan Operations:
Register Type: IR

Length: 4 bits

Read/Write: WriteOnly

Write Data: MSB 0010 LSB
02

Scan Chain: 0

Related Topics

msgclose
msgdata
msgdelete

459

SourcePoint for AMD 1.0

msgopen
msgreturndatasize

msgscan

460

SourcePoint Command Language

msgir
Add an IR scan into and existing JTAG message.
Syntax

[result =] msgir(msg-handle, ir-length, write-array, [irscan-option])
[result =] msgir(msg-handle, ir-length, write-value, [irscan-option])

Where irscan-option is:
[irscan-option] = [, readwrite, [scan-chain, [0, [stop-state, [0]1111
Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the IR scan was successfully added to the JTAG message. FALSE
indicates an error occurred, such as the JTAG message was not found.

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was

created.

ir-length is an ord4 that contains the number of bits to be scanned to an instruction
register (IR).

write-array is an array of type ordl, ord2, or ord4, of bits to scan to the instruction register.
If no write-array is specified, then zeros are scanned.

write-value is an ordl, ord2, or ord4 value to scan to the instruction register. If no write-
value is specified, then zeros are scanned.

readwrite is an ordl that specifies the type of IR scan. See valid readwrite values below.

scan-chain is an ordl that specifies which scan chain to select on the debug port. This
may only be either 0 or 1. If scan-chain is not specified, then scan chain 0 is
used.

stop-state is an ordl that specifies the TAP state in which to stop at the end of the scan.

If stop-state is not specified, then 0 (RTI) is used.
Discussion

Use the msgir command to add an instruction register (IR) scan to the open JTAG message. The
IR length must be specified. The additional section of parameters, irscan-option, is optional. This
command returns an error if the JTAG message has been closed.

The legal readwrite values for IR scans are:

0 write-only
1 readwrite

The legal stop-state values are:

0 RTI: default
1 CAPTURE-PAUSE: stop in the IR pause state, no data are shifted

461

SourcePoint for AMD 1.0

2 PAUSE: stop in the IR pause state

3 CAPTURE-RTI: force through the IR capture state, no data are
shifted and stop in RTI

4 RTI-DUAL: go to RTI from the IR PAUSE, clocks both time bases, no
data are shifted

5 CAPTURE-PAUSE-DUAL: stop in the IR pause state, clocks both
time bases, no data are shifted

Example
Command input:

// Read JTAG ID from processor
define handle h

define ord2 device = 0

msgopen(h)

msgir(h, 8, 2) // 8=ir length, 2=idcode
msgdr(h, 0n32, 2)

msgclose(h)

msgscan(h, device)

define ord4 count = 0
msgreturndatasize(h, count, device)
define ordl data[count]

msgdata(h, data)

data

msgdelete(h)

Related Topics:

msgclose
msgdata
msgdelete

msqdr

msgopen
msgreturndatasize

msgscan

462

SourcePoint Command Language

msgopen
Create a new JTAG message.

Syntax

[result =] msgopen(msg-handle)
Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the command was successful. FALSE indicates an error occurred.

msg-handle is the name of a previously defined debug variable of type handle. This is a
reference parameter that is modified by msgopen. After msgopen completes,
msg-handle contains a unique value that identifies this JTAG message.

Discussion

Use the msgopen command to create an empty JTAG message and assign a unique identifier to
msg-handle. The specified msg-handle must exist or an error is reported. If the msg-handle points
to a JTAG message that has already been opened (even if it has been closed), an error is
reported.

Example
Command input:

define handle h
msgopen(h)
msgir(h, 4, 2)
msgclose(h)
msgdelete(h)

Related Topics:

msgclose
msgdata

msgopen
msgreturndatasize

msgscan

463

SourcePoint for AMD 1.0

msgreturndatasize

Retrieve the size (in bytes) of the return data that the JTAG message generates when scanned to
the target devices.

Syntax

[result =] msgreturndatasize (msg-handle, data-size-var, device-array)
[result =] msgreturndatasize (msg-handle, data-size-var, device-id)

Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the command was successful. FALSE indicates an error occurred,
such as the JTAG message was not found.

msg-handle is the name of a previously defined debug variable of type handle.

data-size-var is an ord4 debug variable that contains the return data size (in bytes). This is
a reference parameter and is modified by the msgreturndatasize command.

device-array is the previously defined ord2 array of device ids (so that multiple devices
can be scanned simultaneously).
device-id is the device id for a single target system device. This is a boundary scan list

device position.
Discussion

Use the msgreturndatasize command to determine the size (in bytes) of the array to pass in to
msgdata. The return-array used in the msgscan and msgdata commands must be at least this
large, or an error is returned. The command returns an error if called before the JTAG message
has been closed.

Different sets of devices can be used with this command as the number of bytes returned
depends on the devices specified in the scan command. An error is returned if the devices in the
device-array are not on the same debug port; no other verification of the list is done.

Example
Command input:

// Read JTAG ID from processor
define handle h

define ord2 device = 0

msgopen(h)

msgir(¢h, 8, 2) // 8=ir length, 2=idcode
msgdr(h, 0n32, 2)

msgclose(h)

msgscan(h, device)

define ord4 count = 0
msgreturndatasize(h, count, device)
define ordl data[count]

msgdata(h, data)

data

msgdelete(h)

464

SourcePoint Command Language

Related Topics:

msgclose
msgdata
msgdelete
msqdr
msqir
msgopen
msgscan

465

SourcePoint for AMD 1.0

msgscan
Send a JTAG message to the emulator and scan it to the target devices.
Syntax

[result =] msgscan(msg-handle, device-array [, return-array])
[result =] msgscan(msg-handle, device-id [, return-array])

Where:

result is a boolean variable that contains the return value of this command. TRUE
indicates the scan was successful. FALSE indicates an error occurred, such
as the JTAG message was not found.

msg-handle is the name of a previously defined debug variable of type handle. This is the
variable that was passed in to msgopen when the JTAG message was
created.

device-array is the previously defined ord2 array of device IDs (so that multiple devices
can be scanned simultaneously).

device-id is the boundaryscanlist device position (ord2) for a single target system
device.

return-array is a previously defined array of ord1, ord2, or ord4 in which the data returned
from the scan of target device(s) is stored.

Discussion

Use the msgscan command to send a JTAG message to the emulator. This command returns an
error if the devices in the device-array are not on the same debug port; no other verification of the
list is done. The command returns an error if called before the JTAG message has been closed.

If a return-array is specified, the command waits for the JTAG message to complete and copies
the scan data to the array. If the command is used without a return-array, the JTAG message
begins to scan. The msgdata command must be used to access the return data.

Example
Command input:

// Read JTAG ID from processor
define handle h

define ord2 device = 0

msgopen(h)

msgir(¢h, 8, 2) // 8=ir length, 2=idcode
msgdr(h, 0n32, 2)

msgclose(h)

msgscan(h, device)

define ord4 count = 0
msgreturndatasize(h, count, device)
define ordl data[count]

msgdata(h, data)

data

msgdelete(h)

466

SourcePoint Command Language

Related Topics:

msgclose
msgdata
msgdelete
msqdr
msqir

msgopen
msgreturndatasize

467

SourcePoint for AMD 1.0

msr

Display or change the contents of a specified MSR (Model Specific Register).
Syntax

LLpx1] msr(n) [= expr]

Where:

[pX] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a given
processor ID. ALL cannot be used as a viewpoint override.

n specifies an MSR number. The use of parentheses is optional.
expr specifies a 64-bit number. Using this option changes the contents of the selected MSR

Example 1

To display the contents of MSR 5:
Command input:

msr(5)

Result:

0000000000000001H

Example 2

To display the contents of MSR 5 for P1.:
Command Input:

[P1] msr (5)

Result:

0000000000000040

Example 3

To change the contents of MSR 1D9H:
Command input:

msr(1D9H) = 41H

468

SourcePoint Command Language

Related Topics

register access
Reqisters Window Introduction

469

SourcePoint for AMD 1.0

num_activeprocessors

Display the number of active processors (non-sleeping) on the target.
Syntax

[result =] num_activeprocessors

Discussion

The num_activeprocessors control variable returns an integer representing the number of active
processors on the target. This value will be zero when the target has not yet been configured.
This variable is read-only.

Example
Command input:

define ord4 nCount = num_activeprocessors
nCount

Result:

00000003H // 3 processors

Related Topics

num_activeprocessors
num_devices
num jtag devices

470

SourcePoint Command Language

num_all_devices

Display the number of items in the device configuration.
Syntax

[result =] num_all _devices

Discussion

The num_all_devices control variable returns an integer representing the number of items in the
Device Configuration. After apconfigure(), this value will be the same as num_aps. After
deviceconfigure(), it will return the sum of JTAG devices, CoreSight Devices, and CoreSight APs.
This variable is read-only.

Example
Command input:

define ord4 nCount = num_all_devices
nCount

Result:

00000012H // 18 devices

Related Topics

num jtag chains
num jtag devices
Target Configuration

471

SourcePoint for AMD 1.0

num_devices

Display the number of JTAG devices in the target system.
Syntax

[result =] num_devices

Discussion

Use the num_devices control variable to determine the number of JTAG devices in the target
system. Using the control variable in an expression returns the current value.

< Note: This control variable has been replaced by num_jtag_devices and is provided only to
support legacy operation. Please use num_jtag_devices instead.

Example 1

To check the number of JTAG devices in a system with 9 devices:
Command input:

num_devices

Result:

9

Example 2

To use the control variable in an expression:

Command input:

define ord2 o2NumDev
02NumDev=num_devices
02NumbDev

Result:

9

Related Topics

num jtag devices
num_processors

472

SourcePoint Command Language

473

SourcePoint for AMD 1.0

num_jtag_chains

Display the number of configured JTAG chains on the target.
Syntax

[result =] num_jtag_chains

Discussion

The num_jtag_chains control variable returns an integer representing the number of configured
JTAG chains on the target. This value will be zero when the target has not yet been configured.
This variable is read-only.

Example

Command input:

define ord4 nCount = num_jtag chains
nCount

Result:

00000001H // 1 JTAG chain

Related Topics

num_all devices
num _jtag devices
Target Configuration

474

SourcePoint Command Language

num_jtag _devices

Display the number of configured JTAG TAP devices on the target.
Syntax

[result =] num_jtag_devices

Discussion

The num_jtag_devices control variable returns an integer representing the number of configured
JTAG TAP devices on the target. This value will be zero when the target has not yet been
configured. This variable is read-only.

Example
Command input:

define ord4 nCount = num_jtag_devices
nCount

Result:

00000003H // 3 JTAG devices

Related Topics

num all devices
num jtag chains
Target Configuration

475

SourcePoint for AMD 1.0

num_processors
Display the number of processors on the target.
Syntax

[result =] num_processors

Discussion

The num_processors control variable returns an integer representing the number of processors
on the target. This value will be zero when the target has not yet been configured. This variable is
read-only.

Example
Command input:

define ord4 nCount = num_processors
nCount

Result:

00000003H // 3 processors

Related Topics

num_jtag devices
num_activeprocessors

476

SourcePoint Command Language

pause
Suspend macro execution until a key is pressed.
Syntax

[result =] pause

Where:

result specifies a debug variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

Discussion

Use the pause command to suspend macro execution until a key is pressed.

< Note: The following keys will not complete a pause: F1-F12, Page up, Page down, Num Lock,
Caps Lock, Scroll Lock, Shift, Ctrl, Alt.

Example 1
To delay execution of a macro and save the character entered:
Command input:

puts('waiting for user input:\n')
define char ch = pause

Result:

waiting for user input:

Example 2

To delay execution of a macro without saving the character entered:
Command input:

puts(*'press any key to continue:\n'"")
pause

Result:

press any key to continue:

Related Topics:

477

SourcePoint for AMD 1.0

—~ |0 [O

478

SourcePoint Command Language

physical
Convert an address to a physical address.
Syntax

[[px]1] physical(addr)

Where:

[px] is a viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

addr specifies an address to be translated into a physical address. The parentheses
are optional.

Discussion

Use the physical command to convert the specified address to a physical address using the
address translation rules currently in force in the target system (e.g., paging or current processor
mode).

e If you enter a physical address, it is returned unchanged.
e If you enter a virtual address, it is first translated to a linear address and then to a
physical address. If the translation is not allowed, an error message is returned.
e If you enter a linear address in Page-Protected mode (the PG bit =1 and the PE bit=1),
the page tables accessible using the current page directory base (CR3) are searched for
a page containing the specified linear address. The search begins with the first entry in
the page directory table (PDT). The first match found is reported. If no match is found, an
error message is returned. If paging is not enabled (PG bit = 0), then the linear address is
returned.
Example 1
To translate a virtual address:
Command input:
physical 1000:1234

Result:

11234pP
Example 2

Command input:

479

SourcePoint for AMD 1.0

define ptr addr = 1234
physical (addr+4)

Result:

11238P

Related Topics

linear

480

SourcePoint Command Language

port
Display or change the contents of an 8-bit I/O port.
Syntax

[result =] [[px]1] port(io-addr) [= expr]

Where:

result specifies an debug variable of type ord 1 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line of the
screen.

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is

temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a given
processor ID. ALL cannot be used as a viewpoint override.

io-addr specifies a 16-bit address in the processor I/O space. The available io-addr range is
0 to Offffh. The use of parentheses is optional.

expr specifies a 8-bit number or expression. Using this option writes the data to the
specified 1/0 port.

Discussion

Use the port command to read from and write to the specified I/O port with the specified 8-bit
data. You can access up to 64K 8-bit ports.

Example 1

To display and change the contents of the 1/O port at address 88h:
Command input:

port 88h

Result:

0088H FFH "."

Command input:

port 88h = Oabh
port 88h

Result:

ABH ™.

Example 2

481

SourcePoint for AMD 1.0

To assign one port value to another port:

Command input:

port 90h = port 88h

Example 3

To create a debug variable named portvar and assign a port value to it:
Command input:

define ordl portvar
portvar = port 90h
portvar

Result:

FFH

Related Topics

dport
wport

482

SourcePoint Command Language

pow
Raises a value by a power.

Syntax

[result =] pow(expr, power)
Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
name is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8.
power specifies a number or an expression of type real8.

Discussion

The pow function raises the value specified by expr to the power specified by power (same as y*
on a calculator).

+«» Note: Values returned by this command are in real8 (64-bit floating point) precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example 1
Command input:
pow(3,3)
Result:

27

Example 2
Command input:
pow(3.1, 4.2)
Result:

115.803

483

SourcePoint for AMD 1.0

print cycles
Print trace data to a file.
Syntax

print cycles [startCycle to endCycle | startCycle length count]

Where :

startCycle is a trace cycle state number.
endCycle is a trace cycle state number.
count is an integer expression.
Discussion

The print cycles command "prints” or saves all of a portion of the trace buffer to a file named
"trc.txt" in the CWD path. If the "trc.txt" file does not exist, one will be created. If the file does
exist, it will be overwritten with the new print cycles data.

The range is an optional cycle range. If the range is omitted, print cycles defaults to all cycles.
This same functionality is available in the Trace window by selecting Save As in the File menu.

The formatting of the data matches the Trace window. If more than one Trace window is open,
the last active window is used.

Examples
Command inputs:

print cycles // prints the entire trace buffer
print cycles 0 length 100T // print 100 cycles beginning at state 0O
print cycles -100T to O // print trace from state -100 to state O

< Note: In the Trace window, the cycle number is in decimal. But when entered into the
Command window, SourcePoint interprets it as a hex number unless there is a "T" on the end.

484

SourcePoint Command Language

printf
Write formatted output to the Command window.
Syntax

printf("format” [, expr] [---1)

Where:

"format" is a list of conversion specifications that corresponds to the like-ordered items
in the list of expressions. Quotation marks are required.

expr is an expression that is evaluated and displayed.

Discussion:

Use the printf function to write formatted output to the Command window. The printf command is
similar to the C-language printf routine.

The format string is comprised of a series of conversion specifications of the form:

"% [Fflags] [width] [.precision] [data-length] conversion-operator™
These fields are defined as follows:

Flags

The flags element can be one of the following:

Flag Description

- (minus) causes the output to left-justify.

+ (plus) causes signed numeric output to always display a sign.

0 (zero) causes the field to zero fill.

(space) causes the field to space fill (default)

Width

Use the digits 0 through 9 to define the minimum width of a field. Use an asterisk (*) to assign this
value from an expression.

Precision

Use the digits 0 through 9 to define the decimal precision of a field.

Data-length

The following list gives the data size operators and their descriptions. If not specified the length is

determined from the expression itself.

485

SourcePoint for AMD 1.0

Operator Description

h typecasts the corresponding argument to a 16-bit value.
I, L typecasts the corresponding argument to a 32-bit value.
164 typecasts the corresponding argument to a 64-bit value (SourcePoint extension).

1128 typecasts the corresponding argument to a 128-bit value (SourcePoint extension).

Conversion-operator

The following list gives the conversion operators and their descriptions.

Operator
d,i

Description

displays corresponding argument in signed decimal

displays corresponding argument in unsigned decimal

displays corresponding argument in octal

displays corresponding argument in hexadecimal

displays corresponding argument as floating-point

displays corresponding argument as a character

displays corresponding argument as a null-terminated string

displays corresponding argument as a boolean (SourcePoint extension).
displays corresponding argument in binary (SourcePoint extension).
displays corresponding argument in the current default number base
(SourcePoint extension).

displays corresponding argument as a pointer (SourcePoint extension).

Escape Characters

The printf function

Escape Character
\b

\f

\n

\r

\t

\

\H

\nnn

\xnn

Example 1

accepts the following escape characters. The leading backslash is required.

Description

backspace

form-feed

new line (flushes output to the Command line)

carriage return

tab

backslash

double quote

a three-digit octal number that represents the ASCII value of the
character. This value enables characters that are not directly
available from the keyboard to be inserted into a character string.
a two-digit hexadecimal number that represents the ASCII value of
the character. This value enables characters that are not directly
available from the keyboard to be inserted into a character string.
The x indicates that a hexadecimal number follows

To print a simple message to the screen (the \n character is required to flush output to the

Command line):

Command input:

486

SourcePoint Command Language

printF("'This is my message.\n"")
Result:

This is my message.

Example 2

To use character strings to print a date:
Command input:

define nstring date = '"'Saturday"
define ordl day = 3
printf("'Today is %s, the %drd of July.\n", date, day)

Result:

Today is Saturday, the 3rd of July.

Example 3

To print a message with an audible beep (007 octal is the ASCII code for beep):

Command input:
printF(C"\OO7ATTENTION: Emulation has stopped \n')
Result:

ATTENTION: Emulation has stopped

Related Topics:

fprintf
putchar
puts
sprintf

487

SourcePoint for AMD 1.0

proc
Display a debug procedure.
Syntax

proc proc-name
Discussion

The proc command displays a debug procedure (proc-name) that has been previously defined
with the define command.

Example

The following example shows how to define a procedure named '‘power."
This proc returns the result of a value and its exponent.

Command input:

define proc power(argl, arg2)
define intl argl
define intl arg2

{
define intl index
define ord4 result =1
for (index = 1 ; index <= arg2 ; index += 1)
result = result * argl
return result
3

proc power
Result:
define proc power(argl, arg2)

define intl argl
define intl arg2

{
define intl index
define ord4 result =1
for (index = 1 ; index <= arg2 ; index += 1)
result = result * argl
return result
}

488

SourcePoint Command Language

pt’OCGSSOI’COﬂtI’O|

Specify which processors in the target system are to be controlled by the emulator.
Syntax

processorcontrol [= expr]

Where:

expr is a mask value indicating which processors are to be controlled by the emulator.
Discussion

The processorcontrol control variable allows some processors to be under the control of the
emulator while other processors are left alone. The mask value includes one bit per processor
with Bit O corresponding to the first processor in the JTAG chain, Bit 1 corresponding to the
second processor in the JTAG chain, and so on. A value of 1 indicates the processor is controlled
by the emulator. A value of 0 indicates the emulator will not access that processor.

Typing processorcontrol without an expression displays the current mask value.
This control variable is only applicable in multiprocessor targets.
e A mask value of 0 is not allowed.
e Upper bits (beyond the number of processors in the JTAG chain) are ignored.
e The Viewpoint view displays a status of "unavailable” for processors that are not under

control of the emulator.
e Masked processors always have a "not ready” status.

Example 1

To display the current mask value:

Command input:

processorcontrol

Result:

3 // PO and P1 are under control of the emulator
Example 2

To enable run control of only the second processor in a two processor target.
Command input:

processorcontrol = 2

489

SourcePoint for AMD 1.0

490

SourcePoint Command Language

processorfamily

Display a string identifying the family to which the processor belongs.
Syntax

[result =] processorfamily

Where:

result specifies an nstring variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

Use processorfamily to get a unique string that identifies the family of the current processor. In a
multiprocessor system, the family of the processor with the current viewpoint is displayed. This
function is read-only.

Example 1
Command input:
processorfamily
Result:

P6

Example 2
Command input:

define nstring family = processorfamily
family

Result:

"pg

Related Topics:

processortype

491

SourcePoint for AMD 1.0

processormode

Display a string identifying the operating mode of the current processor.
Syntax

[result =] processormode

Where:

result specifies an nstring variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

Use the processormode command to get a unique string that identifies the mode of the current
processor. In a multiprocessor system, the mode of the processor with the current viewpoint is
displayed. This control variable is read-only.

Example
Command input:
processormode
Result:

64 Bit

Related Topics

processorcontrol

processorfamily
processortype

492

SourcePoint Command Language

processors

Display the number of processors present in the target system.
Syntax

[result =] processors

Where:

result specifies an ord4 debug variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

Discussion

The processors control variable displays the number of processors in the current base setting.
Example 1

+« Note: Assume three processors are present.

Command input:

processors

Result:

0003H

Example 2

Command input:

define ord2 nCount = processors
nCount

Result:

OO003H

493

SourcePoint for AMD 1.0

processortype

Display a string identifying the processor.
Syntax

[result =] processortype

Where:

result specifies an nstring variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

Use the processortype command to get a unique string that identifies the current processor. In a
multiprocessor system, the identifier of the processor with the current viewpoint is displayed. This
function is read-only.

Example 1

Command input:
processortype

Result:

x86 Family 6 Model 2A(SB)
Example 2

Command input:

define nstring type = processortype
type

Result:

"x86 Family 6 Model 2A(SB)"

Related Topics:

processorfamily

494

SourcePoint Command Language

projectpath

Display the project file path.
Syntax

projectpath

Discussion

The projectpath control variable contains a string that is the full path to the directory where the
SourcePoint project file is located. The string is terminated with a final slash/backslash path
delimiter. This variable can be used to avoid hard-coded file paths by referencing them relative to
the SourcePoint project file directory.

Example
Assume the current project file is C:\Program Files\Arium\SourcePoint\sp.prj.
Command input:

define nstring mymac = projectpath + "mac\\big.mac";
mymac

Result:

"C:\Program Files\Arium\SourcePoint\mac\big.mac""

Related Topics:

defaultpath
homepath
macropath

495

SourcePoint for AMD 1.0

putchar

Display a character in the Command window.

Syntax

putchar(char-expr)

Where:

char-expr is a quoted character or an expression that evaluates to a character
Discussion

The putchar command displays a character in the Command window.

Example

Command input:

define char cvar = "a
putchar(cvar); putchar(cvar+1l); putchar("\n")

Result:

ab

Related Topics:

puts
printf

496

SourcePoint Command Language

puts
Display a string in the Command window.
Syntax

puts(string-expr)

Where:

string-expr specifies an nstring variable, quoted string constant, or an expression that
evaluates to a string.

Discussion

The puts command displays a string in the Command window. The \n' character is required to
flush output.

Example
Command input:

define nstring date = "6/2/53\n""
puts(date)

Result:

6/2/53

Command input

puts(*'string constant \n')

Result:

string constant

Related Topics:

putchar
printf

497

SourcePoint for AMD 1.0

rand
Return a random number.
Syntax

[result =] rand()

Where:

result specifies a debug variable of type int4 to which the function return value is assigned.
If name is not specified, the return value is displayed on the next line of the screen.

Discussion

Return a pseudo-random number of int4 data type. If you previously executed the srand function,
the rand function uses the output of the srand function as its source expression. If the srand
function has not been previously executed, the rand function generates a less-random number.

Example
The following example illustrates the srand and rand functions:
Command input:

define int4 card
srand(3)

card = rand(Q)
card

Result:

16838T // result may vary

Command input:

rand()
Result:

5758T // result may vary

Related Topics:

srand

498

SourcePoint Command Language

readsetting
Read settings within SourcePoint.
Syntax

[result =] readsetting(type, name)

Where

result specifies an ord4 variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

type is an nstring or string constant specifying the type of setting.

name is an nstring or string constant specifying the setting name.

Discussion

The readsetting command is used to read settings within SourcePoint. Usually, these settings are
changed via the Ul (e.g., the Emulator Configuration dialog box). There are times, however, when
it is convenient to be able to change these settings within a macro file.

The type argument specifies the type of setting to change. Currently, the only type supported is
"em” for emulator configuration settings.

The name argument specifies the name of the setting to change. The name is not what is
displayed in the Ul, but rather the name used in the SourcePoint project file. Names can be
obtained by looking in the project file in the emulator configuration section.

Example

The following example returns the Adaptive TCK setting. The possible values are 0, 1 and 2
corresponding to which radio button is selected in the UI.

Command input:

readsetting('em”, "AdaptiveTck')

Result:

00000001H // 1 = Use adaptive TCK

Related Topics:

writesetting

499

SourcePoint for AMD 1.0

reconnect

Reconnect the emulator to the target.
Syntax

reconnect

Discussion

The reconnect command connects the emulator to the target. The emulatorstate control variable
transitions to state 2 (fully connected). This command has the same effect as pressing the
Reconnect button in the Processor toolbar.

Example
Command Input:

disconnect // disconnect from target
reconnect // reconnect to target

Related Topics

emulatorstate
disconnect
Target Configuration

500

SourcePoint Command Language

Register Access
Display or change the contents of a processor register.
Syntax

[[px]] reg-name [= expr]
[[px]] reg-name.bit-name [= expr]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint
is temporarily set to processor x of the boundary scan chain. The processor can
be specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL cannot be used as a viewpoint override.

reg-name specifies the name of a register.

bit-name specifies the name of a bit within a register.
expr specifies a number or expression.
Discussion

Use the reg command to set or display the contents of a specified register. Register contents are
displayed in the current number base. Processor register names can also be used in expressions.
Register and bit names are case insensitive.

Example 1

To display the value of EIP for the current viewpoint processor:
Command input:

EIP

Result:

000002B0OH

Example 2

To set the value of EIP for processor 1:

Command input:

[P1] EIP = 1000
[P1] EIP

Result:

00001000H

501

SourcePoint for AMD 1.0

Example 3

To display the value of the ZF bit in the eflags register:
Command input:

eflags.zf

Result:

FALSE

Related Topics:

Sr

502

SourcePoint Command Language

reload

Reload user program.
Syntax

reload

Discussion

The reload command repeats the last executed load command. The filename and arguments
specified in the load command are the same.

Example
Command input:

load "test.axf"
reload // reload test.axf

Related Topics:

load
unload

503

SourcePoint for AMD 1.0

reloadproject

Reload the current SourcePoint project file.
Syntax

reloadproject()

Discussion

The reloadproject command reloads the current project file. This command causes SourcePoint
to reestablish communications with the emulator.

Example
Command input:

reloadproject()

Related Topics:

loadproject
unloadproject

504

SourcePoint Command Language

remove
Remove debug objects.
Syntax

remove name
remove {data-type | debug | alias | proc} [name]

Where:

data-type specifies the variable type to remove (see Data Types).
debug specifies that all aliases, debug variables and debug procedures are removed.

alias specifies that aliases are to be removed.

proc specifies that debug procedures are to be removed.

name specifies the name of the object to remove. * and ? can be used as wildcard
characters.

Discussion

Use the remove command to remove debug objects created with the define command. These
include debug variables, procedures and alias definitions.

If name is not specified, * is assumed.

Example 1

To remove all debug variables starting with the letters var:
Command input:

remove var>

Example 2

To remove only the debug procedure showregs:
Command input:

remove showregs

Example 3

To remove all debug objects:

Command input:

remove debug

505

SourcePoint for AMD 1.0

Example 4
To remove all procedure definitions:
Command input:

remove proc

Related Topics:

#define
#undef
define
show

506

SourcePoint Command Language

reset

Reset specified target system functions.
Syntax

reset emulator

reset [target [O | 1]]
reset tap [(Jtag-chain)]

Where:

emulator resets the emulator.

target resets the target and the target processor.

tap resets the target Test Access Port (TAP) by asserting/deasserting the TRST

signal.
jtag-chain is an optional parameter that specifies on which jtag chain to assert the reset.

Discussion

Use the reset command to reset the target, emulator, or JTAG chain. All active SourcePoint
windows are refreshed with the reset command regardless of the option used.

When the reset target command is used, it implies waiting for the emulator to return a status 18

(stopped and ready to debug) for the target. If this condition is not met, a macro containing reset
waits indefinitely. If the target argument is used with a value of 0, the macro continues and does
not wait for a stopped status. (See examples below.)

Example 1

To reset the target system (all three forms behave the same way; the macro being executed
pauses until the emulator senses the stopped state):

Command input:

reset
reset target
reset target(l)

Example 2

To reset the target system (in this case, the macro being executed proceeds no matter what state
is returned from the emulator):

Command input:

reset target(0)

Example 3

507

SourcePoint for AMD 1.0

To reset all jtag chains:
Command input:
reset tap

Example 4

To reset the jtag chain 0
Command input:
reset tap(0)
Example 5

To reset the emulator.
Command input:

reset emulator

Related Topics:

go
halt

stop

508

SourcePoint Command Language

restart

Re-initialize processor registers, allowing for faster reload of a program.
Syntax

restart

Discussion

The restart command provides a faster way to load a program, performing the equivalent of the
INIT option of the load command. Load speed is improved because the restart command does
not load code or symbols; it only re-initializes processor registers.

This command restarts the last program loaded. If multiple programs were loaded, only the last
one is affected.

Example

This example assumes a program named "test.axf” has been loaded prior to using the restart
command.

Command input:

restart // restart test.axf

Related Topics:

load
unload

509

SourcePoint for AMD 1.0

return

Return from a debug procedure.
Syntax

return [value]

Discussion

Use the return command to return from a debug procedure. If the debug procedure has a return
value, a value may optionally be returned.

Example
To take the average of three numbers:
Command input:

define proc ord4 avg(a, b, ¢)
define ord4 a
define ord4 b
define ord4 c

{
return ((a + b + ¢c) /7 3)

b
avg(4, 6, 3)
Result:

00000004H

Related Topics:

Debug Procedures

510

SourcePoint Command Language

right
Extract a number of characters from the end of a string.
Syntax

[result =] right(string-expr, n)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

string-expr specifies an nstring variable or string constant.

n specifies the number of characters to extract.

Discussion

The right command returns a substring from the end of a string. If the number of characters to
extract is greater than the length of the string, then the entire string is returned.

Example

Command input:

define nstring month = "January"
define nstring temp = right(month, 3)
temp

Result:

“ary"”

Related Topics:

left
mid

511

SourcePoint for AMD 1.0

runcontroltype
Display a string identifying the processor.
Syntax

[result =] runControlType

Where:

result specifies an nstring variable to which the function return value is
assigned. If result is not specified, the return value is displayed on the
next line of the screen.

Discussion

Use the runControlType command to get a unique string that identifies the currently connected
debug probe.

Example 1
Command input:
runControlType
Result:
""ECM-XDP3E""
Example 2
Command input:

define nstring type = runControlType
type

Result:

""ECM-XDP3E™

512

SourcePoint Command Language

safemode

Display or change whether target memory reads are suppressed for areas designated as DRAM
by the memory map.

Syntax
safemode [= bool-cond]
Where:

bool-cond specifies a number of an expression that must evaluate to true (non-zero) or
false (zero).

Discussion

Use the safemode control variable to disable automatic target memory reads before DRAM has
been configured. The default setting for safemode is false. Entering the control variable without
an option displays the current setting.

If safemode is set to false, all target memory reads are allowed. If safemode is set to true,
SourcePoint suppresses a target memory read if the address range falls within a DRAM range in
the memory map.

Memory accesses by commands run in the Command window are not affected by safemode.
Safemode is bypassed when accessing memory in this way.

If safemode is enabled, the title bar in SourcePoint will display (safe mode) after the project file
path.

Example 1

To display the current setting:
Command input:

safemode

Result:

FALSE

Example 2

To enable safemode:
Command input:

safemode=true
safemode

513

SourcePoint for AMD 1.0

Result:

TRUE

Related Topics:

Options Menu - Target Configuration

514

SourcePoint Command Language

save

Save is a synonym for upload.

515

SourcePoint for AMD 1.0

savebreakpoints

Save the current list of breakpoints to a file.

Syntax

savebreakpoints(filename)

Where:

filename specifies a filename. See Filenames for details.
Discussion

The savebreakpoints command saves the current list of breakpoints (displayed in the Breakpoints
window) to a file. This command is the equivalent of selecting Save from the Breakpoints window
context menu.

Example
Command input:

savebreakpoints(*'c:\\temp\\mybreakpoints._brk'™)

Related Topics:

loadbreakpoints

516

SourcePoint Command Language

savelayout

Save a SourcePoint window layout.

Syntax

savelayout(Ffilename)

Where:

filename specifies a filename. See Filenames for details.
Discussion

The savelayout command saves the current window layout. A window layout is a set of open
SourcePoint windows along with their locations, sizes, docking style, etc.

Example
Command input:

savelayout("'mylayout.lyt'™)

Related Topics:

loadlayout

517

SourcePoint for AMD 1.0

savewatches
Save a set of variables to watch.
Syntax

savewatches(filename, tab)

Where:

filename specifies a filename. See Filenames for details.

tab is a constant or expression specifying the tab number (1-4).
Discussion

The savewatches command saves the specified variables currently displayed in a Watch window
tab to a file. This is equivalent to selecting save in the Watch view.

Example
To save the watches in the Watch 2 tab to a file:
Command input:

savewatches("'watchlist™, 2)

Related Topics:

loadwatches

518

SourcePoint Command Language

selectdirectory

Open a dialog to select a directory.

Syntax

[result =] selectdirectory([startPath])

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

startPath is an nstring variable or string constant specifying the directory to begin the
search in.

Discussion

The selectdirectory function displays a dialog to allow the user to specify a directory. The path
returned includes a backslash at the end.

If startPath is specified the search begins in that directory. If startPath is not specified the search
begins in the last directory accessed.

Example
Command input:

define nstring strDir = selectdirectory('c:\program files")
// dialog opens, user selects a directory
strDir

Result:

"C:\Program Files\test\"

Related Topics:

selectfile

519

SourcePoint for AMD 1.0

selectfile

Open a dialog to select a file.

Syntax

[result =] selectfile([startPath])

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

startPath is an nstring variable or string constant specifying the directory to begin the
search in.

Discussion

The selectfile function displays the standard file open dialog to allow the user to specify a
filename. The file can then be accessed using the standard file /O commands.

If startPath is specified the search begins in that directory. If startPath is not specified the search
begins in the last directory accessed.

Example
Command input:

define nstring strFile = selectfile(c:\program Files')
// dialog opens, user selects a file
strFile

Result:

"C:\Program Files\test\test.dat"

Related Topics:

selectdirectory

520

SourcePoint Command Language

shell

Execute an operating system command.

Syntax

shell [shell-command]

Where:

shell-command specifies any valid shell command.
Discussion

The shell and dos commands are equivalent on Windows; however, on Linux the command
output is displayed in the console window used to start SourcePoint.

Text to be passed to the host operating system is expanded with the currently defined literal
definitions. To suppress this literal substitution, enclose aliases in single quotes.

The shell command without an argument will open a DOS window. The DOS command is a
synonym for the shell command.

On Linux, the shell command without an argument is ignored. When an argument is given, the

results are displayed in the Linux terminal which was used to start SourcePoint.
Examples

Command input:

shell cp c:/tmp/test.list /save

Command input:

shell Is -al

Related Topics:

dos

521

SourcePoint for AMD 1.0

show
Show definitions and values of debug objects
Syntax

show

show name

show {data-type | debugvar | alias | proc} [name]
show {libcalls | devices}

Where:

data-type displays the specific variable type (see Data Types).
debugvar specifies that only debug variables are shown.

alias specifies that only alias definitions are shown.
proc specifies that only debug procedures are shown.
libcalls specifies that user-defined procedures are shown
devices specifies that target device names are shown.
name specifies the name of an existing debug object.
Discussion

Use the show command to display a list of debug objects created with the define command.
These include debug variables, procedures and alias definitions.

Names can use the * and ? as wildcard characters. If name is not specified, * is assumed.
Example 1

To list all of the alias definitions currently defined:

Command input:

show alias

Result:

dog alias "0x1234"
cat alias ""0x30000000"

Example 2

To display all type ord2 debug variables beginning with the letters var:
Command input:

show ord2 var*

Result:

522

varl ord2 "OOO3H"
var2 ord2 '"O005H"

Example 3

To display only the debug procedure declaration for procl.:

Command input:
show procl
Result:

ord4 procl(ord2 argl, ord4 arg2)

Related Topics:

Debug Procedures
ro
remove

=

SourcePoint Command Language

523

SourcePoint for AMD 1.0

sin
Return the sine of a radian expression.
Syntax

[result =] sin(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned.
If result is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.

Discussion

The sin command returns the sine of expr.

«» Note: Values returned by this function are in real8 or 64-bit floating point precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example
Command input:
sin(0)

Result:

0

Related Topics:

acos
asin
atan
atan2
cos
tan

524

SourcePoint Command Language

sizeof

Returns the size of a program variable.
Syntax

[result =] sizeof(variable)

Where:

result specifies a debug object of type ord4 to which the function return value is assigned. If
name is not specified, the return value is displayed on the next line of the screen.
variable specifies a program variable name.

Discussion

The sizeof function returns the size of a program variable. This can be useful for defining
breakpoint ranges for composite variables.

Example
Command input:
sizeof(myStructure)

Result:

00000120H

Related Topics:

last

525

SourcePoint for AMD 1.0

sleep

Pause a macro for a specified time.

Syntax

sleep(expr)

Where:

expr specifies the number of seconds to sleep.
Discussion

The sleep command pauses a macro for a specified number of seconds. A decimal point is
allowed. Resolution is good to 1 ms. The maximum sleep time allowed is 60 seconds. A sleep
command may be ended early by pressing ctrl+break.

Example 1

To sleep for 5 seconds:
Command input:
sleep(b)

Example 2

To sleep for 250 ms:
Command input:

sleep(.250)

Related Topics:

getc
pause

526

SourcePoint Command Language

softbreak, softremove, softdisable, softenable
Set, clear, display, enable, and disable soft breakpoints.
Syntax

softbreak
softbreak = [sts,] location [, name] [, proc]

softremove [all]
softremove = {name | location | proc} [,---1

softenable = {name | location | proc} [,---1

softdisable [all]
softdisable = {name | location | proc} [,---]

Where:

sts { e[nabled] | d[isabled] }

location [[ocation] = address

name n[ame] = breakpoint name

proc p[rocessor] ={PO|P1|P2]|...}
Discussion

The softbreak command sets and displays soft breakpoints (soft breaks). Softbreak with no
arguments displays a list of the current soft breaks.

The softremove command removes any or all of the soft breaks. Softremove with no arguments
removes all soft breaks. Softremove with a location specified removes a single soft break.

The softenable command enables a softbreak at the specified location. The softdisable command
disables a softbreak at the specified location.

Soft breaks can also be set, displayed, etc. from the Breakpoints and Code windows.
Examples

To display current soft breaks:

softbreak

To set a soft break at location 12341234

softbreak = location=12341234

To remove all soft breaks:

softremove

527

SourcePoint for AMD 1.0

To remove soft break at 12341234:
softremove = location=12341234
To disable all soft breaks:

softdisable

To disable soft break at 12341234
softdisable = location=12341234
To enable soft break at 12341234:

softenable = 10c=12341234

Related Topics:

Breakpoints Window
cpubreak commands
dbgbreak commands
swremove

528

SourcePoint Command Language

sprintf
Write formatted output to an nstring variable.
Syntax

[result =] sprintf(nstring, format [, expr [,---1 1)

Where:

result specifies a debug object of type ord4 to which the return value is assigned. If result
is not specified, the return value is displayed on the next line.

nstring is an nstring debug variable.

format is a quoted string of characters that determines the format of the display. The format
can contain two types of characters: ordinary characters and conversion specification
characters.

expr is an expression that is evaluated and displayed.

Discussion

Use the sprintf function to write formatted output to an nstring debug variable. The sprintf
function is similar to the C-language sprintf routine. See printf for more information. The value
returned is the number of characters of output generated.

Example
Command input:

define ord4 dummy

define nstring mystring

define ord4 o4test = 3

dummy = sprintf(mystring, ""this iIs test #%d", o4dtest)
mystring

Result:

this is test #3

Related Topics:

fprintf
printf
putchar
puts

529

SourcePoint for AMD 1.0

sgrt

Return the square root of an expression.
Syntax

[result =] sqrt(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
name is not specified, the return value is displayed.

expr specifies a number or an expression of type real8.

Discussion

The sqrt command returns the square root of an expression. Sqrt returns 0 (zero) when expr is
negative.

< Note: Values returned by this command are in real8 (64-bit floating point) precision. These
values are displayed in the Command window rounded to 6 decimal digits. However,
assignments and comparisons are performed on the full 64-bit value.

Example 1
Command input:
sqrt(64t)
Result:

8

Example 2
Command input:

define real8 answer = sqrt(102t)
answer

Result:

16.0624

Related Topics:

530

SourcePoint Command Language

531

SourcePoint for AMD 1.0

srand

Set the starting point for generating a pseudo-random number using the rand command.
Syntax

srand(expr)

Where:

expr specifies a number or an expression of type ord4.

Discussion

The srand command sets the starting point for generating a pseudo-random number using the
rand command.

Example
Command input:

srand(5)
rand

Result:

00000036H

Command input:

rand

Result:

00007015H

Related Topics:

rand

532

SourcePoint Command Language

step
Execute one or more instructions.
Syntax

[I[px]] step [into | over | out | branch] [step-cnt]
[[px]] step-cmd [step-cnt]

Where:

[px] is a viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

step-cnt specifies the number of instructions to step (1-255).

step-cmd { stepinto | stepover | stepoutof | bstep | istep }

stepinto step into function calls

stepover step over function calls

stepout step out of a function call

bstep step til the next branch instruction

istep step into function calls (always low level step)

Discussion

Use the step commands to step a processor one or more instructions. Step commands can also
be executed from the Processor menu or the Processor toolbar.

You can control whether stepping takes place at the source level or machine level via the Code
window. If a single Code window is open, then the display mode of that window controls how
stepping is performed. If the display mode is Source, a line of source code will be stepped. If the
display mode is Mixed or Disassembly, a single assembly language instruction will be stepped.

Interrupts can be enabled, or disabled during steps. This preference is set in Options | Emulator
Configuration | General.

Breakpoints can be enabled or disabled during steps. This preference is set in Options |
Emulator Configuration | General.

The source level step algorithm uses a combination of go’s and steps depending on the
instructions contained in the source line. During go operations, interrupts and breakpoints will be
enabled.

The step out command sets a temporary breakpoint at the return address of the current function.

The step branch command steps until a branch instruction is executed, or until an exception or
interrupt occurs. Conditional branches that are not taken will not terminate the step. This
command is only available on Intel IA-32 processors.

533

SourcePoint for AMD 1.0

If a step count larger than 255 is specified, then the step count is truncated. Note that the step
count uses the default input radix. If the input radix is set to hex, then step 10 will step 16 times.

Examples

step //
calls)

[pl]step //
step 5 //
step into 5 //
stepinto 5 //
step out //
stepout //
[p2]step over 5 //
step branch //

Related topics

g0
stop

534

step

step
step
step
step
step
step
step
step

viewpoint processor one inst. (step into

processor 1 (pl) once

5 instructions (step into function calls)

5 instructions (step into function calls)

5 instructions (step into function calls)
out of the current function

out of the current function

p2 5 instructions (step over function calls)
til next branch instruction

SourcePoint Command Language

stop
Halt the processor.
Syntax

[[px]1]1 stop

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL can be used as an override to stop all processors.

Discussion

The stop command stops target program execution.

+ Note: The stop command and the halt command perform the same function.
Example

Command input:

go til 00000288
stop

Related Topics:

g0
halt

step

535

SourcePoint for AMD 1.0

strcat

Append one string to another.

Syntax

strcat(string-exprl, string-expr2)
Where:

string-exprl specifies an nstring variable.
string-expr2 specifies an nstring variable, or a string constant.

Discussion

The strcat command appends the second string (string-expr2) to the end of the first string (string-
exprl).

Example
Command input:

"10"
u22-u

define nstring a
define nstring b
strcat(b, a)

b

Result:

''22.10"

Related Topics:

strcpy
strncat

strncpy

536

SourcePoint Command Language

strchr
Find a character in a string.
Syntax

[result =] strchr(string, ch)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

string is an nstring variable, or string constant, to search.

ch is the character to search for.

Discussion

The strchr function finds a character in a string. The return value is a substring containing the
first instance of the character found, and the rest of the string following it. The return value can
be assigned to an nstring variable, or displayed on the command line

Example 1
Command input:

define nstring test = "123456"
strchr(test, "3%)

Result:

3456

Example 2
Command input:

define nstring strAnswer = strchr(''123456", "4%)
strAnswer

Result:

456

Related Topics:

strpos

537

SourcePoint for AMD 1.0

538

SourcePoint Command Language

strcmp
Compare two strings, character by character.
Syntax

[result =] strcmp(string-exprl, string-expr2)

Where:

result specifies a debug object of type int2 to which the return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

string-exprl specifies an nstring variable or a quoted string constant.

string-expr2 specifies an nstring variable or a quoted string constant.

Discussion

The strcmp command compares two ASCII strings, character by character. The comparison stops
when a mismatch is found or when a null character is encountered in one of the strings. The
return value depends on the difference between the values of the characters at the stopping
position. The return value is one of the following:

-1 The final character in string-expr2 is greater than the final character in string-
exprl.
The final character in string-expr2 is equal to the final character in string-expr1.
1 The final character in string-expr2 is less than the final character in string-exprl.
Example

Command input:

define nstring namel = "‘rosenberg"
define nstring name2 = ‘‘rosenbaum®
define int4 order = strcmp(namel, name2)
order

Result:

1T

Command input:
strcmp(name2, namel)
Result:

-1T

539

SourcePoint for AMD 1.0

Related Topics:

strncmp

540

SourcePoint Command Language

strcpy

Copy one string into another.

Syntax

strcpy(string-exprl, string-expr2)
Where:

string-exprl specifies an nstring variable.
string-expr2 specifies an nstring variable or a quoted string constant.

Discussion

The strcpy command copies the second string (string-expr2) into the first string (string-exprl) until
the second string terminating null character is copied. This function overwrites any data in the first
string. The second string remains unchanged.

Example

Command input:

define nstring month = "October"
define nstring year = ""2010"
define nstring date

strcpy(date, month)

date

Result:
October
Command input:

strcpy(date, year)
date

Result:

2010

Related Topics:

strcat
strncat

strncmp

541

SourcePoint for AMD 1.0

542

SourcePoint Command Language

_strdate

Copy the current system date to an nstring variable.

Syntax

[result =] _strdate(string)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

string is an nstring variable.

Discussion

The _strdate function copies the current system date into an nstring variable. The date is
formatted as mm/dd/yy. The return value can also be assigned to an nstring variable, or
displayed on the command line.

Example 1
Command Input:

define nstring buffer
_strdate(buffer)
buffer

Result:

12/29/08

Example 2
Command Input:

define nstring buffer
define nstring strAnswer = _strdate(buffer)
strAnswer

Result:

12/29/08

Related Topics

543

SourcePoint for AMD 1.0

_strtime
ctime
time

544

SourcePoint Command Language

string [] (index into string)
Return the nth character in a string.
Syntax

[result =] string-expr [index]

Where:

result specifies a debug variable of type char to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line of
the screen.

string-expr specifies an nstring variable or a quoted string constant.

index is the character position to return.

Discussion

The [] operator returns the nth character in a string. If the index specified is beyond the end of
the string, an error message is displayed.

Example
Command input:

define nstring myString = "Hi There!™
myString[0]

Result:
e
Command input:

define char myChar
myChar = myString[3]
myChar

Result:

T

Related Topics:

strchr
strpos

545

SourcePoint for AMD 1.0

strlen
Return the length of a string.
Syntax

[result =] strlen(string-expr)

Where:

result specifies a debug object of type ord4 to which the function return value is
assigned. If name is not specified, the return value is displayed on the next line of
the screen.

string-expr specifies an nstring variable, a quoted string constant.
Discussion

The strlen command returns the length of an ASCII string, excluding any null terminating
character.

Example 1
Command input:

define nstring month = "October™
strien(month)

Result:

T

Example 2
Command input:

define nstring year = "'2010"
define int4 answer = strlen(year)
answer

Result:

aT

546

SourcePoint Command Language

_striwr

Convert a string to lowercase.

Syntax

[result =] _strlwr(string)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

string is an nstring variable.

Discussion

The _strlwr function converts any uppercase letters in a string to lowercase. All other characters
are left unchanged. The return value can be assigned to an nstring variable, or displayed on the
command line.

Example 1
Command Input:

define nstring strHello = "HELLO"
_striwr(strHello)

Result:

hello

Example 2
Command Input:

define nstring strHello = "HELLO"
define nstring strAnswer = _strlwr(strHello)
strAnswer

Result:

hello

Related Topics

_strupr

547

SourcePoint for AMD 1.0

strncat
Append the specified number of characters from one string to another.
Syntax

strncat(string-exprl, string-expr2, expr)

Where:

string-exprl specifies an nstring variable.

string-expr2 specifies an nstring variable or a string constant.

expr specifies a number or an expression of type int4 that specifies the maximum
number of characters to concatenate.

Discussion

The strncat command appends the specified number of characters (expr) from the second string
(string-expr2) to the end of the first string (string-exprl). Copying of the second string continues
until a null terminating character is copied or the specified number of character have been copied.
The string-expr2 is left unchanged.

Example
Command input:

''10.86"
ll22-ll

define nstring a
define nstring b
strncat(b, a, 2)
b

Result:

''22.10"

Related Topics:

strcat
strncat

548

SourcePoint Command Language

strncmp
Compare a portion of two strings.
Syntax

[result =] strncmp(string-exprl, string-expr2, expr)

Where:

result specifies a debug object of type int2 to which the return value is assigned. If
result is not specified, the return value is displayed on the next line of the
screen.

string-exprl specifies an nstring variable or a quoted string constant.

string-expr2 specifies an nstring variable or a quoted string constant.

expr specifies a number or an expression that specifies the maximum number of
characters to compare.

Discussion

The strncmp command compares a specified maximum number of characters (expr) in two ASCII
character strings. The comparison stops when a mismatch is found, when a null character is
encountered in one of the strings, or when the specified number of characters have been
compared. The return value depends on the difference between the values of the characters at
the stopping position. The return value is one of the following:

-1 The final character in string-expr2 is greater than the final character in string-expr1l.

0 The final character in string-expr2 is equal to the final character in string-expr1.

1 The final character in string-expr2 is less than the final character in string-exprl.
Example 1

Command input:

define nstring namel = "‘rosenbaum"
define nstring name2 = '‘rosenberg"
define nstring name3 = '‘rosen"
strncmp(namel, name2, 7)

Result:

-1T

Example 2
Command input:

strncmp(namel, name3, 9)

549

SourcePoint for AMD 1.0

Result:

1T

Example 3

Command input:
strncmp(namel, name3, 3)

Result:

oT

Related Topics:

strcmp

550

SourcePoint Command Language

strncpy

Copies a portion of one string into another.

Syntax

strncpy(string-exprl, string-expr2, expr)
Where:

string-exprl specifies an nstring variable.
string-expr2 specifies an nstring variable or a quoted string constant.

expr specifies a number or an expression of type int4 that specifies the
maximum number of characters to copy.

Discussion

The strncpy command copies the specified maximum number of characters (expr) from the
second string (string-expr2) to the first string (string-exprl). Copying stops when a null
terminating character is copied or when the number of characters specified have been copied. If
expr is greater than the length of string-expr2, the string-exprl resulting from the copy is string-
expr2.

Example
Command input:

define nstring month = "October™
define nstring date
strncpy(date, month, 3)

date

Result:

"Oct"

Related Topics:

strcat

strcpy
strncpy

551

SourcePoint for AMD 1.0

strpos

Find a character in a string.

Syntax

[result =] strpos(string, ch)
Where:

result specifies an ord4 variable to which the function return value is assigned. If result is not
specified, the return value is displayed on the next line of the screen.

string is an nstring variable, or string constant, to search.

ch is the character to search for.

Discussion

The strpos function finds a character in a string. The return value is the index of the first instance
of the character found. The return value can be assigned to an ord4 variable, or displayed on the
command line.

Example 1
Command input:

define nstring test = "123456"
strpos(test, "3%)

Result:

2

Example 2
Command input:

define ord4 nlndex = strpos(''123456", "4%)
nindex

Result:

3

Related Topics:

strchr

552

SourcePoint Command Language

553

SourcePoint for AMD 1.0

strstr
Search an ASCII string for the occurrence of a given sub-string.
Syntax

[result =] strstr(string-exprl, string-expr2)

Where:

result specifies a debug object of type int4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next
line of the screen.

string-exprl specifies an nstring variable or a quoted string constant.

string-expr2 specifies an nstring variable or a quoted string constant.

Discussion

A case-sensitive search is performed on string-exprl, looking for string-expr2. If string-expr2 is
found within string-exprl, the index of the match is returned. A return value of -1 indicates that
string-expr2 was not found.

Example 1
Command input:

define nstring stringl = "AaBbCcDdEeFf"

define nstring string2 = "Dd"

define int4 ret val = strstr(stringl, string2)
ret_val

Result:

6T

Example 2

Command input:
strstr(stringl, "DD')
Result:

-1T

554

SourcePoint Command Language

_strtime

Copy the current system time to an nstring variable.

Syntax

[result =] _strtime(string)

Where:

result specifies an nstring variable to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

string is an nstring variable.

Discussion

The _strtime function copies the current system time into an nstring variable. The time is
formatted as hh:mm:ss. The return value can also be assigned to an nstring variable, or
displayed on the command line.

Example 1
Command Input:

define nstring buffer
_strtime(buffer)
buffer

Result:
08:37:35
Example 2
Command Input:

define nstring buffer
define nstring strAnswer = _strtime(buffer)
strAnswer

Result:

08:37:36

Related Topics

strdate

555

SourcePoint for AMD 1.0

ctime
time

556

SourcePoint Command Language

strtod

Convert a string into a real8 variable.
Syntax

[result =] strtod(string-expr)
Where:

result specifies a debug variable of type real8 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line
of the screen.

string-expr specifies an nstring variable or a quoted string constant.

Discussion

The function strtod expects the number to be converted to consist of:

1. An optional plus or minus sign

2. A sequence of decimal digits, possible containing a single decimal point

3. An optional exponent part, consisting of the letter e or E, an optional sign, and a
sequence of decimal digits

The conversion stops at the end of the string or after encountering an illegal character. If no
conversion can be performed, then zero is returned.

Example 1
Command input:
strtod(*'1.2")
Result:

1.2

Example 2
Command input:

define real8 answer
answer=strtod(''23.345")
answer

Result:

23.345
Example 3

557

SourcePoint for AMD 1.0

Command input:

define nstring myString = "4.56 inches"
strtod(myString)

Result:

4_.56

Related Topics:

strtol
strtoul

558

SourcePoint Command Language

strtol

Convert a string into an int4 variable.

Syntax

[result =] strtol(string-expr, base)
Where:

result specifies a debug variable of type int4 to which the function
return value is assigned. If result is not specified, the return
value is displayed on the next line of the screen.

string-expr specifies an nstring variable or a quoted string constant.
base is the number base to be used in the conversion (2-36).

Discussion

The strtol command converts a string into an int4 variable. The strtol function expects the number
to be converted to consist of:

1. An optional plus or minus sign.

2. A sequence of digits whose legal values are indicated by the base specified (e.g., a base
of 16 indicates 0-9, a-f and A-F are legal values.)

3. As aspecial case, if base is 16, then the string may begin with a Ox or 0X.

The conversion stops at the end of the string or after encountering an illegal character. If no
conversion can be performed, then zero is returned.

Example 1

Command input:
strtol ("'1000", 16t)
Result:

00001000H

Example 2

Command input:
strtol ("'1000", 10t)
Result:

000003ES8H

Example 3

559

SourcePoint for AMD 1.0

Command input:
strtol ("'1000", 8t)
Result:

00000200H
Example 4

Command input:
strtol ("'1000", 2t)
Result:

00000008H

Related Topics:

strtod
strtoul

560

SourcePoint Command Language

strtoul

Convert a string into an ord4 variable.

Syntax

[result =] strtoul(string-expr, base)
Where:

result specifies a debug variable of type ord4 to which the function
return value is assigned. If result is not specified, the return value
is displayed on the next line of the screen.

string-expr specifies an nstring variable or a quoted string constant.
base the number base to be used in the conversion (2-36).

Discussion

The strtoul command converts a string into an ord4 variable. The strtoul function expects the
number to be converted to consist of

1. A sequence of digits whose legal values are indicated by the base specified (e.g., a base
of 16 indicates 0-9, a-f and A-F are legal values.)
2. As aspecial case, if base is 16, then the string may begin with a Ox or 0X.

The conversion stops at the end of the string or after encountering an illegal character. If no
conversion can be performed, then zero is returned.

Example 1
Command input:

base=10t
strtoul (*'123", 10)

Result:

123T

Example 2
Command input:

base=16t

define ord4 answer

answer = strtoul ("'0x1000™, 16t)
answer

Result:

561

SourcePoint for AMD 1.0

00001000H
Example 3
Command input:

base=10t
define nstring myString = '2048 cars"
strtoul (myString, 10)

Result:

2048T

Related Topics:

strtod
strtol

562

SourcePoint Command Language

_strupr

Convert a string to uppercase.
Syntax

[result =] _strupr(string)
Where:

result specifies an nstring variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.
string is an nstring variable.

Discussion

The _strupr function converts any lowercase letters in a string to uppercase. All other characters
are left unchanged. The return value can be assigned to an nstring variable, or displayed on the
command line.

Example 1
Command input:

define nstring strHello = "hello"”
_strupr(strHello)

Result:
HELLO
Example 2

Command input:

define nstring strHello = "hello"”

define nstring strAnswer = _strupr(strHello)
strAnswer

Result:

HELLO

563

SourcePoint for AMD 1.0

swbreak
Display or modify software breakpoints.

Syntax

[[px]] swbreak addr [,addr,...]

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL cannot be used as a viewpoint override.

addr specifies a virtual, physical or symbolic address.

Discussion

Use the swbreak command to set or display software emulation breakpoints. Use the swremove
command to remove software breakpoints. A list of all breakpoints can be viewed in the
Breakpoints window.

The emulator inserts software breakpoints into memory before entering emulation. When the
target processor hits a breakpoint, the emulator removes all software breakpoints from memory
(this feature causes the software breakpoints to appear to be invisible). When re-entering
emulation using the go command, the emulator automatically single-steps the first instruction if a
software breakpoint has been inserted there. The emulator then re-inserts all the software
breakpoints into memory and continues emulation until the next specified breakpoint.

ICaution: Do not use software breakpoints in a paged memory system. The emulator modifies
the code to place the breakpoints. If the code is paged out of memory, the modifications remain in
the code, corrupting it. Use hardware breakpoints instead.

+« Note: Do not set software breakpoints in a data area. The emulator may report errors on
breaking from emulation.

« Note: This command does not display if a software breakpoint is enabled or disabled. See the
softbreak command for enable/disable information.

Example 1

To set a software breakpoint at physical address 1000
Command input:

swbreak 1000p

Example 2

To display all software breakpoints:

Command input:

swbreak

564

SourcePoint Command Language

Related Topics:

Breakpoints Window
softbreak, softremove, softdisable, softenable

swremove

565

SourcePoint for AMD 1.0

switch
Cause execution to branch to one of several case statements.
Syntax
switch (expr)
case label-expr: [commands]

L---1

[default: commands]

}

Where:

expr Specifies a number or an expression. The value of expr is compared to the
value of the label in each case statement.

case label-expr: Specifies a number or an expression whose value is compared to expr. The
colon (%) is required punctuation.

commands Any emulator commands, including break (which causes an immediate exit
from the switch control construct). You cannot use the include command
default Specifies the statement that is executed if none of the case statements label-

expr: values match that of expr. The colon (:) is required punctuation.
Discussion

Use the switch control construct to transfer execution control to any commands following the case
label-expr: statement whose value matches the value of the switch expression. If no case label-
expr: matches, no commands are executed unless there is a default statement. You can specify
only one default statement. Once command execution begins at a case label-expr:, it continues
through all remaining case commands unless the break command is encountered.

The include command is not executable inside the switch control construct.
Example
Command input:

define ord4 value = 3

switch(value)

case O:
printf('saw 0\n')
break

case 3:
printf('saw 3\n"")
break

default
printF(""illegal value\n')
break

3

566

SourcePoint Command Language

Result:

saw 3

Related Topics:

break
if

567

SourcePoint for AMD 1.0

swremove
Remove software breakpoints.
Syntax

[[px]] swremove {all | addr [,addr,...]1}

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the viewpoint
is temporarily set to processor x of the boundary scan chain. The processor can
be specified as px (where x is the processor ID), or an alias you have defined for
a given processor ID. ALL cannot be used as a viewpoint override.

addr specifies a virtual, physical or symbolic address.

all removes all software emulation breakpoints.

Discussion

Use the swremove command to remove software breakpoints. If you specify more than one addr,
use a comma as a separator.

Example 1

To remove the software breakpoint at the symbolic address main:
Command input:

swremove main

Example 2

To remove all software breakpoints:

Command input:

swremove

Related Topics:

softbreak, softremove, softdisable, softenable
swbreak

568

SourcePoint Command Language

tabs

Display or change the tab spacing.

Syntax

tabs [= expr]

Where:

expr specifies a value between 1 and 8, inclusive.
Discussion

The tabs control variable displays or changes the tab spacing for output commands (printf, puts,
etc.). The default value for tab spacing is 4. This variable can also be used in an expression.

Example
To save the current tab spacing, set a new spacing and then restore the old value:
Command input:

define int2 svtabs = tabs

tabs = 8

printf(C'%d\thd\t%d\n", x, y, z)
tabs = svtabs

569

SourcePoint for AMD 1.0

tan

Return the tangent of a radian expression.
Syntax

[result =] tan(expr)

Where:

result specifies a debug object of type real8 to which the function return value is assigned. If
name is not specified, the return value is displayed on the next line of the screen.

expr specifies a number or an expression of type real8 evaluated in radians.

Discussion

Values returned by this function are in real8 (64-bit floating point) precision. These values are
displayed in the Command window rounded to 6 decimal digits. However, assignments and
comparisons are performed on the full 64-bit value.

Example
Command input:
tan(1)

Result:

1.55741

Related Topics:

acos
asin
atan
atan2
cos
sin

570

SourcePoint Command Language

tapdatashift
Shift bits into and out of the test access port (TAP) on the JTAG chain.
Syntax

tapdatashift(device, register, operation, writeValue, bitCount)
tapdatashift(device, register, operation, byref readvValue, bitCount)

Where:

device is an int4 that specifies the position of the device to access. Device positions are
displayed by the devicelist command.

register is an int4 where 0 specifies IR and 1 specifies DR.

operation is an int4 where 0 specifies write and 1 specifies read.

writeValue is an int4, ord4, array of int4, or array of ord4 that supplies the bits to shift into
the device. It must be large enough to contain the total number of bits specified
by the bitCount argument.

readValue s areference to a debug variable of type int4, ord4, array of int4, or array of
ord4 that will receive the bits shifted out of the device. It must be large enough
to contain the total number of bits specified by the bitCount argument.

bitCount is an int4 that specifies the number of bits to shift into or out of the device.
Discussion

Use tapdatashift to read or write an instruction register or data register of a device on the JTAG
chain. The device argument specifies which device is scanned while all other devices remain in
bypass. The register argument specifies whether to access the instruction register or data
register. The operation argument specifies whether to read or write and whether the fourth
argument is a source of bits to write or the destination of bits that are read. The bits shifted into
the device are taken from the writeValue argument. The bits shifted out of the device are stored
into the readValue argument. You can only read or write, not both at the same time. The bitCount
argument specifies how many bits are shifted.

Example 1

To write a 16-bit value into IR of device 0, writeValue=0x55AA:
Command input:

tapdatashift(0, 0, 0, Ox55AA, 16t);

Example 2

To read a 47-bit value from DR of device O:

Command input:

define ord4 readValue[2];
tapdatashift(0, 1, 1, byref readvalue, 47t);

571

SourcePoint for AMD 1.0

Related Topics

drscan
irscan
msgscan
tapstateset

572

SourcePoint Command Language

tapstateset
Manually manipulate the JTAG state machine on the target using the TMS and TCK signals.
Syntax

tapstateset(number, state)

Where:

number is an int4 that specifies the number of times that the JTAG TMS operation
should be carried out.

state is an int4 that specifies what state the state machine should be placed into.

Discussion

Use tapstateset to manually transition the JTAG state machine on the target to the desired JTAG
state. The current state that the state machine is in is tracked by the emulator, and a pre-canned
sequence is used to move from the current state to the desired state. This sequence is the
shortest path to get from the current state to the desired state.

The states and values to use are as follows:

State Name Value
Test Logic Reset TLR 0x00
Run Test Idle RTI 0x01
Select DR Scan SDR 0x02
Capture DR CDR 0x03
Shift DR ShDR 0x04
Exit-1 DR E1DR 0x05
Pause DR PDR 0x06
Exit-2 DR E2DR 0x07
Update DR UDR 0x08
Select IR Scan SIR 0x09
Capture IR CIR Ox0A
Shift IR ShIR 0x0B
Exit-1 IR E1IR 0x0C
Pause IR PIR 0x0D
Exit-2 IR E2IR Ox0E
Update IR UIR OxOF

Example 1

Initialize the JTAG state machine on the target by moving to state TLR. This is possible from any
other state by issuing five 1's on TMS.

573

SourcePoint for AMD 1.0

The command needs to be issued only once, so "number" is set to 0. By setting "state" to 0, the
emulator will issue the required number bits, using the required pattern to move the target state
machine to the TLR state.

Command input:

tapstateset(0, 0)
Example 2

Assuming that the target is now in the TLR state, transition the state machine from TLR to SIR,
via RTI, and then back to RTI, allowing the pre-canned sequences to maneuver us through the
correct states.

Command input:

tapstateset(0, O0xO0B)
tapstateset(0, 0x01)

Example 3

Perform the same operations as Example 2, but don't let the pre-canned sequences do the work.
Perform each transition manually, in order to show both the path that the pre-canned sequences
take above, and the level of granularity available using this command.

Command input:

tapstateset(0, 0x01)
tapstateset(0, 0x02)
tapstateset(0, 0x09)
tapstateset(0, Ox0A)
tapstateset(0, OxO0B)
tapstateset(0, 0x0C)
tapstateset(0, 0x0D)
tapstateset(0, OxOE)
tapstateset(0, OxO0F)
tapstateset(0, 0x01)

Related Topics

drscan
irscan
msgscan
tapdatashift

574

SourcePoint Command Language

targpower

Display whether the target is powered.
Syntax

targpower

Discussion

The targpower control variable indicates whether the target is powered on. This is a read-only
variable. This control variable can be used in an expression.

Example
Command input:
targpower

Result:

TRUE

Related Topics:

targstatus

575

SourcePoint for AMD 1.0

targstatus

Display the status of the target.
Syntax

targstatus

Discussion

The targstatus control variable returns a string indicating the current target status. This is a read-
only variable. This variable con be used in an expression.

The following is a list of possible status strings returned by targstatus:
NoPower
Waiting
Stopped
Running
Stepping
Flushing
Halting
Resetting
Sleeping
ShutdownPending
Shutdown
Example 1
Command input:
targstatus
Result:
Stopped

Example 2

Command input:

go
targstatus

Result:

Running

576

SourcePoint Command Language
Related Topics:

isrunning
targpower

577

SourcePoint for AMD 1.0

taskattach

Cause the debugger to attach to and control a task already running on the target operating
system.

Syntax
[result =] taskattach(filename, pid)
Where:

result specifies the debug object of type ord4 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next line of
the screen. The return value is 1 if successful and O if not successful.

filename specifies a filename. See Filenames for details.

pid specifies the program identifier (PID) of the program to attach to and debug. The
program is already running on the target operating system.

Discussion

The TaskAttach command attaches the debugger to the program associated with the specified
program identifier (PID) that is already running on the target operating system. If successful, the
task will be stopped and ready for debugging. The PID for a program can be obtained by using
the taskgetpid command.

Example

The following example demonstrates attaching the debugger to the target operating system
program with a PID equal to 5.

Command input:
taskattach('c:\\prog\\hello", 5)
Result:

0001H

Related Topics:

taskend

taskgetpid
taskstart

578

SourcePoint Command Language

taskbreak, taskremove, taskdisable, taskenable
Set, clear, display, enable and disable task breakpoints.
Syntax

taskbreak
taskbreak = [name,] [sts,] location [, task] [, macro]

taskremove [all]
taskremove = { name | location | task | macro } [,--- 1

taskenable = { name | location | task | macro } [,--- 1]

taskdisable [all]

taskdisable = { name | location | task | macro } [,--- 1]
Where:

name Breakpoint name

sts { e[nabled] | d[isabled] }

task p[rogram] = program name

location [[ocation] = address

macro flile] = path of macro file to execute when break hits
Discussion

The taskbreak command sets and displays task breakpoints. Taskbreak with no arguments
displays a list of the current task breakpoints.

The taskremove command removes any or all of the task breakpoints. Arguments to this
command qualify which task breakpoints are to be removed. For instance, taskremove=1=1002,
n=Break01 removes the task breakpoint with the name Break01 and address = 1002.
Taskremove with no arguments removes all task breakpoints.

The taskenable command selectively enables task breakpoints. Arguments to this command
qualify which task breakpoints are to be affected. For instance, taskenable=f=c:\OnBreak.mac
enables only task breakpoints that will run the macro C:\OnBreak.mac on break.

The taskdisable command selectively disables task breakpoints. Arguments to this command
qualify which task breakpoints are to be affected. For instance, taskdisable=p=/home/hello
disables only task breakpoints for the task /home/hello. If no arguments are specified, all task
breakpoints are disabled.

Task breakpoints can also be set, displayed, etc. from the Breakpoints window.

< Note: For taskremove, taskenable, and taskdisable the location-spec will not match when a
task breakpoint is inactive, i.e., the breakpoint does not apply to the current task. This is because
if a task is out of context, its address space is not valid.

Examples

579

SourcePoint for AMD 1.0

To display current task breakpoints:

taskbreak

To set a task breakpoint at address 1234 for the current task that will run the macro OnBreak.mac
on break:

taskbreak = location=1234, f=C:\OnBreak.mac
To set a task breakpoint at address 1000p for the task /bin/ls:
taskbreak = 1=1000p, p=/bin/ls

To remove all task breakpoints:

taskremove

To remove all task breakpoints associated with task /home/hello:
taskremove = p=/home/hello

To disable all task breakpoints:

taskdisable

To disable task breakpoint with name firstBreak:
taskdisable = n=firstBreak

To enable all task breakpoints with task /home/hello:
taskenable = p=/home/hello

To enable all task breakpoints that will run the macro file C:\OnBreak.mac on break:

taskenable = f=C:\OnBreak.mac

580

SourcePoint Command Language

taskend

Stop debugging a task on the target operating system.

Syntax

taskend(vp)

Where:

vp is an integer that specifies the viewpoint of the task being debugged.
Discussion

The taskend command causes the debugger to stop debugging a task that is running on the
target operating system. If the task was started using Taskstart, then the debugger halts the task
and closes the context of that debugging session. If the task was attached to using taskattach,
then the debugger allows the task to continue running but releases control and disconnects from
the task.

< Note: When debugging a task on a target operating system, the value of the viewpoint for that
task is always 40H or higher. This differentiates task viewpoints from processor viewpoints, which
are always OH to 3FH.

Example

To stop debugging the target operating system program whose viewpoint is 40H.
Command input:

taskend(40H)

Result:

0001H

Related Topics:

taskattach

taskgetpid
taskstart

581

SourcePoint for AMD 1.0

taskgetpid

Retrieve the program identifier (PID) of a task running on the target operating system.
Syntax

taskgetpid(vp)

Where:

vp is an ord4 that specifies the viewpoint of the task being debugged.

Discussion

The taskgetPID command returns the program identifier (PID) of the task corresponding to the
specified viewpoint. The task being debugged is running on the target operating system and was
launched using taskstart or attached to using taskattach.

Example

To get the PID from the target operating system program with viewpoint 40H.
Command input:

taskgetpid(40H)

Result:

0007H

Related Topics:

taskattach
taskend
taskstart

582

SourcePoint Command Language

taskstart

Cause the target operating system to start a program under the control of the debugger. If
successful, the new task will be stopped at its program entry point.

Syntax
[vp =] taskstart(filename, targetpath, arguments)
Where:

vp specifies the debug object of type ord4 to which the function return value is
assigned. If vp is not specified, the return value is displayed on the next line of
the screen. The return value is the viewpoint of the task to debug.

filename specifies a filename. See Filenames for details.

targetpath is a string that specifies the path and filename of the program on the target
operating system to start.

arguments s a string that specifies the command line arguments for the program. An
empty string " specifies no arguments. This parameter should be enclosed by
double quotes, especially if there are spaces or multiple arguments. If there are
arguments that are strings, then their quotes will have to be escaped (e.g., "1 2
\"three” 47).

Discussion

The taskstart command uses the symbols from the program file on the host (filename) and
launches the corresponding program (targetpath) on the target operating system under debugger
control with the supplied command line parameters (arguments). The program files on both the
host and target operating system must exist for this command to succeed. The third parameter
(argument) should be an empty string if no arguments are needed.

Use the taskend command to stop debugging the task.

Examples

The following examples show various forms of starting a program on the target operating system.
Command input:

taskstart(*'hello™, "/home/hello™, ')
taskstart(*'c:\\prog\\hello", "/home/hello™, 25 /x /b')
taskstart(""hello™, "/home/hello™, "13 \'"test string\" /g")

Related Topics:

taskattach
taskend

taskgetpid

583

SourcePoint for AMD 1.0

584

SourcePoint Command Language

tck

Display or change the emulator’s current JTAG clock rate.

Syntax

tck [= clockrate]

Where:

clockrate is a string specifying the new value for the JTAG clock rate
Discussion

The JTAG clock rate controls the speed of the interface between the emulator and the target. A
higher frequency provides better response from the target, but not all targets support all
frequencies as this is hardware dependent.

The tck control variable provides command support for the JTAG clock rate setting found on the
Emulator Configuration dialog box under Options | Emulator Configuration. Click on the JTAG
Clock tab.

The clockrate argument must be delimited by double-quotes, is case-sensitive, and must be
identical to one of the JTAG clock rate strings found on the aforementioned dialog.

For more information, see "Options Menu-Emulator Configuration."

Example 1

To display the current setting:
Command input:

tck

Result:

2.0 MHz

Example 2

To set the JTAG clock rate to 12.0 MHz:
Command input:

tck = "12.0 MHz"
tck

Result:

585

SourcePoint for AMD 1.0

12.0 MHz

Related Topics:

readsetting
writesetting

586

SourcePoint Command Language

time

Return the current calendar time as an ord4 value.
Syntax

[result =] time()

Where:

result specifies a debug object of type ord4 to which the function return value is assigned. If
result is not specified, the return value is displayed on the next line of the screen.

Discussion

The time command puts the date and time function in internal format (seconds since Greenwich
Mean Time, January 1, 1970). The time function returns the value as an ord4 data type.

Example
To time an operation (in seconds):
Command input:

define ord4 startTime = time
(operation to time)

printfF('time = %d seconds\n', time - startTime)

Related Topics:

ctime

587

SourcePoint for AMD 1.0

#undef

Remove a debug alias definition.

Syntax

#undef alias-name

Where:

alias-name specifies a previously defined alias.
Discussion

The #undef command is used to remove an alias definition that was created with the #define
command. The remove command can also be used to remove multiple alias definitions.

Example
Command input:

#define Id load c:\src\targdev // define alias
#undef Id // remove alias

Related Topics:

SourcePoint Command Language

unload
Unload program(s) from SourcePoint.

Syntax

[[px]] unload [all | filename]

Where:

[px] specifies an optional viewpoint override. If the override is omitted, the current
viewpoint is assumed.

all specifies that all programs are to be unloaded.

filename specifies a filename. See Filenames for details.

Discussion

The unload command removes one or more programs from SourcePoint. This includes all
associated source and symbol information.

Example 1

To unload text.axf:

Command input:

unload c:\test\test.axf
Example 2

To unload text.axf from processor 1:
Command input:

[p1] unload c:\test\test.axf
Example 3

To remove all programs from all processors:
Command input:

unload all

Related Topics:

589

SourcePoint for AMD 1.0

load
reload

590

SourcePoint Command Language

unloadproject

Unload the current SourcePoint project file.
Syntax

unloadproject

Discussion

The unloadproject command unloads the current project file. All windows, except for the Log and
Command views, are closed.

This command is rarely used since SourcePoint needs a project file loaded to connect to a target.
To load a new project file use the loadproject command.

Example
Command input:

unloadproject

Related Topics:

loadproject
reloadproject

501

SourcePoint for AMD 1.0

upload
Save target memory to a file.
Syntax

[[px]] upload Filename [addr to addr | addr length expr] [overwrite]

Where:

[px] is the viewpoint override, including punctuation ([]), specifies that the
viewpoint is temporarily set for this command to the specified processor. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID.

filename specifies a filename. See Filenames for details.

addr specifies the address of the first byte.

to addr specifies the ending address of a range of addresses. The addr after the "to"

reserved word must be greater than the addr before the "to" reserved word.
length expr specifies the number of bytes desired.
overwrite specifies that filename is to be overwritten, if it exists.

Discussion

Use the upload command to transfer the contents of target memory to a host file. The contents
can be saved as a binary file, or as an axf file.

Saving as an axf file has advantages when performing trace disassembly in the Trace View. If
the "Disassembly Uses" setting is set to "Use Cached Program", then when an axf file is loaded,
SourcePoint will read memory from the file rather than the target. This is useful when the area
traced has been overlayed and is no longer present in the target.

If the file specified by filename already exists, upload does not overwrite the file nor prompt for an
overwrite, but instead an error is reported. To overwrite an existing file, you must specify the
overwrite option. The overwrite option causes the file to lose its original contents.

Example 1

To save the contents of 0x300 bytes of target memory starting at 1000p to a file named
mypatch.bin, and then reload it at the same address:

Command input:

upload mypatch.bin 1000p length 0x300
load mypatch._bin at 1000p nopsp noinit

Example 2

To save 1 Mb of memory at address 0x80000000:

592

SourcePoint Command Language

Command input:

upload rangel.axf 0x80000000 length 0x100000

Related Topics:

load
reload

593

SourcePoint for AMD 1.0

use
Set the default address size used by the asm command.
Syntax

use [={expr | usel6 | use32}]

Where:

expr specifies a number or an expression that must evaluate to 16t or 32t. The default is 16t
usel6 indicates 16-bit addressing.
use32 indicates 32-bit addressing.

Discussion

Use the use control variable to set the default address size used by the asm command. Entering
the control variable without selecting an option displays the current setting.

When set to usel6 (the default) the debug tool interprets assembler addresses as 16-bit. When
set to use32, the debug tool interprets assembler addresses as 32-bit.

+ Note: The use control variable is identical in function to the asmmode control variable.
Example

To set the use control variable to interpret addresses as 32-bit:

Command input:

use = use32

Related Topics

asmmode

594

SourcePoint Command Language

verify
Verify writes to target memory.
Syntax

verify [= true | false]

Where:

true specifies that memory writes to target memory are verified.
false specifies that target memory writes are not verified.
Discussion

Use the verify control variable to specify read-back checks on commands that write to target
memory. If verify is false, read back checks do not occur. The default setting is false.

Setting verify to true detects errors when writing to memory; however, read-back checks increase
the time needed to do memory write operations.

Example 1

To display the current value of verify:
Command input:

verify

Result:

false

Example 2

To change verify to true:

Command input:

verify = true

Related Topics:

load
Memory Access

595

SourcePoint for AMD 1.0

596

SourcePoint Command Language

verifydeviceconfiguration

Verify that SourcePoint and emulator device configurations match.
Syntax

[result =] verifydeviceconfiguration()

Where:

result specifies a boolean variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

The verifydeviceconfiguration function verifies that SourcePoint and emulator device
configurations match. In the event of a mismatch, the configurations are presented to the user to
select which configuration is to be used. This operation is valid when the emulatorstate control
variable is set to 1 or 2.

Related Topics

deviceconfigure
devicescan

Target Configuration

597

SourcePoint for AMD 1.0

verifyjtagconfiguration

Verify that SourcePoint and emulator JTAG configurations match.
Syntax

[result =] bool verifyjtagconfiguration()

Where:

result specifies a boolean variable to which the function return value is assigned. If result is
not specified, the return value is displayed on the next line of the screen.

Discussion

The verifyjtagconfiguration function verifies that SourcePoint and emulator JTAG configurations
match. In the event of a mismatch, the configurations are presented to the user to select which
configuration is to be used. This operation is valid when the emulatorstate control variable is set
to 1 or 2. If the user elects to use the SourcePoint configuration, the emulatorState control
variable transitions to state 1.

Example

Command Input:
verifyjtagconfiguration
Result:

TRUE // JTAG configurations match

Related Topics

emulatorstate

jtagconfigure

jtagscan
num_jtag devices

Target Configuration

598

SourcePoint Command Language

version

Return the current version of SourcePoint and emulator flash.
Syntax

version

Discussion

Use the version command to display the current SourcePoint and emulator firmware version
numbers.

Example
Command input:
version
Result:

SourcePoint v6.8.0.5959 Build 1816 Official;
Emulator: Boot: v4.00.00.01, Flash: v6.08.07.190

599

SourcePoint for AMD 1.0

viewpoint
Display or change the current viewpoint.
Syntax

viewpoint [= {Pn | expr | alias-name}]

Where:

Pn specifies the nth processor of the boundary scan chain.
expr is an expression resolving to a processor number (0-n4)
alias-name is a processor alias name (see vpalias)

Discussion

Use the viewpoint command to define which processor, in a multiprocessor system, is the current
processor. Entering the command without an option displays the current setting. The default
setting for viewpoint is PO. The current viewpoint is also displayed and changed in the Viewpoint
window.

Code, Memory and Register windows can be set to display data from a particular processor, or
set to track the viewpoint processor. Changing the viewpoint causes all tracking windows to
update.

Example 1

To display the current viewpoint:
Command input:

viewpoint

Result:

0001H

Example 2

To change the viewpoint to processor 2:
Command input:

viewpoint = P2

Related Topics:

vpalias

600

SourcePoint Command Language

Viewpoint Window Introduction

601

SourcePoint for AMD 1.0

vpalias
Display or change a viewpoint alias
Syntax

[[px]] vpalias [=expr]

Where:

[px] is a viewpoint override, including punctuation ([]), specifying that the viewpoint is
temporarily set to processor x of the boundary scan chain. The processor can be
specified as px (where x is the processor ID), or an alias you have defined for a
given processor ID. ALL cannot be used as a viewpoint override.

expr is a string or an expression that evaluates to a valid string.

Discussion

Use the vpalias command to define an alias for a processor. Specifying an empty string clears an
alias.

The first character of an alias name must be a letter. Subsequent characters can be letters or
numbers. Alias names are case-insensitive. Alias names are limited to 6 characters.

Aliases can also be viewed and changed in Options | Target Configuration | Devices.
Example 1

To name the current viewpoint "bob":

Command input:

vpalias = "bob"

Result:

bob>

Example 2

To name processor p3 "jane™:

Command input:

[p3]vpalias = "jane"
view = jane

Result:
Jane>

602

SourcePoint Command Language

Example 3

To display the alias for the current viewpoint processor:
Command input:

vpalias

Result:

jJane

Example 4

To clear the alias for P3 (jane):

Command input:

[p3]vpalias = "
view = p3

Result:

P3>

Related Topics:

Options Menu - Target Configuration

viewpoint
Viewpoint Window Introduction

603

SourcePoint for AMD 1.0

wait

Suspend command execution until a breakpoint is encountered.
Syntax

wailt [time]

Where:

time specifies a number of seconds to wait.
Discussion

Use the wait command to prevent the emulator from accepting commands until a breakpoint
occurs. This command is useful in debug procedures (procs) and macro files that have go
commands. The wait command prevents subsequent commands in the proc or include file from
executing until the processor is in a stop condition.

If a time is specified, then command execution is suspended until a breakpoint hits, or until the
time to wait is exceeded.

The wait command has no effect when emulation is stopped.

Related Topics:

go

Debug Procedures
proc

sleep

604

SourcePoint Command Language

whbinvd
Write back and invalidate the processor's internal caches.
Syntax

[[px]] wbinvd

Where:

[px] is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias you
have defined for a given processor ID. ALL cannot be used as a viewpoint
override.

Discussion

Use the wbinvd command to write back and invalidate the processor's internal caches. In a
multiprocessor system, only the caches for the current viewpoint are invalidated. The wbinvd
command can only be used when the target is stopped.

Examples
To write back and invalidate the viewpoint processor's cache:
Command input:

wbinvd

Related Topics

flush
invd

605

SourcePoint for AMD 1.0

while

Group and execute commands while a condition is true.

Syntax

while(bool-cond) {commands}

Where:

bool-cond specifies a number or an expression that is evaluated and tested. The loop
repeats until expr evaluates to false (zero). The parentheses are required.

commands specifies any emulator commands. When you enter more than one command, you
must enclose them in braces ({ }).

Discussion

Use the while control construct to execute the specified commands 0 (zero) or more times, as
long as bool-cond evaluates to true (non-zero). To break out of a loop press ctrl+break.

< Note: The include command is not executable inside a while control.
Example 1

The following example demonstrates a while control construct. While the index is greater than
zero, decrement the index and add 5 to the sum on every iteration of the loop.

Command input:
define ordl i = 5

define ordl sum
while (i > 0)

0

{ .
1 =1
sum += 5
printf("'i = %d sum = %d\n", i, sum)
3
Result:
i =4sum=2>5
i =3 sum = 10
i =2 sum=15
i =1sum=20
i =0 sum =25

Related Topics:

606

SourcePoint Command Language

break
continue
for

if

607

SourcePoint for AMD 1.0

windowrefresh

Control timed refresh of windows.

Syntax

windowrefresh([time])

Where:

time is an ord4 value specifying a refresh interval in seconds.
Discussion

Use the windowrefresh command to control automatic refresh of all windows in SourcePoint.
When windows are refreshed, processor state (e.g. memory, registers, etc) are re-read from the
target.

If a time (refresh interval) is not specified, then the windows are refreshed once. A time of 0
disables automatic refresh.

Example 1

To refresh all windows once:
Command input:
windowrefresh()

Example 2

To enable automatic window refresh of all windows every 5 seconds:
Command input:
windowrefresh(5)

Example 3

To disable automatic window refresh:
Command input:

windowrefresh(0)

608

wport

SourcePoint Command Language

Display or change the contents of a 16-bit I/O port.

Syntax

[result =] [[px]1] wport(io-addr) [= expr]

Where:

result

[px]

io-addr

expr

Discussion

specifies an debug variable of type ord2 to which the function return value is
assigned. If result is not specified, the return value is displayed on the next
line of the screen.

is the viewpoint override, including punctuation ([]), specifying that the
viewpoint is temporarily set to processor x of the boundary scan chain. The
processor can be specified as px (where x is the processor ID), or an alias
you have defined for a given processor ID. ALL cannot be used as a
viewpoint override.

specifies a 16-bit address in the processor I/O space. The available io-addr
range is 0 to Offffh. The use of parentheses is optional.

specifies a 16-bit number or an expression. Using this option writes the data
to the specified 1/0 Port.

Use the wport command to read from and write to the specified 1/0O port with the specified 16-bit

data.

Example 1

To assign a 16-bit value to a port:

Command input:

wport 88h = 4321h

Example 2

To assign one port value to another port:

Command input:

wport 90h = wport 88

Example 3

To create a debug variable named portvar and assign a port value to it:

Command input:

609

SourcePoint for AMD 1.0

define ord2 portvar
portvar = wport 90
portvar

Result:

4321H

Related Topics

dport
port

610

SourcePoint Command Language

writesetting
Modify settings within SourcePoint.
Syntax

writesetting(type, name, value)

Where:

type is an nstring or string constant specifying the type of setting.
name is an nstring or string constant specifying the setting name.
value is an ord4 specifying the value to assign to the setting.
Discussion

This writesetting command is used to modify settings within SourcePoint. Usually, these settings
are changed via the Ul (e.g., the Emulator Configuration dialog box). There are times, however,
when it is convenient to be able to change these settings within a macro file.

The type argument specifies the type of setting to change. Currently, the only type supported is
"em” for emulator configuration settings.

The name argument specifies the name of the setting to change. The name is not what is
displayed in the Ul, but rather the name used in the SourcePoint project file. Names can be
obtained by looking in the project file in the Emulator Configuration section.

The value argument can be obtained by changing the emulator configuration setting in question
and looking in the project file. For checkbox settings, the value is TRUE or FALSE. For radio
buttons, the value usually (but not always) is the zero-based index of the button selected. For
drop down lists, the value usually (but not always) is the zero-based index of the entry selected.
The safest way to determine value is to look in the project file.

« Note: Values in the project file are usually decimal. Regardless, values in the command
language are specified using the current command language input radix (specified with the base
control variable). If the input radix is hex, and you want to specify a value of 200 decimal, then
you need to use 200T as 200 is interpreted as 200H = 512 decimal.

Example

The following example sets the Adaptive TCK setting. The possible values are 0, 1 and 2
corresponding to which radio button is selected in the UI.

Command input:

writesetting('em", "AdaptiveTck'™, 0) // 0 = Don"t use adaptive TCK

611

SourcePoint for AMD 1.0

Related Topics:

readsetting

612

SourcePoint Command Language

yield
Allow another process to run inside macro files.
Syntax

yield

Discussion

The yield command pauses execution of a macro file to allow another process to run,
SourcePoint windows to be updated, and Ctrl+Break processing to occur. A macro file normally
yields at every loop iteration. For more information, see the yieldflag command.

Related Topics:

include
yieldflag

613

SourcePoint for AMD 1.0

yieldflag
Yield on each loop iteration.
Syntax

yieldflag [= true | false]

Where:

true specifies that macros yield at every loop (for, while) iteration.

false specifies that macros yield control only when an explicit yield command is
encountered.

Discussion

The state of yieldflag affects macro file execution. When a macro is running, generated output
only appears in the Command window when the macro yields. This allows windows to repaint.

When yieldflag is true, macros yield automatically at every loop iteration. This allows other
processes to run, the SourcePoint windows to update, and Ctrl+Break processing to occur. When
yieldflag is false, the emulator yields control only when an explicit yield command is encountered.
The default state of yieldflag is true.

For more information, see the yield command.
Example 1

To display the current setting:

Command input:

yieldflag

Result:

TRUE

Related Topics:

include
yield

614

Index

#

#Aefine ... 321
HUNAET ..o 588
CSHIWE 547
CSHHIME e 555
11 0] o 563
A

AAAUMP .ceeeiiiiiieee e 261
AbOrt....eeiee 262
ADS e 263
ACOS ..iviiiieeiiiiir e 265
advanCedooceeeeiiiieee e 266
AFTAY oo 243
ASIN (oo 267
ASIM Leiiiiiiieiieee 268
ASMMOAEoeiiiiiiiiee e 276
ALAN.....ooiiiiiiiiiiiiiieeeeee 277
ALANZ ..o 278
autocoNfigurecccceeee v 279
B

DASE ..o 280
bell (beep).....vvvvveeeeeiiiieee e, 283
DILS oo 284

BOOKMArKSovvviiiiiiieiiieee e 229
DOOI ... 238, 445
booleancccocvvviiii 238, 445
Preak ..., 286
Break on........ccoeiiiiiiiiii e 93
breakallcooviiiiii, 287
BreakpointS........ccccvveeeeiee i 93
Adding/editing........cccceeeeiiiiiiiiiieeeee s 96
Bus analyzer.........cccooeeiiiiiiiniiieeee, 93
EMUIALOr ..o 93
(@] 7= o[oo [93
Processor......cccoovcciiiiiiiieiiiiieeen 98

WINAOWS ... 100
SOftWANE ..eeeeeiiiiee 98
TYPES ittt 93, 98

Breakpoints Tab.......ccccccoevviviiiiineeiee e, 38
Bus analyzer (breakpoint type).................. 93
Bus analyzer sequenceccccovcveeeene 93
BYte .o 238, 445
C

cachememoryccooccciieeiiiiiiniiieeee, 289
CAUSE oo 291
CRAN .. 238, 445
character functions...........cccccevivee e 293

SourcePoint for AMD 1.0

Character stringscccecvvveeeeee v, 236
ClOCK. .t 300
Code disassemblyccoceeeeiieiniiiiiinnn. 112
Code Tab....ccccoeviiiiii e 40
Code WINAOWcvvviieeerieeeniee e 103
Icon definitionscccoevveevieeiiieeneee 106
MENU ..ooviiiiiiiiiiiiiie e 107
Opening....... 103, 111, 132, 188, 190, 191
Preferences........coccvvevienc e, 111
Saving CoNteNtscccovvvvivivieeeeeeeieinns 114
Saving Settings.......ccceevviiiiiieeeieeeinas 113
Colors Tabcovvviiiiiiie e 44
Command Files........ccocvevoiiniiiicnees 251
Command Line Arguments.............cccueeeee. 87
Command WINAOWcoccvveerniieeennnne 115
COMMENLS ... 235
Confidence testS........ccccvvvevinecrineens 68, 121

.. 127
Confidence tests details..............coe...... 124
CoNStaNtS........cvvvveieieeie e 236
CONLINUE ... 301
Control Variablesccccocviiiiiicnieens 249
COPY oot 10
COS oetireiiie e et 302
cpubreak ... 303

616

cpudisable........cccccovveiiiiieiie e, 303
cpuenableccoovii e, 303
CPUIA_CBX...uiiiieiieei it 305
CPUIA_EDX.uiiiiiiiiiiieie e 307
(o] 01U][0 [=0 GRS 309
(o3 010110 [=To b O 311
CPUIEIMOVE ... 303
CreateproCessSooovvvevvviiiiiiiiiiieieeeeee 313
CHIME oo 314
Ctrl+breakoooovviiiiiiie 115
Customize the Registers Window........... 179
CUL e 28
CWO. oot 315
D

Data qualificationccoociiiiieiieennnnnns 93
Data TYPES....cccoviiiiiiiieieee e 238
dbgbreak.......ccccccovviviii e, 317
dbgdisable...........cccooiiiiiiiiie, 317
dbgenableccccooiiiii, 317
dbgremove ... 317
Debug pointer typesS.....ccccccevvvevvvveeneennn. 242
Debug Procedures...........cccevvvvvvveeneeennn. 245
Debug registers.........cccceeeiiiiiiiiieeieeeees 93
Debug Variable Arrays.........c.cccceevnnneeen. 243
Debug Variablesccccccceevviiiiiiinnnnnnn, 242

defaultpath ..o, 319
defiNe .o 322
definemacro.......cccveeviiiiie e 324
Descriptor tables...........cccoooeeiiiiinne 129
CaChe......ooiiieiicc 203
MENU ..ooooiiiiiiiiiii 132
OPENING.cciii ittt 129
Replacingccoocvveeiiiiiiiiiiiec e 133
deviceconfigure.........ccoeecvvveeeeee e, 326
Devices WINAOWcevvveerieeiniiee e 135
Accessing in Command window 148
Creating - an example.........ccccccevvvneeen. 149
MENU ..o 146
dEVICESCANcovii et 327
diSCONNECT......ccoiiiiiiiiiiieee e 328
displayflag......ccccooveeeiniiiiiniie 329
dOWhIlE...coiieiiec 331
Docking windows.........cccveeeeeeiiiiiiiiiieeeeeeen, 5
OS -t 333
double.......eeiiiiiiii 238, 445
(o]0} o FR 334
ArSCAN ...oeiiiiieiiee e 336
E
=T | SRR 28
Edit MENU.....ocveirii e 28

EAITON .. 339
EFI Framework debugcccocvveeeeennn. 205
Emulator - flash update............cccccceernnnnee 24
Emulator - resetting..........ccccovcvveeeiiiiienens 67
Emulator Configuration............ccccceeevennns 55

General.......cccceeiei i 55

Information Tabccocvvvveviiiieeiieen, 63

JTAG Clock Tab...uevvveeeiiiiiiiieiie s 58

JTAG Tab ..o 56

Network Tab ... 62

Switches Tab........ccoocveiiiiii, 61

Target Reset Tabcccccvveevveeeniiinns 59
Emulator connection - adding.................... 71
Emulator connection - verifying 91
Emulator connectionsccceeeviineeeenns 65
Emulator Tab - Preferences...........c..c....... 37
emulatorstatecocevveercee i 340
ENCTYPL oo 341
BITON oottt 342
EVAl it 343
evalprogramsymbolcocccvveennnnnn. 344
execution point ($) ...cccceevvveveeeviieesiee e 346
EXIE o 26, 348
BXP e 349
EXPreSSIoNScccovvveviiieieee e vccinveeee e 240

617

SourcePoint for AMD 1.0

F
fc 350

FClOSE .o 351
FEOF e 353
fOOLC .o 355
fOBLS 1 357
File - cloSiNg.......ccooviiiiiii i 351
File Menu ..., 10
Filenamescccoovviienc e 252
first_jtag_deviCe.......ccccceevvviiiiiiiiieeeeieins 359
Flash - updating emulator................c......... 24
Flash - updating target............ccccevernunnenn. 46
ST e 360
float ... 238, 445
FIUSH L. 362
FOPEN ..o 363
FOF e 365
fOrward........cccooveeiiiie 367
TPrINtE e 369
FPULC .o 370
fPULS o 371
fread......ccoovieiie 372
FSEEK . 374
11| S 376
FUNCLIONS ..o 245

618

TWITEE oo 378
G

GDT 129
OBIC oo 380
getChar ... 381
getnearestprogramsymbol..................... 382
getprogramsymboladdress 384
LS oo 386
globalsourcepath........cccccceveevviiiiiiinnnnnnn, 387
00ttt 34, 389
H

halt ... 392
1| o 393
homepath........c.cooecivii, 394
I

Icon groups - editingccccceevveeeeeiiiiiinenn, 82
[CONS ..o 184
ICONS - Arrangingccooeecvvveeeeeeeeeeecvvnnen, 69
Icons - displaying textcccccceviiiiiiineen. 81
IACOE ... 395
IDT e 129
if 397

INCIUAE.....eeeeii e 399
INAEX INTO ... 545
Information Tab.........cccooveveiiiic s 63

INEL e 238, 445
INELG ..o, 238, 445
INE2 o 238, 445
N 238, 445
N . 238, 445

NV e 401
IFSCAN ..eeieiiiieee et 402
ISAINUM Lo 293
isalphacccciviieieee e 293
ISASCIHI ..vveeeiieesitee e 293
ISCNEIT e 293
isdebugsymbol.........ccooiiiiiiii 404
150 [T [S 293
ISEMBAL ..o 405
ISIOWET ...t 293
ISPIINT et 293
isprogramsymbolccccceveeeeeiiiiciinnne, 406
1Y 010] [ox R 293
ISPUNNING ... 408
ISSIEEPING ...evviieiiiiii et 410
ISSIMIM e 412
ISSPACE ...t ccirtreee e e e e e 293
K510 o] o= SO PP 293
ISXAIGI ..o 293

Index

J

JTAG Clock Tab........ccoocvviviiiieiiiee e, 58
JTAG Tab....ooee 56
jtagehain........ocoeeeii, 414
jtageonfigure ..., 416
jtagdeviceadd............ccoccereeeiiiiiiiiiiieee, 417
jtagdeviceclear..........ccocceieiiiiiiiiiiiienenn, 418
JtagdeviCeseviiviiiiei 419
L= Y0 £ o= 1 o 420
JAGLEST .. 421
K

KEYS. i 423
L

[AST ot 424
lastjitagdeviceccuveeeeeiiiiiniiiiieeeeee, 426
LAYOUL ..o 12
LDT oo 129
LDTR et 129
[t e 427
ICENSE ... 428
License File Dialog..........cccoecvvveeeereeeinnnnnns 70
LICENSING ..uvvvieiiee e 218
INEAN ..o 429
FIST. e 431
108 ..o 433

619

SourcePoint for AMD 1.0

Load target configuration files 53
loadbreakpointsccccvvveeeeeeeniiiciiine, 435
[0adlayoutccoeveiiiiiiiie e 436
[0adPrOJECE ..o 437
loadtarget.......cccccvveeeeeiiiieee e 438
loadwatches..........ccoovveiiieiniic e 439
O e, 440
LOG WINAOW.....cueviiieiiiiiieeriiiee e 151
Icon definitionsccccovvveveeinieenneens 153
MENU ..ooooiiiiiiiiiii 154
10GL0 ..o, 441
[0Q€ .. 442
[OgMESSAQE ..vvvvveeeeeee e 443
M
Machine level step into............cccvvveeeeeeenn. 34
Machine level step over..........ccccccvevvinneen. 34
Macro commandscocverveerirererinenennees 10
(9T (ol (0] 0= 11 [444
MaACIOS ... 251
Configure MacrosS........c.cceevvvveeeiiineeeennns 18
Event Macros Tabccccceeveevevnennnne 18
User-Defined Macros Tab 18
Load Macroc.ceeevriieeeiiiiiee e 18
Memory ACCESSoocevvreeiieieee e 445
Memory castingcccevvveereeeeeiecciieee, 211

620

MEMOIY MAP ...vvvvirieieiiiie e 46
Memory Map Tab......cccccceoviviiiiieeeeee e, 46
Memory Tab ..., 41
Memory Windowocceeeevniieeenniinnenn. 157
Changing valuesccccccceeevviicvnnnnnn. 164
Display fieldscccoceeveveeeiiiiiiiiienenn, 157
MENU ... 159
OPENING.....veieeiiiieee et 161
Preferences.......cccccvevievie e 161
Size and radiX.......cccoceeriieiniiennieen, 159
Target memory - COpYiNgc.coeueee 445
Target memory - fillingcccccoveeeee, 445
View memory at address..........cc......... 163
MESSAGEDOX.......ccccvvvviiieeee e, 450
M e 452
MSQCIOSE ..o 453
(01STo [- | - R 454
Msgdeletecccoovvciiiieie e, 456
MSOAN . 457
MSGAUMP .ot 459
1S | S 461
(0570 0] o= o ISP 463
msgreturndatasizecccooovevviieeneeenn. 464
MSGSCAN....evuriririririii s 466
INISE <ottt 468

N
Network Tabccccovveii e, 62
New project wizardcccceeviiiiiiiieeennnn. 11
USING ettt 88
NONISE .. 431
(T] (oo SRR 440
NSENG coeeeeiiiie e 238, 445
NUM_activeproCesSOorS.vveeeeeieeceveeenen. 470
num_all_devices.........cccvvvveveeeeeviiiiinnen, 471
NUM_AEVICES....cevveeeiiiiiiiieeeeee e 472
num_jtag_chains...........cccocceiiiniiiiinen, 474
NUM_jtag_deviCesS........cccevrrrererniiieeeenne 475
NUM_PrOCESSONScevvviiiiieeeeeeeeiiiinneeeeneens 476
0]
OPErandsSccuveeeieeeeeeiiiiieeee e 240
OPEIatOrS......cevviieiieeeee e 240
Options menu itemccccvvveeeeee e, 35
OFAL..eeiiee e 238
OFAL2. i 238, 445
(o] o X TR 238, 445
OFA2..ceieeeee e 238
OFA4 ..o 238
OFAB...eeeee e 238
P
Page translation window.......................... 165

OPENING ...t 165
Paste......ccoocciiiii 28
PAUSE ... 477
PCI devices Window...........cccocuveeernnnnenn. 167

MENUcvviiiiiiiii i, 171

Opening PCI registers view................. 172

PCl registers........occvveeeeieeeiiiiiieeeeeen 171

Refreshing......cccccovvieieniii 173
PE format SUPPOrt......ccccveeevvviiiiieeeeeenn, 212
physicalcccccccviiiiiii e, 479
POINE ... 238, 445
10191 =] PSS 238, 445
0] o 481
POW ittt 483
Preferences........ccoeeviiec e 36

Breakpoints Tabcccooceeiiiiiiiine, 38

Code Tab......cocoviiii e 40

Colors Tab.....eooveviiiiieieee e 44

Emulator Tab.......ccocveiiiiiiiiee 37

General.......ccovieiiii 36

Memory Tabcccccvvieeiiee e, 41

Program Tabccccooveeeiei e, 42
PNt 22

Print preview.........cccoveeineeeniieeee 22

Print SetUp ..ooeeeevviceeeee e, 22

621

SourcePoint for AMD 1.0

Print a Register Listccccceevvinnnns 179,

PrNE CYCIES....uvviiiiieeee e

Processor menu...........cccoooeeeeiii,
Processor overrides........cccccceveeeveeievinneen.
Processorcontrolccccevvcveeeniiiieee s
processorfamily..........cccccvvieeeeeciiniccinnnen,
ProCesSOrMOUEcceev i
PrOCESSOIS ..evieieviieeeieiireeeeseitreeeeesreeeeennens
PrOCESSOIMYPE ..t
Program commandsccccevevveeernnnen.
Program Flash Tab.........cccccccciiiinnen.
Program Tab........cccoooiiiiiii
Project commands.........cccccceeeeeeiiiinvinnnn.
projectpathcccceeeeiiiiiiiieee e,

PULChAr ...

Qualified Symbol Names.............cccvveeee.

QUICK WatChcevvviiiiieieeeeeeeeeveeveveeeaiees

622

readsettingccoovvvvviieeviee e 499
Feall0...ceveeeiiiiiie e 238, 445
FEAIA ... 238, 445
FEAISovve e 238, 445
FECONNECT ... 500
ReQISter aCCessccvvvvvveeeeiiiiiiiiieeeeenn, 501
Register lists - printing ..., 175
REQISTErS...coiiiiiiiieiie 175
Customizing Windowc.cccecuvvvneen. 175
Keyword table.........cccccccceeeviiiiinnnnnnn. 215
MOIFY ..o 175
OPENING.....veiieiiiieee e 175
Feloadooe i 503
reloadprojectcoccvvveeevee e, 504
FEMOVEoiiiiiiiiee et 505
TS ., 34, 507
FEStArt......oeveei e 509
FELUIM ...ttt 510
AT 511
FUNCONEIORYPE ...oeeiiiiiieiiiee e, 512
S
safemodecccoocviiiii 513
SAVE wreiiiieiiei e 515
savebreakpointsS.........coccevvveee e 516
savelayout........cccceeeeeiiiiciiie e 517

SavewatChes.........cocvvve e 518
selectdireCtory......ccovvveeeeiiiiciiiieeeee e 519
Selectfile.......ccvveeiii 520
Shell ... 521
SNOW i 522
SIN e 524
SIZEOF . 525
SIEEP ciiie e 526
SMM e 93
softbreak ... 527
softdisable........cccoeeiiiii 527
softenable ... 527
SOftrEMOVE ... 527
Source path ..., 10
SOUICEPOINT ...t 5
MeNU ..o 69
Refreshing windows.........cccceeevvviivinnen, 85
TOOIbAr ... 8
CUSLOMIZING.....oi e 31
SourcePoint Licensing..........cccooeveeeeennne. 218

SourcePoint online help

Help command..........cccocoveeeeeeniiiinnnen, 393
MEeNU ..o 70
SPIN L 529
LS 0 | 530

SFANG ... 532
SEEP i 533
1 (0] o IO TP U PP PP PP PPOTPRPRPRPRPRN 535
SUCAL ...oiiiiiiiiieieeeee e 536
SECHI e 537
SICMP o 539
SIFCPY eeiieiieiiieie ettt et eeeeeeeeees 541
SING oo 238, 445
string [] (index into string)ccccvvveeee. 545
SEIEN Lo 546
SUNCAL ..coeveiiiee 548
SINCMP e 549
SINCPY e 551
SIPOS i 552
] 1] | PP PP PP PPPPPPPTPPPRPROR 554
SEEOA . 557
SEEON i 559
SEEOUL .. 561
SWHreak......cocoeeviiiiiiii 564
SWILCH v 566
SWItches Tabcccocviiici e, 61
SWIEMOVE......uviiiiiieeiiiiiiririien e 568
Symbolic References..........ccocccvveeeeeeenn. 254
Symbolic text formatcccoeieeennnn 223
Symbols Windowccccceeveeeviiiiiieenneenn, 181

623

SourcePoint for AMD 1.0

Adding/expanding registers in a Watch

VIBW oo 199
Changing valuescccccvvveeeeeeeeininns 191
Classes VIEWeeveiriveeeeiiieee i 187
Globals VIieW........cccceeiiiiiiiicce, 188
LOCalS VIEW......eveiieiciee e 190
MENUS ... 185
Stack VIEW ..o, 191

Syntax NOtationcccceevveeeeiniieeeennnne 234
T
tADS e 569
TAN ..o 570
tapdatashift ... 571
tapstateset ..., 573
Target Configuration............ccccccvveeeeeeinnnnns 46
Loadingcccovvveeeieeeiiiiieee e 53
OVEIVIEW ...ttt 225
SAVING weveiieiiiiiieeee e 54
Target Devices Taboooccvvveeeeeeeeeeiinnns 50
Target Reset Tab......cccccoovvviiieeeeee e, 59
TAIGPOWET .. 575
targStatusvvveeeeeii 576
taskattachcccocoveviiinc e 578
taskbreak ..o 579
taskdisable.........cccveiiiiii 579
taskenable ... 579

624

taskend ... 581
taskgetpid.......cccoceveeeei i 582
taskremovecccccevvieeeiniieee e 579
taskstartccoovceeeeii 583
TCK e 585
TEXISYM it 223
HME e 587
TOASCHI ..vveeeeiiiiee e 293
TOINE . 293
TOIOWET ..o 293
TOUPPET ettt 293
U

UNIOAd ... 589
unloadprojectccccvveeeeeeeen e, 591
UPIoAd ... 592
USE .ot 594
\%

VEITY it 595
verifydeviceconfiguration 597
verifyjtagconfigurationcccocueeeenne 598
VEISION ..ot 599
View menu commandsccccoceeeerieeenn 31
VIEWPOINT ..coeiiiiiiiiiiie e 600
Viewpoint Processorccocevvvveeeennnnne. 253
Viewpoint WindoW............cccccvveveveeeninnnnns 193

MENU ... 194 WDINVA ..o 605
VPANAS.....cceeeiee e, 602 WHIlE .. 606
w windowrefresh.........cccoooeii e 608
WAL o 604 WPOIT .ottt 609
Watch window..........ccccvveveeeiiiiiiieeeeee, 195 (V4] (1= 11 o RS 611

Adding symbols..........ccocceeveeiiiiiiiinnn, 202 Y

Adding/expanding registers in.............. 199 VIEI e 613

MENU ..ooviiiiiiiiiieiece e 198 yieldflag ... 614

625

	Contacting ASSET InterTech
	Introduction to SourcePoint
	What's New in SourcePoint for AMD 1.0

	SourcePoint Environment
	SourcePoint Parent Window Introduction
	Docking/Floating Menu Items
	Toolbar Menu
	Menu Toolbar
	Icon Toolbar
	Status Bar
	Function Keys and Field Information
	Current Focus Processor Name
	Focus Processor Run State
	Focus Processor Mode
	Communications Status Indicator Lights

	SourcePoint Icon Toolbar
	Icon Groups
	Context Menus
	Customize Menu Item

	File Menu
	File Menu - Project Menu Item
	New Project Option
	Reload Project Option
	Save Project Option
	Save Project As Option
	Unload Project Option

	File Menu - Layout Menu Item
	Load Layout Menu Item
	Save Layout Menu Item

	File Menu - Program Menu Item
	Load Program Option
	Lower Half of Dialog Box

	Source Path Dialog
	Load type section

	Reload Program Option
	Remove All Programs Option
	Save Program Option

	File Menu - Macro Menu Item
	Load Macro Option
	Configure Macros Option
	User-Defined Macros Tab
	Event Macros Tab

	File Menu - Print Menu Items
	Print Menu Item
	 Print Preview Menu Item
	Print Setup Menu Item

	File Menu - Update Emulator Flash Menu Item
	File Menu - Program Target Devices Menu Item
	Program Flash Option
	Program PLD Option

	File Menu - Other Menu Items
	Save As Menu Item
	Recent Projects Menu Item
	Recent Layouts Menu Item
	Recent Programs Menu Item
	Recent Macros Menu Item
	Exit Menu Item

	Edit Menu
	Undo Menu Item
	Redo Menu Item
	Cut, Copy, Paste Menu Items
	Find Menu Item
	Replace Menu Item
	Find Symbol Menu Item
	The Dialog Box

	View Menu
	Toolbars Menu Item
	Dialog Bar Menu Item
	Breakpoints Menu Item
	Code Menu Item
	Command Menu Item
	Descriptors Menu Item
	Devices Menu Item
	Log Menu Item
	Memory Menu Item
	PCI Devices Menu Item
	Page Translation Menu Item
	Registers Menu Item
	Symbols Menu Item
	Viewpoint Menu Item
	Watch Menu Item

	Processor Menu
	Go Menu Item
	Stop Menu Item
	Step Into Menu Item
	Step Over Menu Item
	Step Out Of Menu Item
	Reset Menu Item
	Snapshot Menu Item

	Options Menu
	Options Menu - Preferences Menu Item
	General Tab
	Emulator Tab
	Breakpoints Tab
	Code Tab
	Memory Tab
	Program Tab
	Colors Tab

	Options Menu - Target Configuration Menu Item
	Memory Map Tab
	Program Flash Tab
	Flash Device(s) Section
	Flash Image(s) Section
	Target Initialization Section
	Buttons

	Target Devices Tab

	Options Menu - Load Target Configuration File Menu Item
	Options Menu - Save Target Configuration File Menu Item
	Options Menu - Emulator Configuration Menu Item
	General Tab
	JTAG Tab
	JTAG Clock Tab
	Target Reset Tab
	XDP Pins Tab
	Switches Tab
	Network Tab
	Information Tab

	Options Menu - Emulator Connection Menu Item
	For More Information

	Options Menu - Emulator Reset Menu Item
	Options Menu - Confidence Tests Menu Item
	Window Menu
	Close Menu Item
	Cascade Menu Item
	Tile Horizontally Menu Item
	Tile Vertically Menu Item
	Arrange Icons Menu Item
	Close All Menu Item

	Help Menu
	Index Menu Item
	Using Help Menu item
	License File Menu Item
	About SourcePoint Menu Item

	How to Add Emulator Connections
	USB Connections
	TCP/IP Connections
	Using Microsoft Windows 2000/2003/2008 DDNS for Addressing Emulators by Hostname
	Registering a DNS Suffix

	How to Configure Custom Macro Icons
	Configuring SourcePoint
	Adding Macro Icons
	Removing Macro Icons

	How to Configure Autoloading Macros
	How to Display Text on the Icon Toolbar
	Display Text Next to All Icons
	Display Text Next to a Group of Icons

	How to Edit Icon Groups to Customize Your Toolbars
	How to Modify a Defined Memory Region
	Adding or Modifying a Currently Defined Memory Region
	Removing a Currently Defined Memory Region

	How to Refresh SourcePoint Windows
	How to Save a Program
	How To Start SourcePoint With Command Line Arguments
	Command Line Arguments

	How to Use the New Project Wizard
	File Path Section
	Settings Basis Section

	How to Verify Emulator Network Connections

	Breakpoints Window
	Breakpoints Window Introduction
	Breakpoints Window
	Breakpoints Window - Breakpoint List Section
	Breakpoint List Columns
	Breakpoint List Button Bar
	Breakpoint List Context Menu

	Add/Edit Dialog
	Breakpoint Types and Resources
	Hardware (Debug Register) Breakpoints
	Software Breakpoints
	Emulator Breakpoints
	Processor Breakpoints

	How To - Breakpoints
	Set Breakpoints From Other SourcePoint Windows
	Code Window
	Breakpoint Column
	Context Menu

	Trace Window
	Symbols Window
	Find Symbol Dialog
	Command Window

	Code Window
	Code Window Introduction
	Display Columns
	Dialog Bar
	Finding Source Code
	Code Window Icon Definitions
	Code Window Menu
	Code Window Preferences
	How to Open a Code Window
	Opening the First Code Window
	Opening Additional Code Windows With the Code Menu Item
	Open a Code Window Corresponding to a Disassembled Instruction From the Trace Window
	Opening Additional Code Windows From the Symbols Window

	How to Disassemble Code at a Specific Location
	Disassemble Code in the Command Window
	Disassemble Code Using the Code Window

	How to Save Code Window Settings
	How to Save Code Window Contents

	Command Window
	Command Window Introduction
	The Command Window
	Entering Commands
	Command History
	Editing Commands
	Line Continuation
	Entering Multiple Commands as a Single Command
	Copy / Paste
	Drag / Drop
	Command Files
	Aborting a Command File
	Logging Commands and Responses to a File
	Printing the Command Window
	Searching the Command Window
	Executing an Operating System Command
	Getting Help

	Confidence Tests Window
	Confidence Tests Window Introduction
	Dialog Box Overview
	Tests and Test Status Buttons
	Test Setup Section
	Pop-Up Dialog Box

	Confidence Tests Tabs
	JTAG Tab
	Target Memory Tab

	Table of Confidence Test Failures and Symptoms

	Descriptors Tables Window
	Descriptors Window Introduction
	Window Structure
	Offset Column
	Type Column
	Attributes Column
	Values Column
	Tabs

	Descriptors Window Menu
	How to Replace a Descriptor Entry
	To Replace a Descriptor Entry

	Devices Window
	Devices Window Introduction
	Device View Files - Overview
	Device View File Structure
	Cell Definitions
	Directives
	Enumerations
	Groups
	Device/Cell Options
	Devices Window Menu
	Devices Pane
	Grid Pane

	Accessing Devices Window Cells in the Command Window
	How to Create a Simple Devices Window
	Creating a Devices File

	Log Window
	Log Window Introduction
	Log Display Columns
	Type Column
	Date/Time Column
	File [Line] Column
	Component Column
	Message Column

	Log Window Icon Definitions
	Log Window Menu

	Memory Window
	Memory Window Introduction
	Display Fields
	Address Area
	Data Area
	ASCII Area
	Dialog Bar
	Address Text Box
	Preference Drop Down Lists
	Refresh Button

	Memory Window Menu
	Size
	Radix
	Width
	ASCII
	Refresh
	View At Address
	Viewpoint
	Copy/Paste

	Memory Window Preferences
	How to Open a Memory Window
	How to View Memory at an Address
	Getting to a Memory Window
	Getting an Address From a Memory Window
	Address Styles

	How To Change Memory Values

	Page Translation Window
	Page Translation Window Introduction
	 Page Translation Window Elements
	Address Field
	Linear Fields
	Tables
	Page Frame

	PCI Devices Window
	PCI Devices Window Introduction
	Refresh PCI Devices Dialog Box
	PCI Devices Window Menu
	PCI Registers Dialog Box
	Registers Dialog Box Menu
	PCI Devices Window Menu
	How to Open the PCI Registers View From the PCI Devices Window
	How to Refresh a PCI Devices Dialog Box

	Registers Window
	Registers Window Introduction
	Register Groups
	Register List
	Registers Window Menu
	Editing a Register Value
	Expanding a Register Value
	Processor Selection
	Register Value Coloring

	How To - Registers
	Customize the Registers Window
	Adding or Reordering Registers
	Resizing the Window
	User Register List

	Print a Register List

	Symbols Windows
	Symbols Window Introduction
	General Features
	Display Base
	Editing Values
	Properties
	ToolTips
	Keyboard Support
	Shortcuts
	Refresh
	Printing
	Saving to a File
	Colors
	Multi-Processor Environment

	Symbols Window Icon Definitions
	Symbols Window Menus
	Classes Tab
	Globals Tab
	Columns
	Programs
	Modules
	Procedures
	Symbols

	Locals Tab
	Columns
	Editing
	Sorting
	Multi-processor

	Stack Tab
	Columns
	Stack Frames

	How to Change Values in the Symbols Window

	Viewpoint Window
	Viewpoint Window Introduction
	Viewpoint Window Menu

	Watch Window
	Watch Window Introduction
	Watch Tabs
	Quick Watch Tab
	General Features
	Columns
	Values
	Adding Watches
	Editing Values
	ToolTips
	Keyboard Support
	Printing
	Colors
	Multi-processor

	Watch Window Menu
	How to Add and Expand Registers in a Watch View
	Adding Registers to a Watch View
	Expanding Registers in a Watch View

	How to Add Symbols to a Watch or Quick Watch View

	Technical Notes
	Descriptor Cache: Revealing Hidden Registers
	UEFI Framework Debugging
	Overview
	UEFI Macros
	EFI.mac

	PEI Debugging
	DXE Debugging
	HOBs
	System Configuration Table
	Notes

	Memory Casting
	Defining Debug Variables of a Symbol Type as Defined in a Loaded Program
	Casting Blocks of Target Memory as a Symbol Type as Defined in a Loaded Program

	Microsoft® PE Format Support in SourcePoint
	Overview
	Definition of PE
	Definition of PDB

	FAQs
	Known restrictions of PE/PDB support in SourcePoint

	Registers Keyword Table
	SourcePoint Licensing
	Perpetual Model
	Subscription Model
	License File Server:
	Serial Number Locked License:

	Mobile Licensing
	Installing the SourcePoint Vendor Daemon
	Current License File Information

	Stepping
	Strategies for Source Level Stepping
	Stepping at source level or machine level
	Step Into
	Source Level Step Into
	Machine Level Step Into

	Step Over
	Source Level Step Over
	Machine Level Step Over

	Step Out Of

	Symbolic Text Format (Textsym)
	File Format
	Field Separator
	Signature
	Debug Information

	Example

	Target Configuration
	Overview
	Simple Targets
	Complex Targets
	Configuration Command Overview
	Configuration Commands
	Database Commands
	Control Variables

	Advanced Topics
	The JTAG Device Database
	Manually Defining the JTAG chain
	What the Configure Procedure Does
	Manually Executing Configuration Commands and Creating a Target Configuration File

	Using Bookmarks
	Adding/Removing Bookmarks
	Navigating Bookmarks
	Clearing Bookmarks
	Bookmark Indications

	Which Processor Is Which
	Introduction
	What Does "Last on the Chain, First on the Chain" Mean?
	How Is This Related to the PROCESSORCONTROL Variable in SourcePoint?
	What Does It Mean to Control More Than One Processor?

	SourcePoint Command Language
	Introduction
	Syntax Notation
	GeneralGeneral
	SourcePoint specific
	Comments
	Examples

	Constants
	Integer Constants
	Examples

	Floating Point Constants
	Examples

	Character Constants
	Examples

	String Constants
	Examples

	Data Types
	Discussion:
	Example 1
	Example 2

	Expressions
	Operands
	Operators
	Type Conversions

	Debug Variables
	Examples:

	Debug Variable Arrays
	Notes on Defining Arrays
	Array Elements
	Arrays as Variables
	Array Type with Debug Object Commands

	Debug Procedures
	Syntax
	Discussion:
	Example 1
	Example 2
	Example 3
	Example 4

	Control Variables
	Examples

	Command Files
	Filenames
	Viewpoint Processor and Processor Overrides
	Viewpoint Processor
	Processor Overrides
	Examples

	Processor Numbering

	Symbolic References
	Syntax:
	Discussion
	Symbol Table
	Names
	Labels and Procedures
	Variables
	Array Variables
	Composite Variables
	Compound Variables
	Pointer Variables
	Changing the Value of a Variable

	Qualified Symbol Names
	Syntax
	Discussion
	Example 1
	Example 2

	Commands and Control Variables
	aadump
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	abort
	Syntax
	Discussion
	Example

	abs
	Syntax
	Discussion
	Example 1
	Example 2

	acos
	Syntax
	Discussion
	Example

	advanced
	Syntax
	Discussion
	Example 1
	Example 2

	asin
	Syntax
	Discussion
	Example

	asm
	Syntax
	Discussion
	Disassembler
	Example 1
	Example 2
	Example 3
	Example 4

	Assembler
	Example

	Batch Assembly
	Example 1
	Example 2

	Interactive Assembly
	Example

	Assembler Directives
	Address Mode Directive { use16 | use32 }
	Address Directive
	Data Directive
	Assembler Directives
	Example 1
	Example 2
	Example 3
	Example 4

	asmmode
	Syntax
	Discussion
	Example

	atan
	Syntax
	Discussion
	Example

	atan2
	Syntax
	Discussion
	Example

	autoconfigure
	Syntax
	Discussion
	Example

	base
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4

	bell (beep)
	Syntax
	Discussion
	Example

	bits
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	break
	Syntax
	Discussion
	Example

	breakall
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	cachememory
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	cause
	Syntax
	Discussion
	Example 1
	Example 2

	Character Functions
	Syntax
	Discussion
	Character Functions

	Examples

	clock
	Syntax
	Discussion
	Example 1
	Example 2

	continue
	Syntax
	Discussion
	Example

	cos
	Syntax
	Discussion
	Example

	cpubreak, cpuremove, cpudisable, cpuenable
	Syntax
	Discussion
	Examples

	cpuid_eax
	Syntax:
	Discussion
	Example 1
	Example 2
	Example 3

	cpuid_ebx
	Syntax:
	Discussion
	Example 1
	Example 2
	Example 3

	cpuid_ecx
	Syntax:
	Discussion
	Example 1
	Example 2
	Example 3

	cpuid_edx
	Syntax:
	Discussion
	Example 1
	Example 2
	Example 3

	createprocess
	Discussion
	Examples

	ctime
	Syntax
	Discussion
	Example

	cwd
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	dbgbreak, dbgremove, dbgdisable, dbgenable
	Syntax
	Discussion
	Examples

	defaultpath
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	#define
	Syntax
	Discussion
	Example

	define
	Syntax
	Discussion
	Example 1
	Example 2

	definemacro
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	deviceconfigure
	Syntax
	Discussion

	devicescan
	Syntax
	Discussion
	Example

	disconnect
	Syntax
	Discussion
	Example

	displayflag
	Syntax
	Discussion
	Example

	do while
	Syntax
	Discussion
	Example

	dos
	Syntax
	Discussion
	Example 1
	Example 2

	dport
	Syntax
	Discussion:
	Example 1
	Example 2

	drscan
	Syntax
	Description
	Example 1
	Example 2
	Example 3

	edit
	Syntax
	Discussion
	Example

	editor
	Syntax
	Discussion
	Example

	emulatorstate
	Syntax
	Discussion
	Example

	encrypt
	Syntax
	Discussion
	Example

	error
	Syntax
	Discussion
	Example

	eval
	Syntax
	Discussion
	Example

	evalprogramsymbol
	Syntax
	Discussion
	Examples
	Example 1
	Example 2
	Example 3
	Example 4

	execution point ($)
	Syntax
	Discussion
	Examples 1
	Example 2
	Example 3

	exit
	Syntax
	Discussion

	exp
	Syntax
	Discussion
	Example

	fc
	Syntax
	Discussion
	Example

	fclose
	Syntax
	Discussion
	Example

	feof
	Syntax
	Discussion
	Example

	fgetc
	Syntax
	Discussion
	Example

	fgets
	Syntax
	Discussion
	Example

	first_jtag_device
	Syntax
	Discussion
	Example

	flist
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	flush
	Syntax
	Discussion
	Examples

	fopen
	Syntax
	Discussion
	Example

	for
	Syntax
	Discussion
	Example

	forward
	Syntax
	Discussion
	Example 1

	fprintf
	Syntax
	Discussion
	Example

	fputc
	Syntax
	Discussion
	Example

	fputs
	Syntax
	Discussion
	Example

	fread
	Syntax
	Discussion
	Example

	fseek
	Syntax
	Discussion
	Example

	ftell
	Syntax
	Discussion
	Example

	fwrite
	Syntax
	Discussion
	Example

	getc
	Syntax
	Discussion
	Example

	getchar
	getnearestprogramsymbol
	Syntax
	Discussion
	Example 1
	Example 2

	getprogramsymboladdress
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4

	gets
	Syntax
	Discussion
	Example

	globalsourcepath
	Syntax
	Discussion
	Example 1
	Example 2

	go
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	halt
	Syntax
	Discussion
	Example

	help
	Syntax
	Discussion:
	Example 1
	Example 2
	Example 3

	homepath
	Syntax
	Discussion
	Example

	idcode
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	if
	Syntax
	Discussion
	Example 1
	Example 2

	include
	Syntax
	Discussion
	Example 1
	Example 2

	invd
	Syntax
	Discussion
	Examples

	irscan
	Syntax
	Description:
	Example 1
	Example 2

	isdebugsymbol
	Syntax
	Discussion
	Example 1
	Example 2

	isem64t
	Syntax
	Discussion
	Example

	isprogramsymbol
	Syntax
	Discussion
	Examples
	Example 1
	Example 2
	Example 3

	isrunning
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example

	issleeping
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	issmm
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	jtagchain
	Syntax
	Discussion
	Example 1
	Example 2

	jtagconfigure
	Syntax
	Discussion
	Example

	jtagdeviceadd
	Syntax
	Discussion
	Example

	jtagdeviceclear
	Syntax
	Discussion
	Example

	jtagdevices
	Syntax
	Discussion
	Example

	jtagscan
	Syntax
	Discussion
	Example

	jtagtest
	Syntax[
	Discussion
	Examples

	keys
	Syntax
	Discussion
	Examples

	last
	Syntax
	Discussion
	Example 1
	Example 2

	last_jtag_device
	Syntax
	Discussion
	Example 1

	left
	Syntax
	Discussion
	Example

	license
	Syntax
	Example

	linear
	Syntax
	Discussion
	Example 1
	Example 2

	list, nolist
	Syntax
	Discussion
	Example 1
	Example 2

	load
	Syntax
	Discussion
	Example 1
	Example 2

	loadbreakpoints
	Syntax
	Discussion
	Example

	loadlayout
	Syntax
	Discussion
	Example

	loadproject
	Syntax
	Discussion
	Example 1
	Example 2
	loadproject()

	loadtarget
	Syntax
	Discussion
	Example

	loadwatches
	Syntax
	Discussion
	Example

	log, nolog
	log10
	Syntax
	Example

	loge
	Syntax
	Example

	logmessage
	Syntax
	Discussion
	Example

	macropath
	Syntax
	Discussion
	Example

	Memory Access
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Memory Access: Addresses
	Syntax
	Discussion
	Virtual Address
	Physical Address

	messagebox
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	mid
	Syntax
	Discussion
	Example

	msgclose
	Syntax
	Discussion
	Example

	msgdata
	Syntax
	Discussion
	Example

	msgdelete
	Syntax
	Discussion
	Example

	msgdr
	Syntax
	Discussion
	Example

	msgdump
	Syntax
	Discussion
	Example

	msgir
	Syntax
	Discussion
	 Example

	msgopen
	Syntax
	Discussion
	Example

	msgreturndatasize
	Syntax
	Discussion
	Example

	msgscan
	Syntax
	Discussion
	Example

	msr
	Syntax
	Example 1
	Example 2
	Example 3

	num_activeprocessors
	Syntax
	Discussion
	Example

	num_all_devices
	Syntax
	Discussion
	Example

	num_devices
	Syntax
	Discussion
	Example 1
	Example 2

	num_jtag_chains
	Syntax
	Discussion
	Example

	num_jtag_devices
	Syntax
	Discussion
	Example

	num_processors
	Syntax
	Discussion
	Example

	pause
	Syntax
	Discussion
	Example 1
	Example 2

	physical
	Syntax
	Discussion
	Example 1
	Example 2

	port
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	pow
	Syntax
	Discussion
	Example 1
	Example 2

	print cycles
	Syntax
	Discussion
	Examples

	printf
	Syntax
	Discussion:
	Flags
	Width
	Precision
	Data-length
	Conversion-operator
	Escape Characters

	Example 1
	Example 2
	Example 3

	proc
	Syntax
	Discussion
	Example

	processorcontrol
	Syntax
	Discussion
	Example 1
	Example 2

	processorfamily
	Syntax
	Discussion
	Example 1
	Example 2

	processormode
	Syntax
	Discussion
	Example

	processors
	Syntax
	Discussion
	Example 1
	Example 2

	processortype
	Syntax
	Discussion
	Example 1
	Example 2

	projectpath
	Syntax
	Discussion
	Example

	putchar
	Syntax
	Discussion
	Example

	puts
	Syntax
	Discussion
	Example

	rand
	Syntax
	Discussion
	Example

	readsetting
	Syntax
	Discussion
	Example

	reconnect
	Syntax
	Discussion
	Example

	Register Access
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	reload
	Syntax
	Discussion
	Example

	reloadproject
	Syntax
	Discussion
	Example

	remove
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4

	reset
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	restart
	Syntax
	Discussion
	Example

	return
	Syntax
	Discussion
	Example

	right
	Syntax
	Discussion
	Example

	runcontroltype
	Syntax
	Discussion
	Example 1
	Example 2

	safemode
	Syntax
	Discussion
	Example 1
	Example 2

	save
	savebreakpoints
	Syntax
	Discussion
	Example

	savelayout
	Syntax
	Discussion
	Example

	savewatches
	Syntax
	Discussion
	Example

	selectdirectory
	Syntax
	Discussion
	Example

	selectfile
	Syntax
	Discussion
	Example

	shell
	Syntax
	Discussion
	Examples

	show
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	sin
	Syntax
	Discussion
	Example

	sizeof
	Syntax
	Discussion
	Example

	sleep
	Syntax
	Discussion
	Example 1
	Example 2

	softbreak, softremove, softdisable, softenable
	Syntax
	Discussion
	Examples

	sprintf
	Syntax
	Discussion
	Example

	sqrt
	Syntax
	Discussion
	Example 1
	Example 2

	srand
	Syntax
	Discussion
	Example

	step
	Syntax
	Discussion
	Examples

	stop
	Syntax
	Discussion
	Example

	strcat
	Syntax
	Discussion
	Example

	strchr
	Syntax
	Discussion
	Example 1
	Example 2

	strcmp
	Syntax
	Discussion
	Example

	strcpy
	Syntax
	Discussion
	Example

	_strdate
	Syntax
	Discussion
	Example 1
	Example 2

	string [] (index into string)
	Syntax
	Discussion
	Example

	strlen
	Syntax
	Discussion
	Example 1
	Example 2

	_strlwr
	Syntax
	Discussion
	Example 1
	Example 2

	strncat
	Syntax
	Discussion
	Example

	strncmp
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	strncpy
	Syntax
	Discussion
	Example

	strpos
	Syntax
	Discussion
	Example 1
	Example 2

	strstr
	Syntax
	Discussion
	Example 1
	Example 2

	_strtime
	Syntax
	Discussion
	Example 1
	Example 2

	strtod
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	strtol
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4

	strtoul
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	_strupr
	Syntax
	Discussion
	Example 1
	Example 2

	swbreak
	Syntax
	Discussion
	Example 1
	Example 2

	switch
	Syntax
	Discussion
	Example

	swremove
	Syntax
	Discussion
	Example 1
	Example 2

	tabs
	Syntax
	Discussion
	Example

	tan
	Syntax
	Discussion
	Example

	tapdatashift
	Syntax
	Discussion
	Example 1
	Example 2

	tapstateset
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	targpower
	Syntax
	Discussion
	Example

	targstatus
	Syntax
	Discussion
	Example 1
	Example 2

	taskattach
	Syntax
	Discussion
	Example

	taskbreak, taskremove, taskdisable, taskenable
	Syntax
	Discussion
	Examples

	taskend
	Syntax
	Discussion
	Example

	taskgetpid
	Syntax
	Discussion
	Example

	taskstart
	Syntax
	Discussion
	Examples

	tck
	Syntax
	Discussion
	Example 1
	Example 2

	time
	Syntax
	Discussion
	Example

	#undef
	Syntax
	Discussion
	Example

	unload
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	unloadproject
	Syntax
	Discussion
	Example

	upload
	Syntax
	Discussion
	Example 1
	Example 2

	use
	Syntax
	Discussion
	Example

	verify
	Syntax
	Discussion
	Example 1
	Example 2

	verifydeviceconfiguration
	Syntax
	Discussion

	verifyjtagconfiguration
	Syntax
	Discussion
	Example

	version
	Syntax
	Discussion
	Example

	viewpoint
	Syntax
	Discussion
	Example 1
	Example 2

	vpalias
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3
	Example 4

	wait
	Syntax
	Discussion

	wbinvd
	Syntax
	Discussion
	Examples

	while
	Syntax
	Discussion
	Example 1

	windowrefresh
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	wport
	Syntax
	Discussion
	Example 1
	Example 2
	Example 3

	writesetting
	Syntax
	Discussion
	Example

	yield
	Syntax
	Discussion

	yieldflag
	Syntax
	Discussion
	Example 1

	Index

