

© 2021 ASSET InterTech, Inc.

ScanWorks Embedded Diagnostics

(SED)

API Library Reference Manual

Release 2.01

September 26, 2021

© 2021 ASSET InterTech, Inc.

Contents
Revision History .. 5

Introduction and Code Samples .. 6

ai_ErrorToString .. 15

ai_GetLibraryVersion .. 16

ai_mBasicRWRamTest .. 17

ai_mBootRomBusTest ... 20

ai_mCheckMemory ... 22

ai_mClose .. 25

ai_mConfig .. 26

ai_mCPUID .. 28

ai_mDownloadUserDiag ... 30

ai_mDRamRefreshTest.. 33

ai_mEnableoxmdebug .. 36

ai_mEnableRAMAreaasCAR .. 38

ai_mEnableUUTDiagsAreaasCAR .. 40

ai_mEnterDebugMode .. 42

ai_mExecuteUserDiag ... 44

ai_mExitDebugMode .. 47

ai_mFillMemory .. 49

ai_mFXRSTOR .. 52

ai_mFXSAVE .. 54

ai_mGetActiveCore ... 56

ai_mGetActiveCPU .. 57

ai_mGetActiveThread ... 58

ai_mGetBreakpoint ... 59

ai_mGetDebugModeStatus .. 61

ai_mGetITPScanChainTopology .. 63

ai_mGetPriorStateInfo .. 66

ai_mIOSFcrashdumpDiscovery ... 68

ai_mIOSFcrashdumpGetFrame ... 69

ai_mIOSFreadEndpointConfig ... 70

© 2021 ASSET InterTech, Inc.
3

ai_mIOSFreadMSR .. 71

ai_mIOSFreadPCIConfig .. 72

ai_mIOSFreadPCIConfigLocal .. 73

ai_mIOSFreadPkgConfig .. 74

ai_mIOSFTAPinit .. 75

ai_mIOSFTAPownership .. 76

ai_mIOSFwritePCIConfig ... 77

ai_mIOSFwritePCIConfigLocal ... 78

ai_mIOSFwritePkgConfig ... 79

ai_mIsPowerOn ... 80

ai_mNavigatetoTAPState .. 81

ai_mOpen .. 82

ai_mOpenEx .. 84

ai_mRamBusTest ... 86

ai_mRamBusTestChannel ... 89

ai_mRamBusTestviaFIFO ... 92

ai_mReadCR .. 95

ai_mReadCSR .. 97

ai_mReadDescriptorTableRegister ... 99

ai_mReadDR .. 101

ai_mReadGPR .. 103

ai_mReadIO ... 105

ai_mReadMemory .. 107

ai_mReadMSR ... 109

ai_mReadSegmentRegister ... 111

ai_mResetDetect ... 113

ai_mResetUUT .. 114

ai_mReturnIDCode .. 116

ai_mReturnIDCodewithOverscan ... 118

ai_mReturnSiliconID ... 120

ai_mRomCrcTest ... 122

ai_mRunUUT ... 125

ai_mRWRamTest ... 126

© 2021 ASSET InterTech, Inc.
4

ai_mScanDr ... 127

ai_mScanIr... 130

ai_mSetActiveCore .. 132

ai_mSetActiveCPU... 133

ai_mSetActiveThread .. 135

ai_mSetBreakpoint ... 136

ai_mSetDebugModeCheckFlag ... 138

ai_mSetinitbreak ... 139

ai_mSetmachinecheckbreak ... 141

ai_mSetRunMode ... 143

ai_mSetshutdownbreak .. 145

ai_mSetsmmentrybreak .. 147

ai_mSetTap ... 149

ai_mSetTargetCPUType .. 150

ai_mStopTest .. 152

ai_muregraw ... 153

ai_muregraw64 ... 154

ai_mWaitforDebugMode .. 157

ai_mWBINVD .. 159

ai_mWriteCR ... 161

ai_mWriteCSR ... 163

ai_mWriteDescriptorTableRegister .. 165

ai_mWriteDR ... 167

ai_mWriteGPR... 169

ai_mWriteIO .. 171

ai_mWriteMemory ... 173

ai_mWriteMSR .. 175

ai_mWriteSegmentRegister .. 177

Revision History

© 2021 ASSET InterTech, Inc.
5

Revision History

Revision Number Description Date

2.01 - Removed NDA requirement, retained Copyright September 26, 2021

2.00 - Sapphire Rapids support
- CheckValue parameter added to
ai_mCheckMemory()
- ai_mGetBreakPoint() BreakPointNo parameter
should be uint8_t* and not uint8_t
- ai_mGetITPScanChainTopology:
ai_CoreTopology_t core[24] should be core[60]

September 7, 2021

1.00 Original document March 25, 2021

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
6

Introduction and Code Samples

Welcome to our API Reference Manual! We hope that you find the contents useful and interesting. If at

any time you have any feedback or questions, feel free to reach out to us at ai-info@asset-

intertech.com, or use our handy Contact Us form at https://www.asset-intertech.com/contact-us/.

This API Reference Manual provides an alphabetical listing of all interfaces available within the

ScanWorks Embedded Diagnostics (SED) run-control library. It is ASSET’s intent to keep the library and

documentation current, universal, and backwards compatible as of the most recent supported x86

platforms. As of the time of this writing, the current supported Intel CPU/platform is Sapphire

Rapids/Eagle Stream, and the library and documentation support all the way back to the Intel Nehalem

platform.

The two major use cases for the SED API are (1) remote CScripts application, and (2) On-Target

Diagnostics (OTD). You can see this from the below diagram:

Figure 1: Remote CScripts, and On-Target Diagnostics

At the top, the remote host PC, running Windows or Linux, communicates over Ethernet or other

transport with the BMC, that hosts the run-control library and the JTAG driver and mastering function.

mailto:ai-info@asset-intertech.com
mailto:ai-info@asset-intertech.com
https://www.asset-intertech.com/contact-us/

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
7

At the bottom is the main topic of this Reference Manual: the BMC is autonomous, and executes

applications written in C/C++ as OTDs. We’ll describe the general approach involved in using the SED

library, and then walk through individual code samples to show how it’s used.

Note: in this Reference Manual, although we strive to write efficient code and follow best SED

programming practices, the main goal of each sample program is to demonstrate SED concepts or

programming techniques. Writing the most optimal code was not the goal, and would likely obfuscate

the ideas trying to be illustrated. Keep this in mind if you are using any of the sample code in your own

projects, as you may wish to rework it for better efficiency. Moreover, in order to focus on the SED API,

we have built minimal infrastructure on top of it. This means the illustrative software sometimes

hardcodes values and define things in the source code that might normally be data driven.

We will illustrate the main functionality of the SED API by using a program called “ltloop”. ltloop is

an application that stresses PCI Express ports by exercising the Link Training & Status State Machine

(LTSSM) on upstream and downstream PCI Express devices, looking for device, firmware and board

marginalities. If you’re unfamiliar with the LTSSM, please review some background reading such as Built-

In Self Test (BIST) for PCI Express using Embedded Run-Control and What is Surprise Link Down (SLD)?

We won’t delve into the detailed nature of this application here, other than to use it for illustrative

purposes for the API. Note that this example works on an Ice Lake server platform.

The source code for ltloop is here: Download ltloopExample.

Let’s firstly start off by looking at main():

int main (int argc, char **argv)

{

 int numcores;

 int curcore;

 int numcpus;

 int curcpu;

 int iError = 0;

 bool pwrchk = true, scnsetup = true, savemodarch = true;

 int mHandle;

 FILE *UUTDiagsHexFile;

 char ver[200];

 uint64_t msr;

 uint64_t regdata;

 int i;

 struct timespec start_time;

 struct timespec end_time;

 double secs;

 uint32_t bus;

 uint32_t dev;

 uint32_t fun;

 ai_ITPtopology_t topo;

 uint16_t curCPU;

 UUTDiagsHexFile = NULL;

 printf("\n\nLink Training Loop test\n");

 iError = parseArgs(argc, argv);

 if (iError != 0)

 {

 usage();

 return iError;

 }

 ai_GetLibraryVersion(ver);

 printf("Library version = %s\n", ver);

 AI_pdcselector pdctarget = AI_pdc_0;

 if ((iError = ai_mOpen(pdctarget, 1, &mHandle)) != AI_SUCCESS)

 {

https://www.asset-intertech.com/resources/blog/2018/04/built-in-self-test-bist-for-pci-express-using-embedded-run-control/
https://www.asset-intertech.com/resources/blog/2018/04/built-in-self-test-bist-for-pci-express-using-embedded-run-control/
https://www.asset-intertech.com/resources/blog/2014/03/what-is-surprise-link-down-sld/
https://www.asset-intertech.com/wp-content/uploads/2021/03/ltloopExample.cpp_.docx

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
8

 printf ("\nOpen ERROR: %s Channel %i\n" , ai_ErrorToString(iError), pdctarget);

 return 1;

 }

 if ((iError = ai_mSetTargetCPUType(mHandle, AI_sandybridge)) != AI_SUCCESS)

 {

 printf ("\nSetTargetCPUType: ERROR: %s Channel %i\n" , ai_ErrorToString(iError), pdctarget);

 return 1;

 }

 ai_mConfig (mHandle, 100, UUTDiagsHexFile, 0x10000LL, pwrchk, scnsetup, savemodarch);

 iError = ai_mGetITPScanChainTopology(mHandle, &topo, true);

 if (iError != AI_SUCCESS)

 {

 printf ("\nERROR getting target topology: %s\n" , ai_ErrorToString(iError));

 return iError;

 }

 numcpus = topo.tck[TCK_ZERO_POS].numcpus;

 if ((m_socket < CPU_ZERO_POS) || (m_socket > numcpus))

 {

 printf("Invalid socket number, must be between %hu and %hu\n", CPU_ZERO_POS, numcpus);

 return -1;

 }

 //Halt all cores in all CPUs

 for (curCPU=CPU_ZERO_POS; curCPU < (numcpus + CPU_ZERO_POS); curCPU++)

 {

 if ((iError = ai_mSetActiveCPU(mHandle, curCPU)) != AI_SUCCESS)

 {

 printf ("\nSetActiveCPU: ERROR: %s Socket %hu\n" , ai_ErrorToString(iError), curCPU);

 return 1;

 }

 ai_mSetActiveCore(mHandle, CORE_ZERO_POS);

 ai_mSetActiveThread(mHandle, THREAD_ZERO_POS);

 if ((iError = ai_mEnterDebugMode(mHandle)) != AI_SUCCESS)

 {

 printf ("\n EnterDebugMode: ERROR: %s Socket %hu\n" , ai_ErrorToString(iError), curCPU);

 return 1;

 }

 }

 //TODO

 //Check return values:

 ai_mIOSFTAPinit(mHandle);

 m_bus0 = 0; //Start with bus 0 for bus discovery

 //Get TAP ownership for all TAPs, overview will use all TAPs (CPUs)

 for (curCPU=0; curCPU < numcpus; curCPU++)

 {

 m_peciCPU = curCPU;

 ai_mIOSFTAPownership(mHandle, true, curCPU);

 }

 //Prepare the target and get the bus numbers for each socket

 //We need the bus min/max for first socket in order for second socket to work

 for (curCPU=0; curCPU < numcpus; curCPU++)

 {

 m_peciCPU = curCPU;

 prepTarget(mHandle, 0, 0, 0); //attempt to "unhide" devices; b/d/f is ignored

 getBusNumbers(mHandle, curCPU);

 }

 printf("Selecting socket %hu\n", m_socket);

 if ((iError = ai_mSetActiveCPU(mHandle, m_socket)) != AI_SUCCESS)

 {

 printf ("\nSetActiveCPU: ERROR: %s Socket %hu\n" , ai_ErrorToString(iError), m_socket);

 return 1;

 }

 m_peciCPU = m_socket - CPU_ZERO_POS;

 ai_mSetActiveCore(mHandle, CORE_ZERO_POS);

 ai_mSetActiveThread(mHandle, THREAD_ZERO_POS);

 clock_gettime(CLOCK_MONOTONIC, &start_time);

 port2bdf(m_port, &bus, &dev, &fun); //Convert the command line option -p<n> to bus, device, function

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
9

 do_test(mHandle, numcpus, bus, dev, fun);

 clock_gettime(CLOCK_MONOTONIC, &end_time);

 secs = (double)(end_time.tv_sec - start_time.tv_sec) + (double)(end_time.tv_nsec - start_time.tv_nsec) / 10

00000000.0;

 printf("Time for test: %7.2f seconds.\n\n", secs);

 ai_mClose(mHandle);

 return iError;

}

Most OTDs have the same structure within the main routine. The platform is initialized for run-control

with the following API, in sequential order:

ai_mOpen

ai_mSetTargetCPUType

ai_mConfig

ai_mGetITPScanChainTopology

ai_mSetActiveCPU

ai_mSetActiveCore

ai_mSetActiveThread

The operation of these functions should be made fairly clear by looking at the source code. Here are

some examples.

The invocation of ai_mOpen is in line 1255:

if ((iError = ai_mOpen(pdctarget, 1, &mHandle)) != AI_SUCCESS)

Since the third argument is &mHandle, the value of mHandle can be updated within this function.

mHandle is a unique identifier connection to a specific PdcNo – which in turns relates to the number of

CPUs that the service processor JTAG Master is intended to drive. In this case, it’s left at the default of

AI_PDC_0; the default of one chain or node.

The invocation of ai_mSetActiveCPU is in line 1286:

if ((iError = ai_mSetActiveCPU(mHandle, curCPU)) != AI_SUCCESS)

while iterating across the values of curCPU (normally two in a 2-socket system, four in a 4-socket

system, etc.).

And ai_mEnterDebugMode is in line 1294:

if ((iError = ai_mEnterDebugMode(mHandle)) != AI_SUCCESS)

This function forces all connected CPU cores of the node identified by mHandle in to debug mode. Said

another way, they enter probe mode, and are then available for other run-control operations. Debug

mode or probe mode is a state in which the platform must be to execute many of the SED library

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
10

functions; though this is not true in all cases, which will be shown when we discuss the Intel On-chip

System Fabric (IOSF) related functions, such as invoked in ai_mIOSFTAPinit(mHandle) on line

1303. But, let’s skip ahead of these calls for now.

After the platform probe mode initialization is complete, the flow of the program is as follows:

prepTarget(mHandle, 0, 0, 0);

getBusNumbers(mHandle, curCPU);

port2bdf(m_port, &bus, &dev, &fun);

do_test(mHandle, numcpus, bus, dev, fun);

lt_loop(mHandle, bus, dev, fun);

After the main platform initialization is done, ltloop does some specific work to provide sideband (i.e.

not run-control based) access with the IOSF routines in main(). Although there are references to PECI

in the code, in this instance JTAG is still used as the physical access mechanism to the meta state

machine, but not run-control. Then port2bdf is called (a handy utility function to translate the port

number from the command line to bus/ device/ function). Finally do_test is launched, which in turn

launches the lt_loop function, where all the heavy lifting is done.

Let’s first look at the parseArgs(argc, argv) function called initially within main() to see the overall

parameters and operations supported by the ltloop OTD:

int parseArgs(int argc, char **argv)

{

 int c;

 int retval = 0;

 while ((c = getopt (argc, argv, "l:p:t:s:f:cdbo?h")) != -1)

 {

 switch(c)

 {

 case 'p':

 //printf("Option p: %s\n", optarg);

 m_port = atoi(optarg);

 if ((m_port < 0) || (m_port >= MAXPORT))

 {

 printf("Invalid port value: %d \n", m_port);

 retval = -1;

 m_port = 0;

 }

 break;

 case 'l':

 m_loops = atoi(optarg);

 if (m_loops < 1)

 {

 printf("Invalid number of loops, must be > 0.\n");

 retval = -1;

 m_loops = 1;

 }

 break;

 case 's':

 m_socket = atoi(optarg);

 //Will check socket # in main after we get system topology and learn # of CPUs

 break;

 case 't':

 m_type = atoi(optarg);

 if ((m_type != 1) && (m_type != 6))

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
11

 {

 printf("Invalid test type, only type 1 and type 6 are supported.\n");

 m_type = 1;

 retval = -1;

 }

 break;

 case 'd':

 m_readDSC = true;

 break;

 case 'b':

 ai_mIOSFdebugPrint(true);

 printf("Debug printouts turned on\n");

 break;

 case 'o':

 m_overview = true;

 break;

 case 'f':

 m_forceSpeed = atoi(optarg);

 if ((m_forceSpeed > 4) || (m_forceSpeed < 1))

 {

 printf("Invalid speed, must be between 1 and 4\n");

 retval = 1;

 m_forceSpeed = 0;

 }

 break;

 case 'c':

 m_pciScan = true;

 break;

 case '?':

 case 'h':

 retval = 1; //Note: caller will treat as error and print usage()

 break;

 } // switch...

 } //while...

 //Further checks on params

 //Can't check downstream component on DMI (port 0)

 if ((m_port == 0) && (m_readDSC))

 {

 m_readDSC = false;

 printf("Unable to check DSC errors on DMI.\n");

 //We allow test to continue in this case, as it is probably what user would do if we issu

ed an error.

 }

 return retval;

} // parseArgs

You can see that the switch on the input parameters (i.e. we might invoke ltloop via “ltloop -s1 -p5 -t1 -

l10000”) gives us the following options:

“s” : socket number

“p”: PCIe port number

“l” : the number of LTSSM loop tests to run; for example, how many retrains to do

“t” : Test type. Only 1 and 6 are supported in this routine. “1” is a simple link retrain test, and “6” is a

speed change loop test (i.e. from Gen1 to Gen4 and back).

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
12

“d” : this provides the option to conduct testing on the downstream device (DSC – downstream

component) as well as the upstream component. The default is “false” to optimize for time. But we can

set it to “true” to have the test be more rigorous.

“b” : This allows for debug information to be sent from when we use the IOSF to access the PCI Express

configuration registers. It’s a debug utility, mostly for use by ASSET or Intel personnel to do some

troubleshooting if needed.

“o” : Another debug utility, just to do a subset equivalent of the “sysTopo” CScript. This overrides all

other options.

“f” : Forces the port to a given speed; for example, Gen1, Gen2, Gen3, Gen4.

“c” : Does a scan and a print of all B/D/F.

Much of the “heavy lifting” happens in the lt_loop(int mHandle, uint32_t bus,

uint32_t device, uint32_t function) routine. Note that it makes use of some of the key

register definitions as defined early in the program:

#define REG_LNKSTS 0x52

#define REG_DMI_LNKSTS 0x1B2

#define REG_LNKCON 0x50

#define REG_DMI_LNKCON 0x1B0

#define REG_LNKCON2 0x70

#define REG_DMI_LNKCON2 0x1C0

#define REG_LNKCAP 0x4C

#define REG_LTRCON 0x11C

#define REG_CORERRSTS 0x110 //"ERRCORSTS" correctable error status

#define REG_UNCERRSTS 0x104 //"ERRUNCSTS" uncorrectable error status

#define REG_SECBUS 0x19

#define REG_AERCAPHDR 0x100 //Advanced Error Reporting Extended Capability Header

#define REG_CPUBUSNO 0x104

#define REG_CPUBUSNO1 0x108

#define REG_CPUBUSNO2 0x10A

#define REG_CPUBUSNO_VALID 0x110

#define REG_SOCKET_BUS_RANGE 0x114

The PCIe register definitions such as REG_LNKSTS are found in the Intel EDS; but, in lieu of that, a lot

of the underlying methodology is common to all x86 platforms and in the public domain, such as here:

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-

s1200-datasheet-vol-2.pdf. Note that lnksts has been renamed to linksts, but we keep the old

legacy LNKSTS here. lnksts is at offset 0x52 and contains useful information such as whether link

training is complete or in progress, what the link width is, whether it’s up or not, and the link speed. We

see later that we read its contents with the call at line 621:

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-s1200-datasheet-vol-2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/atom-processor-s1200-datasheet-vol-2.pdf

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
13

lnksts = readRegisterPeci(mHandle, bus, dev, fun, reg_lnksts, AI_bw16);

and then we do some compares, status checking, and place the link width and speed in our local

variables:

if (lnksts == 0xFFFF)

 {

 printf("Link status is all ones; aborting test.\n");

 return;

 }

//check to make sure the link is active before we begin. May be inactive due to not connected on target.

if ((lnksts & 0x2000) == 0)

 {

 printf("Link is not active on startup, aborting test.\n");

 return;

 }

startWidth = (lnksts >> 4) & 0x3F;

startSpeed = lnksts & 0xF;

Note at the top that we retrieve lnksts using the function readRegisterPeci as opposed to a

standard JTAG/MMIO read. This routine does not use PECI as an access mechanism; rather, it uses the

sideband IOSF access mechanism as a means to not halt the target. So, despite the name, it’s still JTAG.

The end result is the same, though: we retrieve all 16 bits of LNKSTS, do the “and” with bit 13 to see if

the Data Link Control and Management State Machine is in the DL_Active state, and if so we get the

Negotiated Link Width by shifting right four bits and ANDing with x3F, thereby isolating the bits 9:4

which contains the width. We also assign startSpeed to the last four bits.

Next we do the same thing with lnkcon (in the EDS, this has been renamed to linkctl):

lnkcon = readRegisterPeci(mHandle, bus, dev, fun, reg_lnkcon, AI_bw16);\

lnkcon = lnkcon | 0x20; //set the retrain_link bit

Note that we set bit 5 of lnkcon, via the OR with x20, to initiate the link retrain. We then later use run-

control (not IOSF) to fire off the retrain:

//Write the LNKCON register to cause the link to retrain

writeRegisterMem(mHandle, membus, dev, fun, reg_lnkcon, AI_bw16, lnkcon);

We then iteratively loop for up to 100 times (normally it only takes one or two loops), checking the link

retrain bit, to see if the retrain succeeded:

//loop checking the link status until the link has finished retraining (or we give up)

for (j=0; j<100; j++) //max number of times to try

 {

 lnksts = readRegisterPeci(mHandle, bus, dev, fun, reg_lnksts, AI_bw16);

 if ((lnksts & 0x800) == 0)

 {

 break; //Normal exit for this loop after 1 or 2 tries

 }

 }

Introduction and Code Samples

© 2021 ASSET InterTech, Inc.
14

if ((lnksts & 0x800) != 0)

 {

 printf("Link failed to finish re-training.\n");

 noTrains++;

 break;

 }

if ((lnksts & 0x2000) == 0)

 {

 printf("Link is no longer active after retrain.\n");

 noTrains++;

 break;

 }

And afterwards we check that the Link Training bit (bit 11 of lnksts, the result of the mask with

0x800) should be zero, and that we’re in the DL_Active state (via the mask with 0x2000, bit 13).

Otherwise, we bail.

Finally, as an example, we collect the number of correctable and uncorrectable errors while we’re in the

loop:

//Check for uncorrectable errors that occurred during retrain

errs = readRegisterPeci(mHandle, bus, dev, fun, REG_UNCERRSTS, AI_bw32);

if (errs != 0)

 {

 uncorErrors++;

 printf("Uncorrectable error: 0x%08X on port: %d loop: %d\n", errs, m_port, i);

 }

//Check for correctable errors that occured during retrain

errs = readRegisterPeci(mHandle, bus, dev, fun, REG_CORERRSTS, AI_bw32);

if (errs != 0)

 {

 corErrors++;

 printf("Correctable error: 0x%08X on port: %d loop: %d\n", errs, m_port, i);

 }

And that’s it! Hopefully you’ve found this helpful in creating your own OTDs.

ai_ErrorToString

© 2021 ASSET InterTech, Inc.
15

NAME

ai_ErrorToString

Converts an integer error code to a string.

SYNOPSIS

#include <itp_driver.h>

const char *ai_ErrorToString(int rval);

DESCRIPTION

ai_ErrorToString() takes the integer error code rval and returns the associated character array

of error information.

RETURN VALUE

The ai_ErrorToString() function returns a pointer to related error string.

ERRORS

N/A

ai_GetLibraryVersion

© 2021 ASSET InterTech, Inc.
16

NAME

ai_GetLibraryVersion

Returns the version number of the shared library.

SYNOPSIS

#include <itp_driver.h>

int ai_GetLibraryVersion (char* version);

DESCRIPTION

ai_GetLibraryVersion() returns the version number of the ITP driver library through the version

pointer to char.

RETURN VALUE

On success, ai_GetLibraryVersion()returns 0.

ERRORS

N/A

SEE ALSO

N/A

ai_mBasicRWRamTest

© 2021 ASSET InterTech, Inc.
17

NAME

ai_mBasicRWRamTest

Execute a Basic R/W RAM Test diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mBasicRWRamTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, char* ErrorString);

DESCRIPTION

ai_mBasicRWRamTest() executes a test to diagnose the data and address buses between the CPU

and a RAM area.

mHandle identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

ai_mBasicRWRamTest() assumes a 64-bit data bus width (for data bus, byte enable lane and data

cell testing).

If an error is diagnosed, ErrorString will return the diagnostic information.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of

all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mBasicRWRamTest() is divided in to 5 sub-tests, executed in sequence.

ai_mBasicRWRamTest

© 2021 ASSET InterTech, Inc.
18

1. Data bus hi/lo test.

2. Data bus shorts test.

3. Byte enables test.

4. Data test (writes/verifies patterns to every individual cell in the range specified).

5. Address bus test.

If any sub-test fails the diagnostic returns immediately, skipping execution of any subsequent sub-tests.

The 'Data test' sub-test uses machine code routines that operate in 32-bit mode only. Therefore, this

diagnostic can only operate on the bottom 4G memory space (i.e. 0x0-0xFFFFFFFF).

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mBasicRWRamTest() returns 0. On

error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCOD was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: Error configuring JTAG

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_BASIC_RW_RAM_DATA_HILO Data bus hi/lo failure diagnosed

AI_BASIC_RW_RAM_DATA_SHORT Data bus shorts failure diagnosed

AI_BASIC_RW_RAM_BYTE_ENABLES Byte enables lane(s) failure diagnosed

AI_BASIC_RW_RAM_DATA_TEST Data cell test failure diagnosed

AI_BASIC_RW_RAM_ADDRESS Address bus failure diagnosed

AI_RAM_TEST_HALTED_USR Execution of RAM test interrupted by user

AI_RAM_TEST_HALTED_UNKNWN_SRC Execution of RAM test interrupted by unknown source

ai_mBasicRWRamTest

© 2021 ASSET InterTech, Inc.
19

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_FILE_LOAD_ERR Error loading hex file (required for data cell test)

AI_DBG_MODE_RAM_TEST Error during execution of RAM Test

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/Configuration settings to default

SEE ALSO

ai_mRamBusTest

ai_mRamBusTestChannel

ai_mRamBusTestviaFIFO

ai_mRWRamTest

ai_mDRamRefreshTest

ai_mBootRomBusTest

© 2021 ASSET InterTech, Inc.
20

NAME

ai_mBootRomBusTest

Execute a Boot ROM Bus Test diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mBootRomBusTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, char* ErrorString);

DESCRIPTION

ai_mBootRomBusTest() executes a test to diagnose the data and address buses between the CPU

and the boot ROM area. Because of the nature of ROM memory (i.e. read only), only read memory

operations can be used to diagnose the buses.

mHandle identifies the node for the operation to be carried out on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mBasicRWRamTest() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mBootRomBusTest() is divided in to 2 sub-tests, executed in sequence.

1. Data bus test.

2. Address Bus Test.

ai_mBootRomBusTest

© 2021 ASSET InterTech, Inc.
21

If any sub-test fails, the diagnostic returns immediately, skipping execution of any subsequent sub-tests.

The test does not necessarily have to be execute on a ROM area of memory. It can be executed on a

RAM area. However, the target range must have random data within it (the diagnostic algorithms

assume random data in the range).

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mBootRomBusTest() returns 0. On

error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_ROM_BUS_FAIL Bus test diagnosed a failure

AI_ROM_TEST_HALTED_USR Execution of Boot ROM bus test interrupted by user

AI_DBG_MODE_ROM_BUS Error during execution of Boot ROM bus test

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/configuration settings to default

SEE ALSO

N/A

ai_mCheckMemory

© 2021 ASSET InterTech, Inc.
22

NAME

ai_mCheckMemory

Check that a memory block/range contains a specific value

SYNOPSIS

#include <itp_driver.h>

int ai_mCheckMemory (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, void* FillValue, void* CheckValue, ai_Buswidth BusWidth,

uint64_t* ErrorAddress, void* ErrorData);

DESCRIPTION

ai_mCheckMemory() submits instruction(s) to the target core on the node specified by mHandle,

to execute the 'check memory' machine code routine on the target core, to check a memory block

starting at StartAddress and ending at EndAddress for the value CheckValue. As each location

is checked, it will be overwritten with the value FillValue.

BusWidth takes on one of the following values to specify the operand size for the operation.

8 8-bit operand size

16 16-bit operand size.

32 32-bit operand size

ErrorAddress will return the memory location in error on a failure occurrence, and ErrorData will

return the data at the failing memory location.

During execution of the 'check memory' machine code routine, the target core will exit debug mode.

The function will not return until the core has re-entered debug mode. Upon completion, the target core

should immediately re-enter debug mode, at which point, the target core can then service ITP driver

functions normally again.

Should the user wish to force re-entry to debug mode during execution of the 'check memory' machine

code routine, he/she can do so by calling ai_mStopTest() via a forked child process.

ai_mStopTest() will force debug mode re-entry, which will cause ai_CheckMemory() to

subsequently return.

No other ITP Driver functions (other than ai_mStopTest()) should be called while

ai_mCheckMemory() is running. Because the target core is not in debug mode during user

diagnostic execution, execution of other ITP Driver functions can force the target core to re-enter debug

mode. In this case, ai_mCheckMemory() behavior is undefined.

ai_mCheckMemory

© 2021 ASSET InterTech, Inc.
23

The 'check memory' machine code routine forms part of a collection of machine code routines which the

ITP driver can execute. Since the routines are machine code, they must be downloaded and run from an

area of memory accessible by the target core. UUTDiagsHexFile from ai_mConfig() provides

the ITP driver library with a pointer to the machine code file, and UUTDiagsBaseAddress, also from

ai_mConfig(), defines the memory base address from which the machine code will be run. Prior to

calling the 'check memory' machine code routine, the function will check if the machine code routines

exists at UUTDiagsBaseAddress, and if not, will proceed to download the file pointed to by

UUTDiagsHexFile.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

The machine code routines operate in 32-bit mode only, therefore any machine code routines will only

operate in the bottom 4G memory space (i.e 0x0-0xFFFFFFFF). Behavior is undefined if the range

specified extends outside this area.

When calling ai_mCheckMemory(), the user should ensure that memory range specified does not

overlap into the UUTDiagsBaseAddress memory area reserved for execution of the machine code

routines. Also, the user should ensure that memory has been initialized sufficiently to allow the machine

code routines to run properly. In both cases, the function may fail to return normally (i.e. unless forced

using ai_StopTest()).

RETURN VALUE

On success, ai_mCheckMemory() returns 0. On error, it will return one of the following values:

ERRORS

ai_mCheckMemory

© 2021 ASSET InterTech, Inc.
24

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: rrror getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_CHECK_MEM Error during execution of check memory operation

AI_CHECK_MEM_FAIL Memory failure

AI_CHECK_MEM_HALTED_USR Execution of check memory operation interrupted by user

AI_CHECK_MEM_HALTED_UNKNWN_SRC Execution of check operation interrupted by unknown source

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_NO_EXEC_HALT_STATE Target is halted. Unable to execute user diagnostic

AI_NO_EXEC_WAIT_FOR_SIPI_STATETarget indicates ‘WAIT FOR SIPI’ state. Unable to run diagnostic

AI_NO_EXEC_SHUTDOWN_STATE Target in ‘SHUTDOWN’ state. Unable to run diagnostic

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

FILES

Pentcode.hex - machine code routines collection. Can be installed to any directory.

UUTDiagsHexFile from ai_mConfig() provides the ITP driver library with a pointer to the

machine code file.

SEE ALSO

ai_mFillMemory

ai_mStopTest

NAME

ai_mClose

© 2021 ASSET InterTech, Inc.
25

ai_mClose

Close communication channel with ITP Driver JTAG Controller device.

SYNOPSIS

#include <itp_driver.h>

void ai_mClose (int mHandle);

DESCRIPTION

ai_mClose() closes the ITP Driver ’connection’ specified by mHandle.

The function submits a reset to the ITP driver JTAG controller device, thereby relinquishing control over

the XDP and JTAG lines. It then proceeds to unmap the ITP Driver JTAG controller from memory space,

and finally closes the file handle to the device.

RETURN VALUE

N/A

ERRORS

N/A

SEE ALSO

ai_mOpen

ai_mOpenEx

ai_mConfig

© 2021 ASSET InterTech, Inc.
26

NAME

ai_mConfig

Set up configuration parameters.

SYNOPSIS

#include <itp_driver.h>

int ai_mConfig (int mHandle, uint16_t ResetPulseDuration, FILE

*UUTDiagsHexFile, uint64_t UUTDiagsBaseAddress, bool PowerCheck, bool

ScanChainSetup, bool SaveModifyArch);

DESCRIPTION

ai_mConfig() sets up various configuration parameters for the node identified by mHandle that

may be required by other ITP driver library function calls.

ResetPulseDuration specifies the length of pulse (in mSecs) to be applied to the DBR line (XDP

interface - HOOK7) when the ai_mResetUUT() or ai_mRunUUT() functions are invoked.

UUTDiagsHexFile provides a file pointer to the UUT diagnostics hex file. The UUT diagnostics hex

file contains the machine code language routines that are used by the ITP driver library to carry out ROM

CRC checks, fill memory commands, and check memory commands. Some RAM test diagnostics also

have fill and check memory commands built into their algorithms.

UUTDiagsBaseAddress provides the base address in memory where the UUT diagnostics hex file

will be downloaded and executed from. Diagnostics can only be downloaded and/or executed from the

bottom 4GB of memory (0x0 - 0xffffffff).

PowerCheck provides a global parameter to the other ITP driver library functions informing them to

execute a power check first, before continuing to execute their designated function. Default value is

true (i.e. do a power check)

ScanChainSetup provides a global parameter to the other ITP driver library functions informing

them to check and perform (if necessary) the required scan chain interrogation and setup before

executing their designated function. Default value is true (i.e. check and perform scan-chain

interrogation/set-up).

SaveModifyArch provides a global parameter to the other ITP driver library functions informing

them to check and perform (if necessary) the debug mode entry and processor state save routines

before executing their designated function. Most of the ITP driver functions require the target CPU to be

in debug mode, and the state of the processor at the debug mode entry point to be saved to a buffer

within the ITP driver. Default value is true (i.e. check and perform debug mode entry and save

processor state routines).

ai_mConfig

© 2021 ASSET InterTech, Inc.
27

RETURN VALUE

On success, ai_mConfig() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

SEE ALSO

N/A

ai_mCPUID

© 2021 ASSET InterTech, Inc.
28

NAME

ai_mCPUID

Submit a CPUID instruction and retrieve CPUID info from target core.

SYNOPSIS

#include <itp_driver.h>

int ai_mCPUID (int mHandle, uint32_t inEAX, uint32_t inECX, uint32_t

*retEAX, uint32_t *retEBX, uint32_t *retECX, uint32_t *retEDX);

DESCRIPTION

ai_mCPUID() submits a CPUID instruction to the target core, on the node specified by mHandle,

with the data presented in inEAX and inECX as the inputs. The output from the execution of the

CPUID instruction is saved and returned in retEAX , retEBX , retECX and retEDX . See Intel 64 and

IA-32 Architectures Software Developer Manual Volume 2A for more information on the CPUID function.

On some processors CPUID functionality is not available. Prior to submitting the CPUID instruction for

execution, the function performs an operation to check if such functionality is available.

The input and output parameters do not have any effect on the 'processor state buffer' held in host

memory. (i.e. the target core 'processor stat buffer' remains unaffected through the execution of this

function).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mCPUID

© 2021 ASSET InterTech, Inc.
29

RETURN VALUE

On success, ai_mCPUID() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible UNCORES exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_CPUID_NOT_AVAIL Target core reports CPUID functionality not available

AI_DBG_MODE_CPUID Error during execution of CPUID operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

N/A

ai_mDownloadUserDiag

© 2021 ASSET InterTech, Inc.
30

NAME

ai_mDownloadUserDiag

Download a user diagnostic to target memory.

SYNOPSIS

#include <itp_driver.h>

int ai_mDownloadUserDiag (int mHandle, FILE *userdiagfilefd, uint64_t

BaseAddress);

DESCRIPTION

ai_mDownloadUserDiag() submits instruction(s) to the target core, on the node specified by

mHandle, to download the data from the binary file pointed to by userdiagfilefd, to a memory

area with the base address location specified by BaseAddress.

The file pointed to by userdiagfilefd must be of Intel HEX format. Normally, the code for such

Intel HEX format is written in assembly language and compiled using a macro assembler of some

description, such as the Microsoft Macro Assembler (MASM).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

On debug mode entry (and after saving the architectural state), the target core will be in placed in 32-bit

operating mode. As shown in the example below, user diagnostics should assume 32-bit mode

operation. Based upon the 32-bit operation assumption, it is not possible for user diagnostics to execute

above the 4GB boundary (0xffffffff). Any attempt to download user diagnostics using BaseAddress

greater than 0xffffffff will be rejected. Users should ensure their user diagnostic(s) do not extend

ai_mDownloadUserDiag

© 2021 ASSET InterTech, Inc.
31

beyond the 4GB boundary. In this case, no error is produced, but execution of the user diagnostic will

produce undefined behavior.

RETURN VALUE

On success, ai_mDownloadUserDiag() returns 0. On error, it will return one of the following

values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_DWNLD_USR_DIAG Error during execution of user diagnostic

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

EXAMPLE

The code below demonstrates the format of a user diagnostic, and how it is written using assembly

language such that it can be properly invoked by the ai_mExecuteUserDiag() call, and return the

target core in a halted state (debug mode) on completion of the routine.

.386P

CODE SEGMENT USE32

ASSUME CS:CODE,DS:CODE

BreakPoint: JMP Breakpoint ;* First line (obligatory!)

MOV ECX,0000B8000H ;* code

MOV EAX,0ABCDEF10H ;* code MOV [ECX],EAX ;* code

JMP BreakPoint ;* Last line (obligatory!)

;**

;CODE ENDS HERE.

ai_mDownloadUserDiag

© 2021 ASSET InterTech, Inc.
32

;** CODE ENDS

END

Note that the first and last lines are marked as obligatory. These lines must be present in the diagnostic

otherwise it may not run or return to debug mode after completion. The user should insert the

diagnostic routine between these two lines.

Although this example illustrates moving values into GPRs, data can be passed into and returned from

the diagnostic by calling the ai_mReadGPR() and ai_mWriteGPR() prior to or after execution of

the diagnostic.

SEE ALSO

ai_mExecuteUserDiag

ai_mDRamRefreshTest

© 2021 ASSET InterTech, Inc.
33

NAME

ai_mDRamRefreshTest

Execute a DRAM Refresh Test diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mDRamRefreshTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, double RefreshDelay, char* ErrorString);

DESCRIPTION

ai_mDRamRefreshTest() executes a test to find and diagnose refresh problems on a DRAM area.

mHandle identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

RefreshDelay specifies the delay (in secs) between filling and checking the memory range, in each

pass of the diagnostic.

If an error is diagnosed, ErrorString will return the diagnostic information.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

The ai_mDRamRefreshTest() function uses machine code routines that operate in 32-bit mode

only. Therefore, this diagnostic can only operate on the bottom 4G memory space (i.e. 0x0-0xFFFFFFFF).

ai_mDRamRefreshTest

© 2021 ASSET InterTech, Inc.
34

This is a 2-pass test. The first pass writes/verifies zeroes (0's) to each cell location, while the 2nd pass

writes/verifies ones (1's) to each cell location.

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mDRamRefreshTest() returns 0. On

error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_DRAM_REFRESH DRAM refresh failure diagnosed

AI_RAM_TEST_HALTED_USR Execution of RAM Test interrupted by user

AI_RAM_TEST_HALTED_UNKNWN_SRC RAM test interrupted by unknown source

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_FILE_LOAD_ERR Error loading hex file (required for test)

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_DBG_MODE_RAM_TEST Error during execution of RAM test

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mRamBusTest

ai_mRamBusTestChannel

ai_mRamBusTestviaFIFO

ai_mBasicRWRamTest

ai_mDRamRefreshTest

© 2021 ASSET InterTech, Inc.
35

ai_mRWRamTest

ai_mEnableoxmdebug

© 2021 ASSET InterTech, Inc.
36

NAME

ai_mEnableoxmdebug

Enable target ureg_raw capability

SYNOPSIS

#include <itp_ureg_raw.h>

int ai_mEnableoxmdebug (int mHandle);

DESCRIPTION

ai_mEnableoxmdebug() enables the target CPU, for the node identified by mHandle, to be

receptive to uregraw type scans. The target is briefly put in to debug mode to carry out the operation,

after which debug mode is exited, and the target is left in a running state again. This function is provided

mainly as an interface for Intel CScripts. THIS API IS ONLY APPLICABLE TO INTEL IVY BRIDGE TARGETS.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success, ai_mEnableoxmdebug() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

ai_mEnableoxmdebug

© 2021 ASSET InterTech, Inc.
37

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_UREG_RAW_NOT_IMPLEMENTED Not a valid function (possibly not IvyBridge target)

AI_DBG_MODE_ENABLE_OXM_DEBUG Error during execution of Enableoxmdebug operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_muregraw

ai_muregraw64

ai_mEnableRAMAreaasCAR

© 2021 ASSET InterTech, Inc.
38

NAME

ai_mEnableRAMAreaasCAR

Set up a RAM area as cacheable.

SYNOPSIS

#include <itp_driver.h>

int ai_mEnableRAMAreaasCAR (int mHandle, uint64_t CarBaseAddress,

uint64_t CarSize);

DESCRIPTION

ai_mEnableRAMAreaasCAR() submits instruction(s) to the target core, on the node specified by

mHandle, to invalidate its cache, and set up an area of target memory as cacheable. CarSize defines the

size of the area to be defined as cacheable, and CarBaseAddress defines the base address of the area to

be made cacheable.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

CAR can only be defined within the bottom 4GB memory region (i.e. 0x0 - 0xffffffff).

RETURN VALUE

On success, ai_mEnableRAMAreaasCAR() returns 0. On error, it will return one of the following

values:

ai_mEnableRAMAreaasCAR

© 2021 ASSET InterTech, Inc.
39

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_SETUP_CAR_RAM Error during setup of RAM area

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

 SEE ALSO

N/A

ai_mEnableUUTDiagsAreaasCAR

© 2021 ASSET InterTech, Inc.
40

NAME

ai_mEnableUUTDiagsAreaasCAR

Set up area from where machine code routines are run from as cacheable.

SYNOPSIS

#include <itp_driver.h>

int ai_mEnableUUTDiagsAreaasCAR (int mHandle);

DESCRIPTION

ai_mEnableUUTDiagsAreaasCAR() submits instruction(s) to the target core, on the node

specified by mHandle, to invalidate its cache, and set up a 4KB area around the machine code routines

as cacheable. All memory accesses (other than to the cacheable machine code area) will then be

directed to physical memory, as opposed to cache.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mEnableUUTDiagsAreaasCAR() returns 0. On error, it will return one of the

following values

ERRORS

ai_mEnableUUTDiagsAreaasCAR

© 2021 ASSET InterTech, Inc.
41

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_SETUP_CAR_PENTCODE Error during setup of UUT diags area for CAR

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mEnableRAMAreaasCAR

ai_mEnterDebugMode

© 2021 ASSET InterTech, Inc.
42

NAME

ai_mEnterDebugMode

Force all connected CPU core(s) into debug mode.

SYNOPSIS

#include <itp_driver.h>

int ai_mEnterDebugMode (int mHandle);

DESCRIPTION

ai_mEnterDebugMode() forces all connected CPU cores on the node identified by mHandle into

debug mode. This will halt all connected CPU core(s) at their current state. Debug mode is a temporary

state, which the CPU core must be in to execute most of the ITP Driver library functions.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of

all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

RETURN VALUE

On success completion of the sequence, ai_mEnterDebugMode() returns 0. On error, it will return

one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

ai_mEnterDebugMode

© 2021 ASSET InterTech, Inc.
43

AI_DBG_MODE_ENTER Error during execution to put CPU cores into debug more

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mExitDebugMode

ai_mGetDebugModeStatus

ai_mExecuteUserDiag

© 2021 ASSET InterTech, Inc.
44

NAME

ai_mExecuteUserDiag

Execute a user diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mExecuteUserDiag (int mHandle, uint64_t BaseAddress);

DESCRIPTION

ai_mExecuteUserDiag() submits instruction(s) to the target core, on the node identified by

mHandle, to execute the user diagnostic with the base address location specified by BaseAddress.

During execution of the user diagnostic, the target core will exit debug mode. The function will not

return until the core has re-entered debug mode. Upon completion of the diagnostic, the target core

should immediately re-enter debug mode, at which point, the target core can then service ITP driver

functions normally again.

Should the user wish to force re-entry to debug mode during execution of the user diagnostic, he/she

can do so by calling ai_mStopTest() via a forked child process. ai_mStopTest() will force

debug mode re-entry, which will cause ai_mExecuteUserDiag() to subsequently return.

No other ITP Driver functions (other than ai_mStopTest()) should be called while

ai_mExecuteUserDiag() is running. Because the target core is not in debug mode during user

diagnostic execution, execution of other ITP Driver functions could force the target core to re-enter

debug mode. In this case, ai_mExecuteUserDiag() behavior is undefined.

Data can be passed into and returned from the diagnostic by calling the ai_mReadGPR() and

ai_mWriteGPR() prior to, or after execution, of the diagnostic.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

ai_mExecuteUserDiag

© 2021 ASSET InterTech, Inc.
45

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

On debug mode entry (and after saving the architectural state), the target core will be in placed in 32-bit

operating mode. User diagnostics should assume 32-bit mode operation. Based upon the 32-bit

operation assumption, it is not possible for user diagnostics to execute above the 4GB boundary

(0xffffffff). Any attempt to execute user diagnostics using BaseAddress greater than 0xffffffff will be

rejected. Users should ensure their user diagnostic(s) do not extend beyond the 4GB boundary. In this

case, no error is produced, but execution of the user diagnostic will produce undefined behavior.

RETURN VALUE

On success, ai_mExecuteUserDiag() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_EXEC_USR_DIAG Error during execution of user diagnostic

AI_EXEC_USR_DIAG_HALTED_USR Error of user diagnostic operation interrupted by user

AI_NO_EXEC_HALT_STATE Target core is in HALT state – cannot execute user diagnostic

AI_NO_EXEC_WAIT_FOR_SIPI_STATE Target core is in WAIT FOR SIPI state – cannot execute user diagnostic

AI_NO_EXEC_SHUTDOWN_STATE Target core is in SHUTDOWN state – cannot execute user diagnostic

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mExecuteUserDiag

© 2021 ASSET InterTech, Inc.
46

ai_mDownloadUserDiag

ai_mStopTest

ai_mExitDebugMode

© 2021 ASSET InterTech, Inc.
47

NAME

ai_mExitDebugMode

Force all connected CPU core(s) out of debug mode.

SYNOPSIS

#include <itp_driver.h>

int ai_mExitDebugMode (int mHandle);

DESCRIPTION

ai_mExitDebugMode() forces all connected CPU cores on the node identified by mHandle out of

debug mode, if they are in debug mode. This will restart all connected CPU core(s) from their current

debug mode state. The function also primes the ITP Driver FPGA controller device PRDY interrupt

mechanism, to allow any subsequent PRDY pulses (indicative of debug mode activity, such as

breakpoints) to be detected.

Before attempting the exit debug mode operation, each individual core's “processor state buffer” will be

restored (if it has been saved/extracted from the core).

Also, before attempting the exit debug mode operation, the ITP Driver controller device is primed to halt

the CPU core(s) on detection of any subsequent activity on the CPU RESET signal (i.e. a ' debug mode at

reset condition'). However, execution of ai_mClose() will negate the ability to halt the CPU core(s)

on the occurrence of a CPU RESET.

Debug mode status is not checked on completion of the exit debug mode operation. (i.e. the function

does not check that all connected CPU core(s) have exited debug mode).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

RETURN VALUE

On success completion of the sequence, ai_mExitDebugMode() returns 0. On error, it will return

one of the following values:

ai_mExitDebugMode

© 2021 ASSET InterTech, Inc.
48

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_STS Error during execution of get debug mode status

AI_DBG_MODE_PROC_REGS Error during execution of restoring CPU core registers

AI_DBG_MODE_WAKEUP_PREQ Error during execution of WAKEUP_PREQ operation

AI_ERR_PCT_INT_IOCTL Error from IOCTL() function

AI_DBG_MODE_EXIT Error during exit debug mode operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mEnterDebugMode

ai_mGetDebugModeStatus

ai_mWaitForDebugMode

ai_mFillMemory

© 2021 ASSET InterTech, Inc.
49

NAME

ai_mFillMemory

Fill a memory block/range with a specific value.

SYNOPSIS

#include <itp_driver.h>

int ai_mFillMemory (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, void* FillValue, AI_buswidth BusWidth);

DESCRIPTION

ai_mFillMemory() submits instruction(s) to the target core on the node specified by mHandle, to

execute the ’fill memory' machine code routine on the target core, to fill a memory block starting at

StartAddress and ending at EndAddress with the value FillValue.

BusWidth takes on one of the following values to specify the operand size for the operation:

8 8-bit operand size

16 16-bit operand size.

32 32-bit operand size.

During execution of the ’fill memory' machine code routine, the target core will exit debug mode. The

function will not return until the core has re-entered debug mode. Upon completion, the target core

should immediately re-enter debug mode, at which point, the target core can then service ITP driver

functions normally again.

Should the user wish to force re-entry to debug mode during execution of the ’fill memory' machine

code routine, he/she can do so by calling ai_mStopTest() via a forked child process.

ai_mStopTest() will force debug mode re-entry, which will cause ai_mFillMemory() to

subsequently return.

No other ITP Driver functions (other than ai_mStopTest()) should be called while

ai_mFillMemory() is running. Because the target core is not in debug mode during user diagnostic

execution, execution of other ITP Driver functions can force the target core to re-enter debug mode. In

this case, ai_mFillMemory() behavior is undefined.

The ’fill memory' machine code routine forms part of a collection of machine code routines which the

ITP driver can execute. Since the routines are machine code, they must be downloaded and run from an

area of memory accessible by the target core. UUTDiagsHexFile from ai_mConfig() provides

the ITP driver library with a pointer to the machine code file, and UUTDiagsBaseAddress, also from

ai_mConfig(), defines the memory base address from which the machine code will be run. Prior to

calling the ’fill memory' machine code routine, the function will check if the machine code routines exist

ai_mFillMemory

© 2021 ASSET InterTech, Inc.
50

at UUTDiagsBaseAddress, and if not, will proceed to download the file pointed to by

UUTDiagsHexFile.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

The machine code routines operate in 32-bit mode only, therefore any machine code routines will only

operate in the bottom 4G memory space (i.e 0x0-0xFFFFFFFF). Behavior is undefined if the range

specified extends outside this area.

When calling ai_mFillMemory(), the user should ensure that memory range specified does not

overlap into the UUTDiagsBaseAddress memory area reserved for execution of the machine code

routines. Also, the user should ensure that memory has been initialized sufficiently to allow the machine

code routines to run properly. In both cases, the function may fail to return normally (i.e. unless forced

using ai_mStopTest()).

RETURN VALUE

On success, ai_mFillMemory() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

ai_mFillMemory

© 2021 ASSET InterTech, Inc.
51

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_FILL_MEM Error during execution of fill memory operation

AI_FILL_MEM_HALTED_USR Execution of fill memory operation interrupted by user

AI_FILL_MEM_HALTED_UNKNWN_SRC Execution of fill memory operation interrupted by unknown source

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_NO_EXEC_HALT_STATE Target core in HALT state – unable to execute user diagnostic

AI_NO_EXEC_WAIT_FOR_SIPI_STATE Target core in WAIT FOR SIPI state – unable to execute user diagnostic

AI_NO_EXEC_SHUTDOWN_STATE Target core in SHUTDOWN state – unable to execute user diagnostic

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

FILES

Pentcode.hex - machine code routines collection. Can be installed to any directory.

UUTDiagsHexFile from ai_mConfig() provides the ITP driver library with a pointer to the

machine code file.

SEE ALSO

ai_mCheckMemory

ai_mStopTest

ai_mFXRSTOR

© 2021 ASSET InterTech, Inc.
52

NAME

ai_mFXRSTOR

Execute the Pentium FXRSTOR instruction.

SYNOPSIS

#include <itp_driver.h>

int ai_mFXRSTOR (int mHandle, uint64_t BaseAddress);

DESCRIPTION

ai_mFXRSTOR() restores the x87 FPU, MMX technology, XMM and MXCSR registers of the currently

targeted core, on the node identified by mHandle, from a 512-byte memory area, the base of which is

specified by BaseAddress.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mFXRSTOR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

ai_mFXRSTOR

© 2021 ASSET InterTech, Inc.
53

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_CPU_FUNC_NOT_SUPPORTED Function not supported on targeted CPU

AI_DBG_MODE_FXRSTOR Error during execution of FXRSTOR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mFXSAVE

ai_mFXSAVE

© 2021 ASSET InterTech, Inc.
54

NAME

ai_mFXSAVE

Execute the Pentium FXSAVE instruction.

SYNOPSIS

#include <itp_driver.h>

int ai_mFXSAVE (int mHandle, uint64_t BaseAddress);

DESCRIPTION

ai_mFXSAVE() saves the x87 FPU, MMX technology, XMM and MXCSR registers of the currently

targeted core, on the node identified by mHandle, to a 512-byte memory area, the base of which is

specified by BaseAddress.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), the function will first of all

perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re- execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mFXSAVE() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

ai_mFXSAVE

© 2021 ASSET InterTech, Inc.
55

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_CPU_FUNC_NOT_SUPPORTED Function not supported on targeted CPU

AI_DBG_MODE_FXRSTOR Error during execution of FXRSTOR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mFXRSTOR

ai_mGetActiveCore

© 2021 ASSET InterTech, Inc.
56

NAME

ai_mGetActiveCore

Get the currently targeted core.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetActiveCore (int mHandle, uint16_t *ActiveCore);

DESCRIPTION

ai_mGetActiveCore() retrieves the core that is currently being targeted by the ITP driver, on the

node identified by mHandle, and returns it in ActiveCore.

NOTES:

The ActiveCore will always return to the default value (1) after ai_mResetUUT() ,

ai_mRunUUT(), or, on first loading of the ITP driver library to memory.

RETURN VALUE

ai_mGetActiveCore() will always returns 0.

ERRORS

N/A

SEE ALSO

ai_mGetActiveCPU

ai_mGetActiveThread

ai_mSetActiveCPU

ai_mSetActiveCore

ai_mSetActiveThread

ai_mGetActiveCPU

© 2021 ASSET InterTech, Inc.
57

NAME

ai_mGetActiveCPU

Get the currently targeted CPU.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetActiveCPU (int mHandle, uint16_t *ActiveCPU);

DESCRIPTION

ai_mGetActiveCPU() retrieves the CPU that is currently being targeted by the ITP driver, on the

node identified by mHandle, and returns it in ActiveCPU .

NOTES:

The active CPU will always return to the default value (1) after ai_mResetUUT() , ai_mRunUUT(),

or, on first loading of the ITP driver library to memory.

RETURN VALUE

ai_mGetActiveCPU() will always returns 0.

ERRORS

N/A

SEE ALSO

ai_mGetActiveCore

ai_mGetActiveThread

ai_mSetActiveCPU

ai_mSetActiveCore

ai_mSetActiveThread

ai_mGetActiveThread

© 2021 ASSET InterTech, Inc.
58

NAME

ai_mGetActiveThread

Get the currently targeted thread.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetActiveThread (int mHandle, uint16_t *ActiveThread);

DESCRIPTION

ai_mGetActiveThread() retrieves the thread that is currently being targeted by the ITP driver, on

the node identified by mHandle, and returns it in ActiveThread.

NOTES:

The ActiveThread will always return to the default value (0) after ai_mResetUUT() ,

ai_mRunUUT(), or, on first loading of the ITP driver library to memory.

RETURN VALUE

ai_mGetActiveThread() will always returns 0.

ERRORS

N/A

SEE ALSO

ai_mGetActiveCore

ai_mGetActiveCPU

ai_mSetActiveCPU

ai_mSetActiveCore

ai_mSetActiveThread

ai_mGetBreakpoint

© 2021 ASSET InterTech, Inc.
59

NAME

ai_mGetBreakpoint

Determine which breakpoint register met the breakpoint condition.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetBreakpoint (int mHandle, uint8_t *BreakpointNo);

DESCRIPTION

ai_mGetBreakpoint() determines which breakpoint register on the target core, on the node

specified by mHandle, met the breakpoint condition. BreakpointNo returns 0, 1, 2, or 3 to indicate

whether it was BreakpointAddr0, BreakpointAddr1, BreakpointAddr2 or

BreakpointAddr3 (from ai_mSetBreakpoint()) respectively that met the condition).

This function should only be called if absolutely sure the target core is in debug mode. Calling the

function before a breakpoint condition has been met will force the target core into debug mode

(meaning the breakpoint condition will never be met).

Refer to Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A for more information

on debug registers and setting breakpoints.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mSetBreakpoint() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mGetBreakpoint

© 2021 ASSET InterTech, Inc.
60

RETURN VALUE

On success, ai_mGetBreakpoint() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_GET_BKPT Error during execution of get breakpoint(s) operation

AI_INVALID_BKPT Invalid breakpoint

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mSetBreakpoint

ai_mExitDebugMode

ai_mWaitforDebugMode

ai_mGetDebugModeStatus

© 2021 ASSET InterTech, Inc.
61

NAME

ai_mGetDebugModeStatus

Check the debug mode status of the currently targeted core.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetDebugModeStatus (int mHandle, bool *Status);

DESCRIPTION

ai_mGetDebugModeStatus() retrieves the debug mode status for the currently targeted core on

the node identified by mHandle. On successful completion Status will be false if current target is not

in debug mode, otherwise true if it is in debug mode.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mGetDebugModeStatus() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success completion of the sequence, ai_mGetDebugModeStatus() returns 0. On error, it will

return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

ai_mGetDebugModeStatus

© 2021 ASSET InterTech, Inc.
62

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_STS Error reported during execution of get debug mode status

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mEnterDebugMode

ai_mExitDebugMode

Scan chain init: Error getting ownership of the TAP. Scan chain init: Error configuring JTAG.

Error reported during execution of get debug mode status. Error restoring JTAG/configuration registers

to default.

ai_mGetITPScanChainTopology

© 2021 ASSET InterTech, Inc.
63

NAME

ai_mGetITPScanChainTopology

Get the current scan chain topology.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetITPScanChainTopology (int mHandle, ai_ITP_topology_t

*itpMap, bool Cstatestomin);

DESCRIPTION

ai_mGetITPScanChainTopology() interrogates and populates information on the current scan

chain topology, and the status of devices in the scan chain, on the node specified by mHandle. The

information will be returned through itpMap. Cstatestomin is used to control how C-State

registers are set before the function executes. Set to true, C-State registers will be set to a minimum

state (result is that nodes should be set to a maximum powered up state), meaning all available cores

should always be powered up. Set to false, C-State registers retain their power up (BIOS) defaults. In

this case, it is possible to encounter a broken scan chain, particularly if the target is entering very low

power modes.

The ai_ITP_topology_t structure is made up of a number of nested sub structures. (NOTE: KNL

and SNB/IVB/HSX/BDX/SKX/CLX/ICX/SPR have differing topologies, and so, some parameters within the

structure are mutually exclusive, where some apply only to KNL, and others apply only to

SNB/IVB/HSX/BDX/SKX/CLX/ICX/SPR).

ai_ThreadTopology_t

bool activetarget defines if this thread is the currently targeted thread.

ai_CoreTopology_t

int numthreads Number of threads in this core. (Normally 1 or 2

(or 4 in the case of KNL)).

unsigned long idcode IDCODE of the core.

ai_ThreadTopology_t thread[4]Thread topology structure for each core’s threads.

bool enabled Core enabled (Cores can be disabled by BIOS,

or be in a low power state (C-state)). Valid only for

SNB/IVB/HSX/BDX/SKX. Unused for KNL.

int coreref Core number identifier within current CPU.

Valid only for SNB/IVB/HSX/BDX/SKX. Unused for KNL.

ai_mGetITPScanChainTopology

© 2021 ASSET InterTech, Inc.
64

ai_TileTopology_t

int numcores Number of cores in this tile.

unsigned long idcode IDCODE of the tile.

ai_Coretopology_t core[2] Core topology structure for each core in the tile.

bool enabled Tile enabled (Tiles can be disabled by BIOS, or be in a

 low power C-state).

int tileref Tile number identifier within current CPU.

ai_CPUTopology_t

int numuncores Number of uncores in this CPU (normally 1).

unsigned long uncoreidcode IDCODE of the uncore.

int numcores Number of cores in this CPU. Unused for KNL.

ai_CoreTopology_t core[60] Core topology structure for each core of this CPU.

Unused for KNL.

int numtiles Number of tiles in this CPU. Valid only for KNL.

ai_TileTopology_t tile[38] Tile topology structure for each tile of this CPU.

 Valid only for KNL.

int numgraphdevs Number of graphic devices in this CPU (unused).

unsigned long graphidcode IDCODE of the graphics device.

int numiiodevs Number of IIO devices in this CPU (unused).

 unsigned long iioidcode IDCODE of the IIO device.

ai_TCKTopology_t

int numCPUs Number of CPUs found attached to this TCK domain.

ai_CPUTopology_t CPU[4] CPU topology structure for each CPU on this TCK.

ai_ITPTopology_t

int numtcks Number of TCK domains that make up the ITP.

char tgtsysname[50] Character array return system target identifier.

ai_TCKTopology_t tck[2] TCK topology structure for each TCK on this ITP.

NOTES:

ai_mGetITPScanChainTopology

© 2021 ASSET InterTech, Inc.
65

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mGetITPScanChainTopology() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

RETURN VALUE

On success, ai_mGetITPScanChainTopology() returns 0. On error, it will return one of the

following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_GET_ITP_TOP_ERR Error during interrogation for topology information

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

N/A

ai_mGetPriorStateInfo

© 2021 ASSET InterTech, Inc.
66

NAME

ai_mGetPriorStateInfo

Return prior state information of the currently targeted core.

SYNOPSIS

#include <itp_driver.h>

int ai_mGetPriorStateInfo (int mHandle, unsigned long

*PriorStateInfo);

DESCRIPTION

ai_mGetPriorStateInfo() returns prior state information (obtained prior to the last entry to

debug mode), for the currently targeted core on the node identified by mHandle, with the encoded

results being returned through PriorStateInfo.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mGetPriorStateInfo() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), and only if

the target is in debug mode, the function will save the architectural state of the target core (again, if not

already saved previously) to a 'processor state buffer'. The 'processor state buffer' is a storage area in

host memory used to temporarily store the architectural state registers of the core, such that these

registers can then be used for other debug operations. The action to save the 'processor state buffer' is

a one-time only action, which only requires execution/re-execution if the target is reset, the core

'processor state buffer' was previously restored, or a new instance of the driver (.so) is loaded.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success completion of the sequence, ai_mGetPriorStateInfo() returns 0. On error, it will

return one of the following values:

ai_mGetPriorStateInfo

© 2021 ASSET InterTech, Inc.
67

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_NOT_IN_DBG_MODE Target not in debug mode

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

N/A

ai_mIOSFcrashdumpDiscovery

© 2021 ASSET InterTech, Inc.
68

NAME

ai_mIOSFcrashdumpDiscovery

Crashdump Discovery using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFcrashdumpDiscovery(int mHandle, int CPU, uint8_t readLen,

uint8_t subopcode, uint8_t param0, uint16_t param1, uint8_t param2,

uint8_t *data, uint8_t *cc);

DESCRIPTION

ai_mIOSFcrashdumpDiscovery() reads the Crashdump Discovery information at the given

subopcode, param0, param1, and param2 on the given CPU on the node identified by mHandle.

readLen specifies the length to read, and should be 1, 2 or 8. *data is a pointer to a byte array to

receive the return value, and should be allocated by the caller. data[0] will contain the LSB. cc is the

condition code returned by the hardware.

NOTES:

Prior to executing this function, be sure initialize the SED library and call the ai_mIOSFTAPinit()

function, and also wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFcrashdumpDiscovery() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, CrashDump -

Discovery

ai_mIOSFwritePCIConfigLocal

ai_mIOSFreadEndpointConfig

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIOSFcrashdumpGetFrame

© 2021 ASSET InterTech, Inc.
69

NAME

ai_mIOSFcrashdumpGetFrame

Crashdump Data using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFcrashdumpGetFrame(int mHandle, int CPU, uint8_t readLen,

uint16_t param0, uint16_t param1, uint16_t param2, uint8_t* data,

uint8_t *cc);

DESCRIPTION

ai_mIOSFcrashdumpGetFrame() reads the Crashdump Discovery information at the given

param0, param1, and param2 on the given CPU on the node identified by mHandle. readLen

specifies the length to read, and should be 8 or 16. *data is a pointer to a byte array to receive the

return value, and should be allocated by the caller. data[0] will contain the LSB. cc is the condition

code returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFcrashdumpGetFrame() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, CrashDump

ai_mIOSFwritePCIConfigLocal

ai_mIOSFreadEndpointConfig

ai_mIOSFTAPownership

ai_mIOSFTAPinit

NAME

ai_mIOSFreadEndpointConfig

© 2021 ASSET InterTech, Inc.
70

ai_mIOSFreadEndpointConfig

Read PCI configuration using OOBMSM.

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFreadEndpointConfig(int mHandle, int CPU, uint8_t readLen,

uint8_t msgType, uint8_t EndPointID, uint8_t AddressType, uint8_t

segment, uint8_t bus, uint8_t dev, uint8_t fun, uint16_t offset,

uint8_t *pcireg, uint8_t *cc);

DESCRIPTION

ai_mIOSFreadEndpointConfig() reads the PCI downstream configuration register at the given

bus, dev, fun, and offset on the given CPU on the node identified by mHandle. pcireg is a

pointer to a byte array to receive the return value, and should be allocated by the caller. pcireg[0]

will contain the LSB. cc is the condition code returned by the hardware. For msgType, EndPointID

AddressType see the Intel EDS for description.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFreadEndpointConfig() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdEndPointConfig()

ai_mIOSFwritePCIConfig

ai_mIOSFreadConfigLocal

ai_mIOSFTAPownership

ai_mIOSFTAPinit

NAME

ai_mIOSFreadMSR

© 2021 ASSET InterTech, Inc.
71

ai_mIOSFreadMSR

Read MSR using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFreadMSR(int mHandle, int CPU, uint16_t MSRaddr, uint8_t

thread, uint64_t *msrreg, uint8_t *cc);

DESCRIPTION

ai_mIOSFreadMSR() reads the MSR at the given MSRaddr and thread on the given CPU on the

node identified by mHandle. cc is the condition code returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFreadMSR() returns true. On error, it will return false. Also check the

condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdPCIConfigLocal()

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIOSFreadPCIConfig

© 2021 ASSET InterTech, Inc.
72

NAME

ai_mIOSFreadPCIConfig

Read PCI configuration, using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFreadPCIConfig(int mHandle, int CPU, uint8_t bus, uint8_t

dev, uint8_t fun, uint16_t offset, uint8_t *pcireg, uint8_t *cc);

DESCRIPTION

ai_mIOSFreadPCIConfig() reads the PCI downstream configuration register at the given bus,

dev, fun, and offset on the given CPU on the node identified by mHandle. pcireg is a pointer to

a byte array to receive the return value, and should be allocated by the caller. pcireg[0] will contain

the LSB. cc is the condition code returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFreadPCIConfig() returns true. On error, it will return false. Also check

the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdPCIConfig()

ai_mIOSFwritePCIConfig()

ai_mIOSFreadConfigLocal()

ai_mIOSFTAPownership()

ai_mIOSFTAPinit()

ai_mIOSFreadPCIConfigLocal

© 2021 ASSET InterTech, Inc.
73

NAME

ai_mIOSFreadPCIConfigLocal

Read PCI configuration, local; using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFreadPCIConfigLocal(int mHandle, int CPU, uint8_t bus,

uint8_t dev, uint8_t fun, uint16_t offset, uint8_t readLen, uint8_t

*pcireg, uint8_t *cc);

DESCRIPTION

ai_mIOSFreadPCIConfigLocal() reads the PCI local configuration register at the given bus,

dev, fun, and offset on the given CPU on the node identified by mHandle. readLen specifies the

length to read, and should be 1, 2 or 4. pcireg is a pointer to a byte array to receive the return value,

and should be allocated by the caller. pcireg[0] will contain the LSB. cc is the condition code

returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFreadPCIConfigLocal() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdPCIConfigLocal()

ai_mIOSFwritePCIConfigLocal

ai_mIOSFreadEndpointConfig

ai_mIOSFTAPownership

ai_mIOSFTAPinit()

ai_mIOSFreadPkgConfig

© 2021 ASSET InterTech, Inc.
74

NAME

ai_mIOSFreadPkgConfig

Read Package configuration, using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFreadPkgConfig(int mHandle, int CPU,uint8_t readLen,

uint8_t index, uint16_t param, uint8_t *configData, uint8_t *cc);

DESCRIPTION

ai_mIOSFreadPkgConfig() reads the package configuration register at the given index and

param on the given CPU on the node identified by mHandle. readLen specifies the length to read,

and should be 4. configData is a pointer to a byte array to receive the return value, and should be

allocated by the caller. configData[0] will contain the LSB. cc is the condition code returned by the

hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFreadPkgConfig() returns true. On error, it will return false. Also check

the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdPkgConfig()

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIOSFTAPinit

© 2021 ASSET InterTech, Inc.
75

NAME

ai_mIOSFTAPinit

TAP initialization for IOSF/OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFTAPinit(int mHandle);

DESCRIPTION

ai_mIOSFTAPinit() initializes the software for the IOSF/OOBMSM accesses. It should be called

once after SED library initialization and before any other IOSF calls are made.

RETURN VALUE

On success, ai_mIOSFTAPinit() returns true. On error, it will return false.

SEE ALSO

ai_mIOSFTAPownership

ai_mIOSFTAPownership

© 2021 ASSET InterTech, Inc.
76

NAME

ai_mIOSFTAPownership

Take TAP ownership for OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFTAPownership(int mHandle, bool take, int TAPno);

DESCRIPTION

ai_mIOSFTAPownership() takes ownership of the TAP prior to using it for OOBMSM access. It

should be called after the call to ai_mIOSFTAPinit() and prior to a sequence of OOBMSM

commands with take = true to acquire ownership of the TAP and called again with take = false at

the end of a sequence of commands. TAPno is number of the device on the JTAG scan chain, starting

with zero. This will normally be the CPU socket.

NOTES:

N/A

RETURN VALUE

On success, ai_mIOSFTAPownership() returns true. On error, it will return false.

SEE ALSO

ai_mIOSFTAPinit

ai_mIOSFwritePCIConfig

© 2021 ASSET InterTech, Inc.
77

NAME

ai_mIOSFwritePCIConfig

Write PCI configuration, using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFwritePCIConfig(int mHandle, int CPU, uint8_t bus, uint8_t

dev, uint8_t fun, uint16_t offset, uint8_t writeLen, uint32_t newVal,

uint8_t *cc);

DESCRIPTION

ai_mIOSFwritePCIConfig() writes the PCI downstream configuration register at the given bus,

dev, fun, and offset on the given CPU on the node identified by mHandle. newVal is the new

value to write to the register. writeLen is the length to write, and should be 1, 2, or 4. cc is the

condition code returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFwritePCIConfig() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, RdPCIConfig()

ai_mIOSFreadPCIConfig

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIOSFwritePCIConfigLocal

© 2021 ASSET InterTech, Inc.
78

NAME

ai_mIOSFwritePCIConfigLocal

Write PCI configuration, local; using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFwritePCIConfigLocal(int mHandle, int CPU, uint8_t bus,

uint8_t dev, uint8_t fun, uint16_t offset, uint8_t writeLen, uint32_t

newVal, uint8_t *cc);

DESCRIPTION

ai_mIOSFwritePCIConfigLocal() writes the PCI local configuration register at the given bus,

dev, fun, and offset on the given CPU on the node identified by mHandle. writeLen specifies

the length to write, and should be 1, 2 or 4. newVal is the value to write. cc is the condition code

returned by the hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFwritePCIConfigLocal() returns true. On error, it will return false.

Also check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, WrPCIConfigLocal()

ai_mIOSFreadPCIConfigLocal

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIOSFwritePkgConfig

© 2021 ASSET InterTech, Inc.
79

NAME

ai_mIOSFwritePkgConfig

Write Package configuration, using OOBMSM

SYNOPSIS

#include <itp_iosf.h>

bool ai_mIOSFwritePkgConfig(int mHandle, int CPU, uint8_t index,

uint16_t param, uint32_t newValue, uint8_t writeLen, uint8_t *cc);

DESCRIPTION

ai_mIOSFwritePkgConfig() writes the package configuration register at the given index and

param on the given CPU on the node identified by mHandle. writeLen specifies the length to

written, and should be 4. newValue is the data to be written. cc is the condition code returned by the

hardware.

NOTES:

Prior to executing the function be sure initialize the SED library and call the ai_mIOSFTAPinit()

function and wrap a section of IOSF calls with calls to ai_mIOSFTAPownership().

RETURN VALUE

On success, ai_mIOSFwritePkgConfig() returns true. On error, it will return false. Also

check the condition code cc for any errors returned by the hardware.

SEE ALSO

External Design Specification for the processor, vol 1, PECI Functional Description, WrPkgConfig()

ai_mIOSFTAPownership

ai_mIOSFTAPinit

ai_mIsPowerOn

© 2021 ASSET InterTech, Inc.
80

NAME

ai_mIsPowerOn

Check if target is powered up.

SYNOPSIS

#include <itp_driver.h>

int ai_mIsPowerOn (int mHandle);

DESCRIPTION

ai_mIsPowerOn() checks if the target identified by mHandle is powered up by evaluating the level

on the HOOK0 pin of the XDP interface.

RETURN VALUE

On success, ai_mIsPowerOn() returns 0 (i.e. target is powered up). On error, it will return one of the

following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up.

SEE ALSO

N/A

ai_mNavigatetoTAPState

© 2021 ASSET InterTech, Inc.
81

NAME

ai_mNavigatetoTAPState

Navigate JTAG controller to a state

SYNOPSIS

#include <itp_driver.h>

int ai_mNavigatetoTAPState(int mHandle, AI_tapendstate endState);

DESCRIPTION

ai_mNavigatetoTAPState() navigates the JTAG state machine from its current JTAG state to the

requested JTAG end state. mHandle identifies the node to be executed on.

endState specifies the end state for the JTAG state machine to navigate to. endState takes one of

the following arguments:

AI_tlr Test-Logic-Reset.

AI_rti Run-Test-Idle.

Caution should be exercised when using ai_mNavigatetoTAPState() as it may cause

undefined/erratic behavior in other ITP Driver functions.

RETURN VALUE

On success, ai_mNavigatetoTAPState() returns 0. On error, it will return one of the following

values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_VCC_NOT_FOUND Target not powered up.

AI_ERR_TAP_NAVIGATE ITP Driver controller problem executing TAP navigate.

SEE ALSO

ai_mScanDr

ai_mScanIr

ai_mOpen

© 2021 ASSET InterTech, Inc.
82

NAME

ai_mOpen

Initialize communication channel with ITP Driver FPGA controller device.

SYNOPSIS

#include <itp_driver.h>

int ai_mOpen (AI_pdcselector PdcNo, BOOL QuietAttach, int *mHandle);

DESCRIPTION

ai_mOpen() initializes the ITP Driver FPGA controller device for use and initializes the required ITP

Driver support structures and classes.

The function opens up a new mapping to the ITP Driver controller device/IP block specified by PdcNo.

PdcNo refers to the logical node number, which the function then uses to map to a LOC device. A

number of different types of LOC devices are now supported (new LOC types typically being added with

new processor family support). The search order for the different type of LOC devices is KLOC, QLOC,

LOC.

AI_pdc_0 locfpga0 or QLOC1/KLOC1-physical node 1.

AI_pdc_1 locfpga1 or QLOC0/KLOC0-physical node 1.

AI_pdc_2 locfpga2 or QLOC0/KLOC0-physical node 0.

AI_pdc_3 locfpga3 or QLOC1/KLOC1-physical node 0.

QuietAttach is a dummy parameter (for now!).

On successful completion of the function, mHandle will provide a unique identifier 'connection' to the

specified PdcNo. This parameter should be used when calling any other subsequent ITP driver 'ai_m'

functions.

The first call with a specific PdcNo to ai_mOpen()/ ai_mOpenEx() (after first instantiation), will

result in a self-test on the ITP Driver controller device logic. Subsequent calls to ai_mOpen()/

ai_mOpenEx() (with the same PdcNo, where the driver is still memory-resident) will bypass the self-

test section. ai_mOpen()/ ai_mOpenEx() must be called before calling any functions that utilize

the ITP Driver controller device.

RETURN VALUE

On success, ai_mOpen() returns 0. On error, it will return one of the following values:

ai_mOpen

© 2021 ASSET InterTech, Inc.
83

ERRORS

AI_DRIVER_ALREADY_OPEN Driver already open

AI_INVALID_PARAM Invalid parameter

AI_ERR_OPEN_L0CFPGA Can’t find specified device

AI_ERR_PDC_MMAP Problem mapping

AI_ERR_INITJTAG_EIE Error initializing the locfpga device JTAG controller

AI_ERR_TGT_CLASS Error initializing required processor class object

SEE ALSO

ai_mOpenEx

ai_mClose

ai_mOpenEx

© 2021 ASSET InterTech, Inc.
84

NAME

ai_mOpenEx

Initialize communication channel with ITP Driver controller device - an alternative futureproof function.

SYNOPSIS

#include <itp_driver.h>

int ai_mOpenEx (const char *devname, unsigned int PctOffset, unsigned

int ir_mask_num, AI_pdcse- lector PdcNo, int *mHandle);

DESCRIPTION

ai_mOpenEx() provides a method (an alternative to ai_mOpen) for initialization of the ITP Driver

controller device and initialization of the required ITP Driver support structures and classes.

The function opens up a path with the ITP Driver FPGA controller specified by devname (e.g.

/dev/qlocf-pga1), and proceeds to set up a new mapping to the device/IP block specified by

PctOffset.

ir_mask_num specifies the PCT interrupt mask register to be associated with the opened device (for

use with ITP breakpoints, etc..).. ir_mask_num can take on the following values:

0 IREQ

1 USRA (LOC->PDC/QLOC->QPDC/HLOC->HPDC/KLOC->KPDC physical node 0)

2 USRB

3 USRA1 (QLOC->QPDC/HLOC->HPDC/KLOC->KPDC physical node 1)

4 USRB1

The input PdcNo provides a unique logical node number to be associated with the combined set of

devname, PctOffset and ir_mask_num parameters. Accepted values are AI_pdc_0,

AI_pdc_1, AI_pdc_2 or AI_pdc_3.

On successful completion of the function, mHandle will provide a unique identifier 'connection' to the

specified PdcNo. This parameter should be used when calling any other subsequent ITP driver 'ai_m'

functions.

The first call with a specific PdcNo to ai_mOpen()/ ai_mOpenEx() (after first instantiation), will

result in a self-test on the ITP Driver controller device logic. Subsequent calls to ai_mOpen()/

ai_mOpenEx() (with the same PdcNo, where the driver is still memory-resident) will bypass the self-

test section. ai_mOpen()/ ai_mOpenEx() must be called before calling any functions that utilize

the ITP Driver controller device.

ai_mOpenEx

© 2021 ASSET InterTech, Inc.
85

RETURN VALUE

On success, ai_mOpenEx() returns 0. On error, it will return one of the following values:

ERRORS

AI_DRIVER_ALREADY_OPEN Driver already open

AI_ERR_OPEN_DEV Problem opening device

AI_ERR_PDC_MMAP Problem mapping

AI_ERR_INITJTAG_EIE Error initializing the locfpga device JTAG controller

AI_ERR_TGT_CLASS Error initializing required processor class object

SEE ALSO

ai_mOpen

ai_mClose

ai_mRamBusTest

© 2021 ASSET InterTech, Inc.
86

NAME

ai_mRamBusTest

Execute a RAM Bus Test diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mRamBusTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, char* ErrorString);

DESCRIPTION

ai_mRamBusTest() executes a test to diagnose the data and address buses between the CPU and a

RAM area.

mHandle identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

ai_mRamBusTest() assumes a 64-bit data bus width (for data bus and byte enable lane testing). If

an error is diagnosed, ErrorString will return the diagnostic information.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mRamBusTest()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mRamBusTest() is divided in to 4 sub-tests, executed in sequence.

1. Data bus hi/lo test.

ai_mRamBusTest

© 2021 ASSET InterTech, Inc.
87

2. Data bus shorts test.

3. Byte enables test.

4. Address bus test.

If any sub-test fails the diagnostic, it returns immediately, skipping execution of any subsequent sub-

tests.

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mRamBusTest() returns 0. On error, it

will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up.

AI_MAX_UNCORES_EXCEEDED Scan chain init: Maximum possible UNCORES exceeded.

AI_INVALID_CORE_IDCODE_DET Scan chain init: An invalid core IDCODE was detected.

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: An invalid Uncore IDCODE was detected.

AI_ERR_TAP_OWNERSHIP Scan chain init: Error getting ownership of the TAP.

AI_CFG_JTAG Scan chain init: Error configuring JTAG.

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address.

AI_RAM_BUS_DATA_HILO Data bus hi/lo failure diagnosed.

AI_RAM_BUS_DATA_SHORT Data bus shorts failure diagnosed.

AI_RAM_BUS_BYTE_ENABLES Byte enables lane(s) failure diagnosed.

AI_RAM_BUS_ADDRESS Address bus failure diagnosed.

AI_RAM_TEST_HALTED_USR Execution of RAM Bus Test interrupted by user.

AI_DBG_MODE_RAM_TEST Error during execution of Boot RAM Bus Test.

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/Configuration settings to default.

SEE ALSO

ai_mRamBusTestChannel

ai_mRamBusTestviaFIFO

ai_mBasicRWRamBusTest

ai_mRamBusTest

© 2021 ASSET InterTech, Inc.
88

ai_mRWRamTest

ai_mDRamRefreshTest

ai_mRamBusTestChannel

© 2021 ASSET InterTech, Inc.
89

NAME

ai_mRamBusTestChannel

Execute a RAM Bus Test Channel diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mRamBusTestChannel (int mHandle, uint64_t StartAddress,

uint64_t EndAddress, AI_buswidth BusWidth, uint64_t ChannelSize,

AI_nooframchannels NoOfChannels, char* ErrorString);

DESCRIPTION

ai_mRamBusTestChannel() executes a test to diagnose the data and address buses between the

CPU and a RAM area.

mHandle identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

BusWidth takes on one of the following values to specify the data bus width for the data and byte

enable lanes testing.

8 8-bit operation width

16 16-bit operation width

32 32-bit operation width

64 64-bit operation width

ChannelSize and NoOfChannels are used to form a mask for the address bus test algorithm.

NoOfChannels takes on one of the following values:

AI_one Single-channel RAM

AI_two 2-channel RAM

AI_four 4-channel RAM

AI_eight 8-channel RAM

If an error is diagnosed, ErrorString will return the diagnostic information.

ai_mRamBusTestChannel()is functionally similar to ai_mRamBusTest(), except that the user

can specify the data bus width, and the algorithm to do address bus testing differs.

ai_mRamBusTestChannel

© 2021 ASSET InterTech, Inc.
90

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mRamBusTestChannel()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mRamBusTestChannel() is divided in to 4 sub-tests, executed in sequence.

1. Data bus hi/lo test.

2. Data bus shorts test.

3. Byte enables test.

4. Address bus channel test.

If any sub-test fails the diagnostic returns immediately, skipping execution of any subsequent sub-tests.

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mRamBusTestChannel() returns 0.

On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_VCC_NOT_FOUND Target not powered up.

AI_MAX_UNCORES_EXCEEDED Scan chain init: Maximum possible UNCORES exceeded.

AI_INVALID_CORE_IDCODE_DET Scan chain init: An invalid core IDCODE was detected.

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: An invalid Uncore IDCODE was detected.

ai_mRamBusTestChannel

© 2021 ASSET InterTech, Inc.
91

AI_ERR_TAP_OWNERSHIP Scan chain init: Error getting ownership of the TAP.

AI_CFG_JTAG Scan chain init: Error configuring JTAG.

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address.

AI_RAM_BUS_DATA_HILO Data bus hi/lo failure diagnosed.

AI_RAM_BUS_DATA_SHORT Data bus shorts failure diagnosed.

AI_RAM_BUS_BYTE_ENABLES Byte enables lane(s) failure diagnosed.

AI_RAM_BUS_ADDRESS Address bus failure diagnosed.

AI_RAM_TEST_HALTED_USR Execution of RAM Bus Test interrupted by user.

AI_DBG_MODE_RAM_TEST Error during execution of Boot RAM Bus Test.

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/Configuration settings to default.

SEE ALSO

ai_mRamBusTest

ai_mRamBusTestviaFIFO

ai_mBasicRWRamBusTest

ai_mRWRamTest

ai_mDRamRefreshTest

ai_mRamBusTestviaFIFO

© 2021 ASSET InterTech, Inc.
92

NAME

ai_mRamBusTestviaFIFO

Execute a RAM Bus Test via FIFO diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mRamBusTestviaFIFO (int mHandle, uint64_t StartAddress,

uint64_t EndAddress, uint64_t FIFOLimit, char* ErrorString);

DESCRIPTION

ai_mRamBusTestviaFIFO() executes a test to diagnose the data and address buses between the

CPU and a RAM area.

mHandle identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

FIFOLimit specifies the depth of FIFO for data bus testing.

If an error is diagnosed, ErrorString will return the diagnostic information.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mRamBusTestviaFIFO() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mRamBusTestviaFIFO() is divided in to 3 sub-tests, executed in sequence.

ai_mRamBusTestviaFIFO

© 2021 ASSET InterTech, Inc.
93

1. Data bus integrity test.

2. Byte enables test.

3. Address bus channel test.

If any sub-test fails the diagnostic returns immediately, skipping execution of any subsequent sub-tests.

For CPUs that have built-in FIFOs, FIFOLimit informs the data bus testing algorithm the amount of

transactions required to propagate data on to the actual data bus, so that the data bus can be properly

diagnosed.

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mRamBusTestviaFIFO() returns 0.

On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up.

AI_MAX_UNCORES_EXCEEDED Scan chain init: Maximum possible UNCORES exceeded.

AI_INVALID_CORE_IDCODE_DET Scan chain init: An invalid core IDCODE was detected.

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: An invalid Uncore IDCODE was detected.

AI_ERR_TAP_OWNERSHIP Scan chain init: Error getting ownership of the TAP.

AI_CFG_JTAG Scan chain init: Error configuring JTAG.

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address.

AI_RAM_BUS_VIA_FIFO_DATA Data bus hi/lo failure diagnosed.

AI_RAM_BUS_VIA_FIFO_BYTE_ENABLES Byte enables lane(s) failure diagnosed.

AI_RAM_BUS_VIA_FIFO_ADDRESS Address bus failure diagnosed.

AI_RAM_TEST_HALTED_USR Execution of RAM Bus Test interrupted by user.

AI_DBG_MODE_RAM_TEST Error during execution of Boot RAM Bus Test.

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/Configuration settings to default.

SEE ALSO

ai_mRamBusTest

ai_mRamBusTestChannel

ai_mRamBusTestviaFIFO

© 2021 ASSET InterTech, Inc.
94

ai_mBasicRWRamBusTest

ai_mRWRamTest

ai_mDRamRefreshTest

ai_mReadCR

© 2021 ASSET InterTech, Inc.
95

NAME

ai_mReadCR

Read from a CR register.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadCR (int mHandle, ai_crregister crreg, uint64_t

*RegisterData);

DESCRIPTION

ai_mReadCR() retrieves RegisterData from crreg on the currently targeted core, on the node

identified by mHandle.

crreg specifies the CR register to be read. crreg takes one of the following arguments;

AI_CR0 CR0

AI_CR2 CR2

AI_CR3 CR3

AI_CR4 CR4

AI_CR8 CR8

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadCR() will first of

all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mReadCR

© 2021 ASSET InterTech, Inc.
96

RETURN VALUE

On success, ai_mReadCR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_CR Error during execution of read from CR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteCR

ai_mReadCSR

© 2021 ASSET InterTech, Inc.
97

NAME

ai_mReadCSR

Read from a CSR.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadCSR (int mHandle, uint16_t DeviceNo, uint16_t FunctionNo,

uint16_t Offset, uint32_t

*RegisterData);

DESCRIPTION

ai_mReadCSR() retrieves RegisterData from the targeted CSR on the currently targeted CPU, on

the node identified by mHandle.

The targeted CSR is made up by combining the DeviceNo, FunctionNo and Offset fields to form

the CSR register address.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadCSR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

ai_mReadCSR() submits instructions via a non-debug mode related JTAG access mechanism. It does

not require the target CPU to be in debug mode to operate successfully.

This non-debug mode related JTAG access mechanism only exists on Nehalem targets. Attempts to use

this function on other targets will result in a 'Function not supported' error. See the IOSF routines for

more current JTAG access mechanisms that do not require a halt.

RETURN VALUE

On success, ai_mReadCSR() returns 0. On error, it will return one of the following values:

ERRORS

ai_mReadCSR

© 2021 ASSET InterTech, Inc.
98

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_READ_CSR Error during execution of read from CSR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteCSR

ai_mReadDescriptorTableRegister

© 2021 ASSET InterTech, Inc.
99

NAME

ai_mReadDescriptorTableRegister

Read from a descriptor table register.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadDescriptorTableRegister (int mHandle, ai_dtrregister

dtrreg, uint64_t *Base, uint64_t *Limit, uint64_t *Selector, uint64_t

*Attributes);

DESCRIPTION

ai_mReadDescriptorTableRegister() retrieves the descriptor table register fields Base,

Limit, Selector, Attributes from the descriptor table register specified by dtrreg on the

currently targeted core, on the node identified by mHandle.

dtrreg takes one of the following arguments:

AI_GDTR GDTR

AI_LDTR LDTR

AI_IDTR IDTR

AI_TR TR

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mReadDescriptorTableRegis- ter() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mReadDescriptorTableRegister

© 2021 ASSET InterTech, Inc.
100

RETURN VALUE

On success, ai_mReadDescriptorTableRegister() returns 0. On error, it will return one of the

following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_DTRREG Error during execution of read from descriptor table

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteDescriptorTableRegister

ai_mReadDR

© 2021 ASSET InterTech, Inc.
101

NAME

ai_mReadDR

Read from a debug register.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadDR (int mHandle, ai_drregister drreg, uint64_t

*RegisterData);

DESCRIPTION

ai_mReadDR() retrieves RegisterData from drreg on the currently targeted core, on the node

identified by mHandle.

drreg specifies the DR register to be read. drreg takes one of the following arguments:

AI_DR0 DR0

AI_DR1 DR1

AI_DR2 DR2

AI_DR3 DR3

AI_DR6 DR6

AI_DR7 DR7

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadDR() will first

of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

ai_mReadDR

© 2021 ASSET InterTech, Inc.
102

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mReadDR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_DR Error during execution of read from DR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteDR

ai_mReadGPR

© 2021 ASSET InterTech, Inc.
103

NAME

ai_mReadGPR

Read from a GPR.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadGPR (int mHandle, AI_gprregister GprNo, uint64_t

*RegisterData);

DESCRIPTION

ai_mReadGPR() retrieves RegisterData from GprNo on the currently targeted core, on the node

identified by mHandle.

If GprNo is within the RAX - R15 range, then RegisterData will be read directly from the register on

the target core. Otherwise RegisterData will be read from the target core register space in the

'processor state buffer'.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadGPR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mReadGPR() returns 0. On error, it will return one of the following values:

ai_mReadGPR

© 2021 ASSET InterTech, Inc.
104

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_GPR Error during execution of read from GPR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteGPR

ai_mReadIO

© 2021 ASSET InterTech, Inc.
105

NAME

ai_mReadIO

Read from an I/O location.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadIO (int mHandle, uint16_t IoAddress, void *IoData,

ai_mBuswidth BusWidth);

DESCRIPTION

ai_mReadIO() submits instruction(s) to the target core to read the data at the I/O location specified

in IoAddress, on the node identified by mHandle. The data read will be returned through IoData.

The BusWidth argument defines the width of operation to be carried out.

AI_bwio8 8-bit operation

AI_bwio16 16-bit operation

AI_bwio32 32-bit operation

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadIO() will first

of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

ai_mReadIO

© 2021 ASSET InterTech, Inc.
106

On success, ai_mReadIO() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_IO Error during execution of read from IO operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteIO

ai_mReadMemory

© 2021 ASSET InterTech, Inc.
107

NAME

ai_mReadMemory

Read from a memory location.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadMemory (int mHandle, uint64_t MemoryAddress, void

*MemoryData, AI_buswidth

BusWidth);

DESCRIPTION

ai_mReadMemory() submits instruction(s) to the target core to read the data at the memory

location speci-fied in MemoryAddress, on the node identified by mHandle. The data read will be

returned through MemoryData.

The BusWidth argument defines the width of operation to be carried out.

AI_bwmem8 8-bit operation

AI_bwmem16 16-bit operation

AI_bwmem32 32-bit operation

AI_bwmem64 64-bit operation

Normal debug mode operations are performed with the target core in 32-bit operating mode. If

MemoryAddress is greater than 0xffffffff, or BusWidth equals AI_bwmem64 then the function will

switch the target core to 64-bit mode, prior to execution of the read operation. On completion of the

operation, a flag will be set to return the target core back to 32-bit on the next debug operation (if the

next operation does not require 64-bit mode).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadMemory()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

ai_mReadMemory

© 2021 ASSET InterTech, Inc.
108

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mReadMemory() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_MEM Error during execution of read from memory operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteMemory

ai_mReadMSR

© 2021 ASSET InterTech, Inc.
109

NAME

ai_mReadMSR

Read from an MSR.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadMSR (int mHandle, uint64_t MsrAddress, uint64_t

*RegisterData);

DESCRIPTION

ai_mReadMSR() retrieves RegisterData from MsrAddress on the currently targeted core, on

the node identified by mHandle.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReadMSR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mReadMSR() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

ai_mReadMSR

© 2021 ASSET InterTech, Inc.
110

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_MSR Error during execution of read from MSR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteMSR

ai_mReadSegmentRegister

© 2021 ASSET InterTech, Inc.
111

NAME

ai_mReadSegmentRegister

Read from a segment register.

SYNOPSIS

#include <itp_driver.h>

int ai_mReadSegmentRegister (int mHandle, ai_segmentregister segreg,

uint64_t *Base, uint64_t *Limit, uint64_t *Selector, uint64_t

*Attributes);

DESCRIPTION

ai_mReadSegmentRegister() retrieves the segment register fields Base, Limit, Selector,

Attributes from the segment register specified by segreg on the currently targeted core, on the

node identified by mHandle.

segreg takes one of the following arguments:

AI_CS CS

AI_DS DS

AI_SS SS

AI_ES ES

AI_FS FS

AI_GS GS

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mReadSegmentRegister() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

ai_mReadSegmentRegister

© 2021 ASSET InterTech, Inc.
112

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mReadSegmentRegister() returns 0. On error, it will return one of the following

values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_READ_SEGREG Error during execution of read from segment register operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteSegmentRegister

ai_mResetDetect

© 2021 ASSET InterTech, Inc.
113

NAME

ai_mResetDetect

Set/check target reset detection circuitry.

SYNOPSIS

#include <itp_driver.h>

int ai_mResetDetect (int mHandle, AI_resetdetectoption mode);

DESCRIPTION

ai_mResetDetect() gives options to be able to clear and detect resets that may occur on the

target, on the node specified by mHandle.

mode defines the operation to be carried out:

AI_enable_clear Enable and clear reset detection circuit

AI_disable Disable reset detection circuit

AI_check Check if a reset has been detected

NOTES:

It has been noticed that external agents cause problems for the ITP driver. One of these problems is the

occurrence of resets driven by external agents (i.e. other than the reset driven by ai_mResetUUT()

or ai_mRunUUT() functions). The occurrence of such resets generally cause undefined behavior with

the ITP driver library. ai_mResetDetect() allows the ability to detect if such a reset occurred.

RETURN VALUE

On success, ai_mResetDetect() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_RESET_DETECTED Reset detected

SEE ALSO

N/A

ai_mResetUUT

© 2021 ASSET InterTech, Inc.
114

NAME

ai_mResetUUT

Apply a DBR reset to the connected target(s) and hold them in debug mode.

SYNOPSIS

#include <itp_driver.h>

int ai_mResetUUT (int mHandle);

DESCRIPTION

ai_mResetUUT() applies a reset pulse to the connected target(s) on the node identified by

mHandle via the DBR (HOOK7) line on the ITP Driver FPGA controller device. The length of reset pulse

applied to DBR can be adjusted using ResetPulseDuration via ai_mConfig(). Before applying the

pulse to the DBR line, the ITP FGPA controller is primed to halt the CPU core(s) on detection of activity

on the CPU RESET (HOOK6) signal. (i.e. a ' debug mode at reset condition' will be trapped). Any

subsequent activity on the CPU RESET signal will also trap a ' debug mode at reset condtion'. However,

execution of ai_mClose() will negate the ability to halt the CPU core(s) on the occurrence of a CPU

RESET.

Debug mode status is not checked on completion of the reset operation. (i.e. the function does not

check that all connected CPU core(s) have entered debug mode).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mResetUUT() will

first of all perform a power check on the target.

BUGS

Intel have reported a silicon bug with some versions of SandyBridge, where the CPU cores do not remain

in debug mode thru and after reset. The recommended workaround is to apply a follow-on pulse to the

PREQ (OBSFN_n0) line(s) shortly after RESET (HOOK6) de-assertion. Although this workaround will also

be applied to unaffected CPUs, it will have no adverse effect for them.

RETURN VALUE

On success completion of the sequence, ai_mResetUUT() returns 0. On error, it will return one of

the following values:

ai_mResetUUT

© 2021 ASSET InterTech, Inc.
115

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mRunUUT

ai_mReturnIDCode

© 2021 ASSET InterTech, Inc.
116

NAME

ai_mReturnIDCode

Return the TAP IDCODE.

SYNOPSIS

#include <itp_driver.h>

int ai_mReturnIDCode (int mHandle, uint32_t *IDCode);

DESCRIPTION

ai_mReturnIDCode() retrieves the TAP IDCODE from the currently targeted core on the node

identified by mHandle and returns it in IDCode.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mReturnIDCode()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success, ai_mReturnIDCode() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_IDCODE Error retrieving IDCODE

ai_mReturnIDCode

© 2021 ASSET InterTech, Inc.
117

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReturnIDCodewithOverscan

ai_mReturnIDCodewithOverscan

© 2021 ASSET InterTech, Inc.
118

NAME

ai_mReturnIDCodewithOverscan

Return the TAP IDCODE while executing and checking an overscan pattern.

SYNOPSIS

#include <itp_driver.h>

int ai_mReturnIDCodewithOverscan (int mHandle, uint32_t *IDCode);

DESCRIPTION

ai_mReturnIDCodewithOverscan() retrieves the TAP IDCODE from the currently targeted core

on the node identified by mHandle and returns it in IDCode. While executing the scan an overscan

pattern will be attached to the TDI for the DR scan. The overscan pattern received at TDO is checked to

ensure it matches the input pattern.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mReturnIDCodewithOverscan() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success, ai_mReturnIDCodewithOverscan() returns 0. On error, it will return one of the

following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

ai_mReturnIDCodewithOverscan

© 2021 ASSET InterTech, Inc.
119

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_ERR_OVERSCAN_FAIL TDO Overscan data does not match expected data

AI_IDCODE Error retrieving IDCODE

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReturnIDCode

ai_mReturnSiliconID

© 2021 ASSET InterTech, Inc.
120

NAME

ai_mReturnSiliconID

Return the silicon ID values.

SYNOPSIS

#include <itp_driver.h>

int ai_mReturnSiliconID (int mHandle, uint32_t *RepoID, uint32_t

*DieCfg);

DESCRIPTION

ai_mReturnSiliconID() retrieves the silicon ID parameters from the currently targeted CPU on

the node identified by mHandle. The data read will be returned through RepoID and DieCfg.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mReturnSiliconID() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On success, ai_mReturnSiliconID() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

ai_mReturnSiliconID

© 2021 ASSET InterTech, Inc.
121

AI_IDCODE Error retrieving IDCODE

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

AI_SILICONID_NOT_IMPLEMENTED Function not supported (for the target CPU type)

SEE ALSO

N/A

ai_mRomCrcTest

© 2021 ASSET InterTech, Inc.
122

NAME

ai_mRomCrcTest

Execute a CRC test on a memory block/range.

SYNOPSIS

#include <itp_driver.h>

int ai_mRomCrcTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, uint16_t* CrcValue);

DESCRIPTION

ai_mRomCrcTest() submits instruction(s) to the target core to execute the 'CRC computation'

machine code routine on the target core, on the node identified by mHandle, to compute of a memory

block starting at StartAddress and ending at EndAddress. The computed value is returned on

successful completion in CrcValue.

During execution of the 'CRC computation' machine code routine the target core will exit debug mode.

The function will not return until the core has re-entered debug mode. Upon completion, the target core

should immediately re-enter debug mode, at which point, the target core can then service ITP driver

functions normally again.

Should the user wish to force re-entry to debug mode during execution of the 'CRC computation'

machine code routine, he/she can do so by calling ai_mStopTest() via a forked child process.

ai_mStopTest() will force debug mode re-entry, which will cause ai_mRomCrcTest() to

subsequently return.

No other ITP Driver functions (other than ai_mStopTest()) should be called while

ai_mRomCrcTest() is running. Because the target core is not in debug mode during user diagnostic

execution, execution of other ITP Driver functions can force the target core to re-enter debug mode. In

this case, ai_mRomCrcTest() behavior is undefined.

The 'CRC computation' machine code routine forms part of a collection of machine code routines which

the ITP driver can execute. Since the routines are machine code, they must be downloaded and run from

an area of memory accessible by the target core. UUTDiagsHexFile from ai_mConfig() provides

the ITP driver library with a pointer to the machine code file, and UUTDiagsBaseAddress, also from

ai_mConfig(), defines the memory base address from which the machine code will be run. Prior to

calling the 'CRC computation' machine code routine, the function will check if the machine code routines

exist at UUTDiagsBaseAddress, and if not, will proceed to download the file pointed to by

UUTDiagsHexFile.

NOTES:

ai_mRomCrcTest

© 2021 ASSET InterTech, Inc.
123

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mRomCrcTest()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

The machine code routines operate in 32-bit mode only, therefore any machine code routines will only

operate in the bottom 4G memory space (i.e 0x0-0xFFFFFFFF). Behavior is undefined if the range

specified extends outside this area.

When calling ai_mRomCrcTest(), the user should ensure that memory range specified does not

overlap into the UUTDiagsBaseAddress memory area reserved for execution of the machine code

routines. Also, the user should ensure that memory has been initialized sufficiently to allow the machine

code routines to run properly. In both cases, the function may fail to return normally (i.e. unless forced

using ai_mStopTest()).

RETURN VALUE

On success, ai_mRomCrcTest() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_ROM_CRC Error during execution of CRC computation operation

ai_mRomCrcTest

© 2021 ASSET InterTech, Inc.
124

AI_ROM_CRC_HALTED_USR Execution of CRC computation operation halted by user

AI_ROM_CRC_HALTED_UNKNWN_SRC Execution of CRC computation operation halted by unknown source

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address

AI_NO_EXEC_HALT_STATE Target core indicates a HALT state – unable to execute user diagnostic

AI_NO_EXEC_WAIT_FOR_SIPI_STATE Target core indicates a WAIT FOR SIPI state – unable to execute diag

AI_NO_EXEC_SHUTDOWN_STATE Target core indicates a SHUTDOWN state – unable to execute diag

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

FILES

Pentcode.hex - machine code routines collection. Can be installed to any directory.

UUTDiagsHexFile from ai_mConfig() provides the ITP driver library with a pointer to the

machine code file.

SEE ALSO

ai_mStopTest

ai_mRunUUT

© 2021 ASSET InterTech, Inc.
125

NAME

ai_mRunUUT

Apply a DBR reset to the connected target(s) and allow them to boot.

SYNOPSIS

#include <itp_driver.h>

int ai_mRunUUT (int mHandle);

DESCRIPTION

ai_mRunUUT() applies a reset pulse to the connected target(s) on the node identified by mHandle

via the DBR (HOOK7) line on the ITP Driver FPGA controller device. The length of reset pulse applied to

DBR can be adjusted using ResetPulseDuration via ai_mConfig(). Before applying the pulse to the

DBR line, the ITP controller is primed to allow the CPU core(s) free run on de-assertion of the CPU RESET

(HOOK6) signal. Any subsequent activity on the CPU RESET signal will also allow the CPU cores to free

run. (i.e. debug mode will not be entered).

Debug mode status is not checked on completion of the reset operation. (i.e. the function does not

check that all connected CPU core(s) are running).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mRunUUT() will first

of all perform a power check on the target.

RETURN VALUE

On success completion of the sequence, ai_mRunUUT() returns 0. On error, it will return one of the

following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up.

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/configuration registers to default.

SEE ALSO

ai_mResetUUT

ai_mRWRamTest

© 2021 ASSET InterTech, Inc.
126

NAME

ai_mRWRamTest

Execute a R/W RAM Test diagnostic.

SYNOPSIS

#include <itp_driver.h>

int ai_mRWRamTest (int mHandle, uint64_t StartAddress, uint64_t

EndAddress, char* ErrorString);

DESCRIPTION

ai_mRWRamTest() executes a test to find and diagnose cell problems on a RAM area. mHandle

identifies the node to execute on.

StartAddress specifies the start address of the range and EndAddress specifies the end address

of the range, within which, operations will be carried out to perform the diagnostic algorithm(s).

If an error is diagnosed, ErrorString will return the diagnostic information.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mRWRamTest() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

The ai_mRWRamTest() function uses machine code routines that operate in 32-bit mode only.

Therefore this diagnostic can only operate on the bottom 4G memory space (i.e 0x0-0xFFFFFFFF).

ai_mScanDr

© 2021 ASSET InterTech, Inc.
127

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_mRWRamTest() returns 0. On error, it

will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_VCC_NOT_FOUND Target not powered up.

AI_MAX_UNCORES_EXCEEDED Scan chain init: Maximum possible UNCORES exceeded.

AI_INVALID_CORE_IDCODE_DET Scan chain init: An invalid core IDCODE was detected.

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: An invalid Uncore IDCODE was detected.

AI_ERR_TAP_OWNERSHIP Scan chain init: Error getting ownership of the TAP.

AI_CFG_JTAG Scan chain init: Error configuring JTAG.

AI_SA_GREATER_THAN_EA Start address cannot be greater than end address.

AI_RW_RAM Write RAM failure diagnosed.

AI_RAM_TEST_HALTED_USR Execution of RAM Bus Test interrupted by user.

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function.

AI_FILE_LOAD_ERR Error loading hex file (required for test)

AI_DBG_MODE_RAM_TEST Error during execution of Boot RAM Bus Test.

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG/Configuration settings to default.

SEE ALSO

ai_mRamBusTest

ai_mRamBusTestChannel

ai_mRamBusTestviaFIFO

ai_mBasicRWRamTest

ai_mDRamRefreshTest

NAME

ai_mScanDr

Execute a JTAG DR Scan sequence

ai_mScanDr

© 2021 ASSET InterTech, Inc.
128

SYNOPSIS

#include <itp_driver.h>

int ai_mScanDr(int mHandle, uint32_t count, uint32_t *tdi, uint32_t

*tdo, AI_tapendstate endState);

DESCRIPTION

ai_mScanDr() executes a JTAG DR scan sequence on the JTAG lines attached to current target (ITP

Driver controller device).

mHandle identifies the node to be executed on.

count specifies the no of DR bits to be transmitted.

tdi is a pointer to the input data. If tdi is NULL then binary 1' s will be used as the input data.

tdo is a pointer for the output data. If tdo is NULL then the function assumes no output data is to be

returned.

endState specifies the end state for the JTAG state machine will return to on completion of the scan.

endState takes one of the following arguments;

AI_tlr Test-Logic-Reset

AI_rti Run-Test-Idle

AI_pausedr Pause-DR

AI_pauseir Pause-IR

Caution should be exercised when using ai_mScanDr() as it may cause undefined/erratic behavior of

other ITP Driver functions.

RETURN VALUE

On success, ai_mScanDr() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_VCC_NOT_FOUND Target not powered up.

AI_ERR_SCANDR ITP Driver controller problem executing DR scan.

ai_mScanDr

© 2021 ASSET InterTech, Inc.
129

SEE ALSO

ai_mScanIr

ai_mScanIr

© 2021 ASSET InterTech, Inc.
130

NAME

ai_mScanIr

Execute a JTAG IR Scan sequence

SYNOPSIS

#include <itp_driver.h>

int ai_mScanIr(int mHandle, uint32_t count, uint32_t *tdi, uint32_t

*tdo, AI_tapendstate endState);

DESCRIPTION

ai_mScanIr() executes a JTAG IR scan sequence on the JTAG bus attached to current target (ITP

Driver controller device).

mHandle identifies the node to be executed on.

count specifies the no of IR bits to be transmitted.

tdi is a pointer to the input data. If tdi is NULL, then binary 1' s will be used as the input data.

tdo is a pointer for the output data. If tdo is NULL, then the function assumes no output data is to be

returned.

endState specifies the end state for the JTAG state machine will return to on completion of the scan.

endState takes one of the following arguments;

AI_tlr Test-Logic-Reset

AI_rti Run-Test-Idle

AI_pausedr Pause-DR

AI_pauseir Pause-IR

Caution should be exercised when using ai_mScanIr() as it may cause undefined/erratic behavior

in other ITP Driver functions.

RETURN VALUE

On success, ai_mScanIr() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

ai_mScanIr

© 2021 ASSET InterTech, Inc.
131

AI_VCC_NOT_FOUND Target not powered up.

AI_ERR_SCANIR ITP Driver controller problem executing IR scan.

SEE ALSO

ai_mScanDr

ai_mSetActiveCore

© 2021 ASSET InterTech, Inc.
132

NAME

ai_mSetActiveCore

Set the currently targeted core.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetActiveCore (int mHandle, uint16_t ActiveCore);

DESCRIPTION

ai_mSetActiveCore() sets ActiveCore as the core that is to be targeted by the ITP driver, on

the node identified by mHandle.

Valid values for ActiveCore are 1 thru 76.

NOTES:

The active core will always return to the default value (1) after ai_mResetUUT() , ai_mRunUUT(),

or on first loading of the ITP driver library to memory.

RETURN VALUE

On success, ai_mSetActiveCore() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_TGT_CORE_INVALID Invalid Target core selection

(Active CPU/Core/Thread returned to default value).

SEE ALSO

ai_mGetActiveCore

ai_mGetActiveCPU

ai_mGetActiveThread

ai_mSetActiveCPU

ai_mSetActiveThread

ai_mSetActiveCPU

© 2021 ASSET InterTech, Inc.
133

NAME

ai_mSetActiveCPU

Set the currently targeted CPU.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetActiveCPU (int mHandle, uint16_t ActiveCPU);

DESCRIPTION

ai_mSetActiveCPU() sets ActiveCPU as the CPU that is to be targeted by the ITP driver, on the

node identified by mHandle.

Valid values for ActiveCPU are 1 thru 4.

NOTES:

The active CPU will always return to the default value (1) after ai_mResetUUT() , ai_mRunUUT(),

or on first loading of the ITP driver library to memory.

RETURN VALUE

On success, ai_mSetActiveCPU() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_TGT_CORE_INVALID Invalid Target core selection

(Active CPU/Core/Thread returned to default value).

SEE ALSO

ai_mGetActiveCore

ai_mGetActiveCPU

ai_mGetActiveThread

ai_mSetActiveCore

ai_mSetActiveCPU

© 2021 ASSET InterTech, Inc.
134

ai_mSetActiveThread

ai_mSetActiveThread

© 2021 ASSET InterTech, Inc.
135

NAME

ai_mSetActiveThread

Set the currently targeted thread.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetActiveThread (int mHandle, uint16_t ActiveThread);

DESCRIPTION

ai_mSetActiveThread() sets ActiveThread as the thread that is to be targeted by the ITP driver,

on the node identified by mHandle.

Valid values for ActiveThread are 0 thru 3.

NOTES:

The active thread will always return to the default value (1) after ai_mResetUUT() ,

ai_mRunUUT(), or, on first loading of the ITP driver library to memory.

RETURN VALUE

On success, ai_mSetActiveThread() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter.

AI_TGT_CORE_INVALID Invalid Target core selection

(Active CPU/Core/Thread returned to default value).

SEE ALSO

ai_mGetActiveCore

ai_mGetActiveCPU

ai_mGetActiveThread

ai_mSetActiveCore

ai_mSetActiveCPU

ai_mSetBreakpoint

© 2021 ASSET InterTech, Inc.
136

NAME

ai_mSetBreakpoint

Set up breakpoint(s).

SYNOPSIS

#include <itp_driver.h>

int ai_mSetBreakpoint (int mHandle, uint64_t BreakpointAddr0,

AI_Breakpointtype BreakpointType0, uint64_t BreakpointAddr1,

AI_Breakpointtype BreakpointType1, uint64_t BreakpointAddr2,

AI_Breakpointtype BreakpointType2, uint64_t BreakpointAddr3,

AI_Breakpointtype BreakpointType3);

DESCRIPTION

ai_mSetBreakpoint() sets up the associated target core 'processor state buffer' registers with

breakpoint address registers as specified by BreakpointAddr0, BreakpointAddr1,

BreakpointAddr2 and BreakpointAddr3 and the breakpoint types as specified by

BreakpointType0, BreakpointType1, BreakpointType2 and BreakpointType3.

mHandle identifies the node for the operation to be executed on.

The BreakpointTypen argument defines the type of breakpoint to be set on the target core.

AI_none No breakpoint.

AI_instr_addr Break on instruction execution only.

AI_data_write Break on data writes only.

AI_io_read_write Break on I/O read or writes.

AI_data_read_write Break on data reads or writes but not instruction fetches.

Execution of ai_mSetBreakpoint() will disable single step mode if previously set up by

ai_mSetRunMode(). However, ai_mSetBreakpoint() and ai_mSetRunMode() can still be

used in sequence to debug suspect areas of code.

Refer to Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A for more information

on debug registers and setting breakpoints.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mSetBreakpoint() will first of all perform a power check on the target.

ai_mSetBreakpoint

© 2021 ASSET InterTech, Inc.
137

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

Breakpoints can only be set on the bottom 4G memory space (i.e. 0x0-0xFFFFFFFF).

RETURN VALUE

On success, ai_mSetBreakpoint() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_SET_BKPT Error during execution of set up breakpoint(s) operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mGetBreakpoint

ai_mExitDebugMode

ai_mWaitforDebugMode

ai_mSetDebugModeCheckFlag

© 2021 ASSET InterTech, Inc.
138

NAME

ai_mSetDebugModeCheckFlag

Set the debug mode check flag.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetDebugModeCheckFlag (int mHandle, bool EnableDMCheck);

DESCRIPTION

ai_SetDebugModeCheckFlag() sets EnableDMCheck to indicate to the ITP driver whether

debug mode should be checked during ITP driver function operation, for the node specified by

mHandle. On first loading the ITP driver library, EnableDMCheck takes on a default value of true.

RETURN VALUE

ai_SetDebugModeCheckFlag() always returns 0.

ERRORS

N/A

ai_mSetinitbreak

© 2021 ASSET InterTech, Inc.
139

NAME

ai_mSetinitbreak

Set the init break flag.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetinitbreak (int mHandle, bool initbreak);

DESCRIPTION

ai_mSetinitbreak() sets the initbreak flag, for the node identified by mHandle.

initbreak specifies how the init break flag internal to the target is to be set. Set to true, the target

will redirect to debug mode after all state initialization, but before branching to the reset vector. Set to

false, there will be no redirect to debug mode after all state initialization.

NOTES:

The actual update from the flag to target processor/core register(s) is linked to the SaveModifyArch

global parameter being set to true. Only when this parameter is true, and an ITP driver library

function that executes/requires the SaveModifyArch procedure, will the registers get updated. (i.e.

the register(s) will only get updated by ITP driver library function(s) that require the target processor to

be in debug mode).

By default, when the ITP driver library is first loaded into memory, initbreak is set to false. Also,

any use of ai_mSetTargetCPUType to change the target CPU to a new type will reset initbreak

to false.

RETURN VALUE

On success, ai_mSetinitbreak() returns 0. On error, it will return one of the following values:

ERRORS

N/A

SEE ALSO

ai_mSetmachinecheckbreak

ai_mSetsmmentrybreak

ai_mSetinitbreak

© 2021 ASSET InterTech, Inc.
140

ai_mSetshutdownbreak

ai_mConfig

ai_mSetmachinecheckbreak

© 2021 ASSET InterTech, Inc.
141

NAME

ai_mSetmachinecheckbreak

Set the machine check break flag.

SYNOPSIS

#include <itp_driver.h>

int ai_metmachinecheckbreak (int mHandle, bool machinecheckbreak);

DESCRIPTION

ai_mSetmachinecheckbreak() sets the machinecheckbreak flag, for the node identified by

mHandle.

machinecheckbreak specifies how the machine check break flag internal to the target is to be set.

Set to true, the target will redirect to debug mode before the exception handler occurs. Set to false,

there will be no redirect to debug mode before exception handling.

NOTES:

The actual update from the flag to target processor/core register(s) is linked to the SaveModifyArch

global parameter being set to true. Only when this parameter is true, and an ITP driver library

function that executes/requires the SaveModifyArch procedure, will the registers get updated. (i.e.

the register(s) will only get updated by ITP driver library function(s) that require the target processor to

be in debug mode).

By default, when the ITP driver library is first loaded into memory, machinecheckbreak is set to

false. Also, any use of ai_mSetTargetCPUType to change the target CPU to a new type will reset

machinecheckbreak to false.

RETURN VALUE

On success, ai_mSetmachinecheckbreak() returns 0. On error, it will return one of the following

values:

ERRORS

N/A

SEE ALSO

ai_mSetmachinecheckbreak

© 2021 ASSET InterTech, Inc.
142

ai_mSetinitbreak

ai_mSetsmmentrybreak

ai_mSetshutdownbreak

ai_mConfig

ai_mSetRunMode

© 2021 ASSET InterTech, Inc.
143

NAME

ai_mSetRunMode

Set the target execution mode.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetRunMode (int mHandle, AI_runmode RunMode);

DESCRIPTION

ai_mSetRunMode() changes the target core/CPU execution mode behavior, on the node specified

by mHandle, when it is next set to run again (i.e. when debug mode is next exited).

If RunMode is equal to AI_run, when debug mode is next exited, the target will start/restart

processing its instruction queue. Otherwise, if RunMode is equal to AI_step, when debug mode is

next exited, the target will only process the next instruction in its queue, and then immediately re-enter

debug mode again (i.e. a single-step).

Any breakpoint conditions previously set up by ai_mSetBreakpoint() will still remain valid if

RunMode is set to AI_run.

Refer to the Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A for more

information on debug registers and single-step mode.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mSetRunMode()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mSetRunMode

© 2021 ASSET InterTech, Inc.
144

RETURN VALUE

On success, ai_mSetRunMode() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_SET_RUN_MODE Error during execution of set run mode operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mExitDebugMode

ai_mWaitforDebugMode

ai_mSetshutdownbreak

© 2021 ASSET InterTech, Inc.
145

NAME

ai_mSetshutdownbreak

Set the shutdown break flag.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetshutdownbreak (int mHandle, bool shutdownbreak);

DESCRIPTION

ai_mSetshutdownbreak() sets the shutdownbreak flag, for the node identified by mHandle.

shutdownbreak specifies how the shutdown break flag internal to the target is to be set. Set to

true, the target will redirect to debug mode just prior to issuing a special bus cycle, and disabling

processing. Set to false, there will be no redirect to debug mode prior to issuing the special bus cycle.

NOTES:

The actual update from the flag to target processor/core register(s) is linked to the SaveModifyArch

global parameter being set to true. Only when this parameter is true, and an ITP driver library

function that executes/requires the SaveModifyArch procedure, will the registers get updated. (i.e.

the register(s) will only get updated by ITP driver library function(s) that require the target processor to

be in debug mode).

By default, when the ITP driver library is first loaded into memory, shutdownbreak is set to false.

Also, any use of ai_mSetTargetCPUType to change the target CPU to a new type will reset

shutdownbreak to false.

RETURN VALUE

On success, ai_mSetshutdownbreak() returns 0. On error, it will return one of the following

values:

ERRORS

N/A

SEE ALSO

ai_mSetinitbreak

ai_mSetshutdownbreak

© 2021 ASSET InterTech, Inc.
146

ai_mSetmachinecheckbreak

ai_mSetsmmentrybreak

ai_mConfig

ai_mSetsmmentrybreak

© 2021 ASSET InterTech, Inc.
147

NAME

ai_mSetsmmentrybreak

Set the SMM entry break flag.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetsmmentrybreak (int mHandle, bool smmentrybreak);

DESCRIPTION

ai_mSetsmmentrybreak() sets the smmentrybreak flag, for the node identified by mHandle

smmentrybreak specifies how the SMM entry break flag internal to the target is to be set. Set to

true, the target will redirect to debug mode after completing an SMI handler macro operation. Set to

false, there will be no redirect to debug mode after the SMI macro handler.

NOTES:

The actual update from the flag to target processor/core register(s) is linked to the SaveModifyArch

global parameter being set to true. Only when this parameter is true, and an ITP driver library

function that executes/requires the SaveModifyArch procedure, will the registers get updated. (i.e.

the register(s) will only get updated by ITP driver library function(s) that require the target processor to

be in debug mode).

By default, when the ITP driver library is first loaded into memory, smmentrybreak is set to false.

Also, any use of ai_mSetTargetCPUType to change the target CPU to a new type will reset

smmentrybreak to false.

RETURN VALUE

On success, ai_mSetsmmentrybreak() returns 0. On error, it will return one of the following

values:

ERRORS

N/A

SEE ALSO

ai_mSetinitbreak

ai_mSetsmmentrybreak

© 2021 ASSET InterTech, Inc.
148

ai_mSetmachinecheckbreak

ai_mSetshutdownbreak

ai_mConfig

ai_mSetTap

© 2021 ASSET InterTech, Inc.
149

NAME

ai_mSetTap

Select the target TAP.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetTap (int mHandle, int tap);

DESCRIPTION

ai_mSetTap() informs the ITP driver of the target TAP selection, on the node specified by mHandle.

tap can take on the following values:

-1 No TAP

0 TAP 0

1 TAP 1

2 TAP 2

3 TAP 3

4 TAP 4

5 Internal controller TAP

6 Reserved for internal use only

RETURN VALUE

On success, ai_mSetTap() returns 0.

SEE ALSO

N/A

ai_mSetTargetCPUType

© 2021 ASSET InterTech, Inc.
150

NAME

ai_mSetTargetCPUType

Select the target CPU.

SYNOPSIS

#include <itp_driver.h>

int ai_mSetTargetCPUType (int mHandle, AI_CPUtype CPUtype);

DESCRIPTION

ai_mSetTargetCPUType() informs the ITP driver of the target CPU selection, on the node

specified by mHandle.

CPUtype can take on the following values:

AI_nehalem Nehalem target.

AI_sandybridge Sandybridge/Ivybridge/Haswell/Broadwell/Skylake/Cascade Lake/Ice

Lake/Sapphire Rapids target. (ITP Driver can transparently determine

between Sandybridge, Ivybridge, Haswell, Broadwell, Skylake, Ice Lake,

and Sapphire Rapids targets. Note that the SED library can, as of Haswell

and beyond, automatically detect the type of processor; thus this is a

legacy API and should always be invoked with AI_sandybridge on

current platforms).

Default value (on ITP driver library load) is AI_nehalem.

RETURN VALUE

On success, ai_mSetTargetCPUType() returns 0. On error, it will return one of the following

values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_ERR_TGT_CLASS Error instantiating target class

SEE ALSO

N/A

ai_mSetTargetCPUType

© 2021 ASSET InterTech, Inc.
151

ai_mStopTest

© 2021 ASSET InterTech, Inc.
152

NAME

ai_mStopTest

Stop/Interrupt a currently running test.

SYNOPSIS

#include <itp_driver.h>

int ai_mStopTest (int mHandle);

DESCRIPTION

ai_mStopTest() informs the ITP Driver to cease any currently running diagnostic routines on the

node identified by mHandle (applies to ITP driver functions that operate on a range mainly).

NOTES:

ai_mStopTest() should be invoked via a child process, to halt/return and force any required

cleanup of any functions currently being run by the parent process. ai_mStopTest() only supplies

notification to stop the parent process function. Its return does not indicate the parent process's

function completion. Wait for the parent process function to return to indicate completion.

RETURN VALUE

ai_mStopTest() always returns 0.

SEE ALSO

ai_mFillMemory

ai_mCheckMemory

ai_mRomCrcTest

ai_mBootRomBusTest

ai_mRamBusTest

ai_mRamBusTestChannel

ai_mRamBusTestViaFifo

ai_mBasicR-WRamTest

ai_mRWRamTest

ai_mDRamRefreshTest

ai_muregraw

© 2021 ASSET InterTech, Inc.
153

NAME

ai_muregraw

Execute a uregraw operation.

SYNOPSIS

#include <itp_ureg_raw.h>

int ai_muregraw (int mHandle, uint32_t device, uint32_t portID, char*

registerType, uint32_t bar, uint32_t deviceNumber, uint32_t function,

uint32_t address, uint32_t iascope, uint32_t* wrValue, uint32_t*

rdValue);

DESCRIPTION

ai_muregraw()executes a uregraw operation on the targeted CPU, on the node specified by

mHandle. This function is provided mainly as an interface for Intel CScripts.

device An uncore, core, or thread device.

portID uArch parameter that specifies the message channel destination port.

registerType A string specifying the register type. Can be one of 'cr', 'cfg'.

bar Base Access Register (BAR) parameter.

deviceNumber Register device attribute. If registerType = 'cr', then deviceNumber is treated as

a core ID.

function Register function attribute. If registerType = 'cr', then function is treated as a

thread ID.

address 16-bit address or offset to access.

iaScope The IA scope parameter (typically set to 0).

wrValue Specifies a 32-bit value to write to the register. Set to NULL if doing a read.

rdValue Used to return 32-bit read value. Set to NULL if doing a write.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_muregraw() will

first of all perform a power check on the target.

ai_muregraw64

© 2021 ASSET InterTech, Inc.
154

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_muregraw() returns 0. On error, it will

return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_UREG_RAW_NOT_IMPLEMENTED Not a valid function (IVYBRIDGE/IVYTOWN ONLY supports)

AI_UREG_RAW_INV_PARAM Invalid parameter for uregraw

AI_UREG_RAW_MAX_POLL_TIMEOUT Timeout during uregraw operation

AI_UREG_RAW_EXEC_ERR uregraw execution error

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mEnableoxmdebug

ai_muregraw64

NAME

ai_muregraw64

Execute a uregraw operation.

ai_muregraw64

© 2021 ASSET InterTech, Inc.
155

SYNOPSIS

#include <itp_ureg_raw.h>

int ai_muregraw64 (int mHandle, uint32_t device, uint32_t portID,

char* registerType, uint32_t bar, uint32_t deviceNumber, uint32_t

function, uint32_t address, uint32_t iascope, uint64_t* wrValue,

uint64_t* rdValue);

DESCRIPTION

ai_muregraw64() executes a uregraw operation on the targeted CPU, on the node specified by

mHandle. This function is provided mainly as an interface for Intel CScripts.

device An uncore, core, or thread device.

portID uArch parameter that specifies the message channel destination port.

registerType A string specifying the register type. Can be one of 'cr', 'cfg'.

bar Base Access Register (BAR) parameter.

deviceNumber Register device attribute. If registerType = 'cr', then deviceNumber is treated as

a core ID.

function Register function attribute. If registerType = 'cr', then function is treated as a

thread ID.

address 16-bit address or offset to access.

iaScope The IA scope parameter (typically set to 0).

wrValue Specifies a 64-bit value to write to the register. Set to NULL if doing a read.

rdValue Used to return 64-bit read value. Set to NULL if doing a write.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_muregraw64() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

The scan chain will be returned to its original state on function completion.

ai_muregraw64

© 2021 ASSET InterTech, Inc.
156

RETURN VALUE

On successful completion of the diagnostic with no errors, ai_muregraw64() returns 0. On error, it

will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_UREG_RAW_NOT_IMPLEMENTED Not a valid function (IVYBRIDGE/IVYTOWN ONLY supports)

AI_UREG_RAW_INV_PARAM Invalid parameter for uregraw

AI_UREG_RAW_MAX_POLL_TIMEOUT Timeout during uregraw operation

AI_UREG_RAW_EXEC_ERR uregraw execution error

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mEnableoxmdebug

ai_muregraw

ai_mWaitforDebugMode

© 2021 ASSET InterTech, Inc.
157

NAME

ai_mWaitforDebugMode

Wait for debug mode re-entry.

SYNOPSIS

#include <itp_driver.h>

int ai_mWaitforDebugMode (int mHandle);

DESCRIPTION

ai_mWaitforDebugMode() waits for the targeted core on the node identified by mHandle to re-

enter debug mode. This function would typically be used to capture when a single step or breakpoint

condition has been met. During execution, the process is suspended until a PRDY interrupt condition

occurs. Upon this, the currently targeted core's debug mode status is checked. If in debug mode the

function returns, and if the target core is not in debug mode the function loops and re-enters the

suspended state again.

Should the user wish to force re-entry to debug mode during execution of the 'wait for debug mode'

routine, he/she can do so by calling ai_mStopTest() via a forked child process. ai_mStopTest()

will force debug mode re-entry, which will cause ai_mWaitforDebugMode() to subsequently

return.

No other ITP Driver functions (other than ai_mStopTest()) should be called while

ai_mWaitforDebugMode() is running. Because the target core is not in debug mode, execution of

other ITP Driver functions can force the target core to re-enter debug mode. In this case,

ai_mWaitforDebugMode() behavior is undefined.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mWaitforDebugMode() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

RETURN VALUE

On success completion of the sequence, ai_mWaitforDebugMode() returns 0. On error, it will

return one of the following values:

ai_mWaitforDebugMode

© 2021 ASSET InterTech, Inc.
158

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WAIT_DM Error during execution wait for debug mode operation

AI_WAIT_DM_HALTED_USR Execution of wait for debug mode interrupted by user

AI_ERR_PCT_INT_IOCTL Error reported from IOCTL() function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mStopTest

ai_mWBINVD

© 2021 ASSET InterTech, Inc.
159

NAME

ai_mWBINVD

Execute the WBINVD instruction.

SYNOPSIS

#include <itp_driver.h>

int ai_mWBINVD (int mHandle);

DESCRIPTION

ai_mWBINVD() executes the WBINVD instruction on the currently targeted core, on the node

identified by mHandle.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWBINVD() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWBINVD() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

ai_mWBINVD

© 2021 ASSET InterTech, Inc.
160

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_INVD Error during execution of WBINVD operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

N/A

ai_mWriteCR

© 2021 ASSET InterTech, Inc.
161

NAME

ai_mWriteCR

Write to a CR register.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteCR (int mHandle, ai_crregister crreg, uint64_t

RegisterData);

DESCRIPTION

ai_mWriteCR() writes RegisterData to crreg of the currently targeted core, on the node

identified by mHandle.

crreg specifies the CR register to be written. crreg takes one of the following arguments:

AI_CR0 CR0

AI_CR2 CR2

AI_CR3 CR3

AI_CR4 CR4

AI_CR8 CR8

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteCR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mWriteCR

© 2021 ASSET InterTech, Inc.
162

RETURN VALUE

On success, ai_mWriteCR() returns 0. On error, it will return one of the following values:

ERRORS

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_CR Error during execution of write to CR operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadCR

ai_mWriteCSR

© 2021 ASSET InterTech, Inc.
163

NAME

ai_mWriteCSR

Write to a CSR.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteCSR (int mHandle, uint16_t DeviceNo, uint16_t FunctionNo,

uint16_t Offset, uint32_t RegisterData);

DESCRIPTION

ai_mWriteCSR() writes RegisterData to the targeted CSR on the currently targeted CPU, on the

node identified by mHandle.

The targeted CSR is made up by combining the DeviceNo, FunctionNo and Offset fields to form

the CSR register address.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteCSR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

ai_mWriteCSR() submits instructions via a non-debug mode related JTAG access mechanism. It does

not require the target CPU to be in debug mode to operate successfully.

The non-debug mode related JTAG access mechanism only exists on Nehalem targets. Attempts to use

this function on other targets will result in a 'Function not supported' error.

RETURN VALUE

On success, ai_mWriteCSR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

ai_mWriteCSR

© 2021 ASSET InterTech, Inc.
164

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_WRITE_CSR Error during execution of write to CSR function

AI_LIB_FUNC_NOT_SUPPORTED Function not supported (only Nehalem supports)

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadCSR

ai_mWriteDescriptorTableRegister

© 2021 ASSET InterTech, Inc.
165

NAME

ai_mWriteDescriptorTableRegister

Write to a descriptor table register.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteDescriptorTableRegister (int mHandle, ai_dtrregister

dtrreg, uint64_t *Base, uint64_t *Limit, uint64_t *Selector, uint64_t

*Attributes);

DESCRIPTION

ai_mWriteDescriptorTableRegister() writes the descriptor table register fields Base,

Limit, Selector, Attributes to the descriptor table register specified by dtrreg of the

currently targeted core, on the node identified by mHandle.

dtrreg takes one of the following arguments:

AI_GDTR GDTR

AI_LDTR LDTR

AI_IDTR IDTR

AI_TR TR

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mWriteDescriptorTableRegister() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mWriteDescriptorTableRegister

© 2021 ASSET InterTech, Inc.
166

RETURN VALUE

On success, ai_mWriteDescriptorTableRegister() returns 0. On error, it will return one of

the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_DTRREG Error during execution of write to descriptor table operation

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadDescriptorTableRegister

ai_mWriteDR

© 2021 ASSET InterTech, Inc.
167

NAME

ai_mWriteDR

Write to a DR register.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteDR (int mHandle, ai_drregister drreg, uint64_t

RegisterData);

DESCRIPTION

ai_mWriteDR() writes RegisterData to drreg of the currently targeted core, on the node

identified by mHandle.

drreg specifies the CR register to be written. drreg takes one of the following arguments:

AI_DR0 DR0

AI_DR1 DR1

AI_DR2 DR2

AI_DR3 DR3

AI_DR6 DR6

AI_DR7 DR7

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteDR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

ai_mWriteDR

© 2021 ASSET InterTech, Inc.
168

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWriteDR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_DR Error during execution of write to DR function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadDR

ai_mWriteGPR

© 2021 ASSET InterTech, Inc.
169

NAME

ai_mWriteGPR

Write to a GPR.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteGPR (int mHandle, AI_gprregister GprNo, uint64_t

RegisterData);

DESCRIPTION

ai_mWriteGPR() writes RegisterData to GprNo of the currently targeted core, on the node

identified by mHandle.

If GprNo is within the RAX - R15 range, then RegisterData will be written directly to the register on

the target core. Otherwise RegisterData will be written to the target core register space in the

'processor state buffer' held.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteGPR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWriteGPR() returns 0. On error, it will return one of the following values:

ai_mWriteGPR

© 2021 ASSET InterTech, Inc.
170

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_WRITE_GPR Error during execution of write to GPR function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadGPR

ai_mWriteIO

© 2021 ASSET InterTech, Inc.
171

NAME

ai_mWriteIO

Write to an I/O location.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteIO (int mHandle, uint16_t IoAddress, void *IoData,

ai_mBuswidth BusWidth);

DESCRIPTION

ai_mWriteIO() submits instruction(s) to the target core to write data specified in IoData to the

I/O location specified in IoAddress, on the node identified by mHandle.

The BusWidth argument defines the width of operation to be carried out.

AI_bwio8 8-bit operation

AI_bwio16 16-bit operation

AI_bwio32 32-bit operation

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteIO() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

ai_mWriteIO

© 2021 ASSET InterTech, Inc.
172

RETURN VALUE

On success, ai_mWriteIO() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_IO Error during execution of write to IO function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mWriteIO

ai_mWriteMemory

© 2021 ASSET InterTech, Inc.
173

NAME

ai_mWriteMemory

Write to a memory location.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteMemory (int mHandle, uint64_t MemoryAddress, void

*MemoryData, ai_mBuswidth BusWidth);

DESCRIPTION

ai_mWriteMemory() submits instruction(s) to the target core to write data specified in

MemoryData to the memory location specified in MemoryAddress, on the node identified by

mHandle. The BusWidth argument defines the width of operation to be carried out.

AI_bwmem8 8-bit operation

AI_bwmem16 16-bit operation

AI_bwmem32 32-bit operation

AI_bwmem64 64-bit operation

Normal debug mode operations are performed with the target core in 32-bit operating mode. If

MemoryAddress is greater than 0xffffffff, or BusWidth equals AI_bwmem64, the function will

switch the target core to 64-bit mode prior to execution of the write operation. On completion of the

operation, a flag will be set to return the target core back to 32-bit on the next debug operation (if the

next operation does not require 64-bit mode).

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteMemory()

will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

ai_mWriteMemory

© 2021 ASSET InterTech, Inc.
174

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWriteMemory() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_MEM Error during execution of write to memory function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadMemory

ai_mWriteMSR

© 2021 ASSET InterTech, Inc.
175

NAME

ai_mWriteMSR

Write to an MSR.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteMSR (int mHandle, uint64_t MsrAddress, uint64_t

RegisterData);

DESCRIPTION

ai_mWriteMSR() writes RegisterData to MsrAddress of the currently targeted core, on the

node identified by mHandle.

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()), ai_mWriteMSR() will

first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWriteMSR() returns 0. On error, it will return one of the following values:

ERRORS

AI_INVALID_PARAM Invalid parameter

ai_mWriteMSR

© 2021 ASSET InterTech, Inc.
176

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_MSR Error during execution of write to MSR function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadMSR

ai_mWriteSegmentRegister

© 2021 ASSET InterTech, Inc.
177

NAME

ai_mWriteSegmentRegister

Write to a segment register.

SYNOPSIS

#include <itp_driver.h>

int ai_mWriteSegmentRegister (int mHandle, ai_segmentregister segreg,

uint64_t *Base, uint64_t *Limit, uint64_t *Selector, uint64_t

*Attributes);

DESCRIPTION

ai_mWriteSegmentRegister() writes the segment register fields Base, Limit, Selector,

and Attributes to the segment register specified by segreg of the currently targeted core, on the

node identified by mHandle.

segreg takes one of the following arguments:

AI_CS CS

AI_DS DS

AI_SS SS

AI_ES ES

AI_FS FS

AI_GS GS

NOTES:

Prior to executing the function, the following actions may be carried out:

By default (if the PowerCheck option is not disabled via ai_mConfig()),

ai_mWriteSegmentRegister() will first of all perform a power check on the target.

Also, by default (if the ScanChainSetup option is not disabled via ai_mConfig()), the function

will perform necessary actions to interrogate/bring up and ensure all target devices (cores) are alive on

the scan chain.

Lastly, by default (if the SaveModifyArch option is not disabled via ai_mConfig()), the function

will perform necessary actions to force all connected devices (cores) in to debug mode (if not already in

debug mode), and save the architectural state of the target core (again, if not already saved previously)

to a 'processor state buffer'. The 'processor state buffer' is a storage area in host memory used to

temporarily store the architectural state registers of the core, such that these registers can then be used

ai_mWriteSegmentRegister

© 2021 ASSET InterTech, Inc.
178

for other debug operations. The action to save the 'processor state buffer' is a one-time only action,

which only requires execution/re-execution if the target is reset, the core 'processor state buffer' was

previously restored, or a new instance of the driver (.so) is loaded.

RETURN VALUE

On success, ai_mWriteSegmentRegister() returns 0. On error, it will return one of the following

values:

ERRORS

AI_INVALID_PARAM Invalid parameter

AI_VCC_NOT_FOUND Target not powered up

AI_MAX_UNCORES_EXCEEDED Scan chain init: maximum possible Uncores exceeded

AI_INVALID_CORE_IDCODE_DET Scan chain init: an invalid Core IDCODE was detected

AI_INVALID_UNCORE_IDCODE_DET Scan chain init: an invalid Uncore IDCODE was detected

AI_ERR_TAP_OWNERSHIP Scan chain init: error getting ownership of the TAP

AI_CFG_JTAG Scan chain init: error configuring JTAG

AI_DBG_MODE_WRITE_SEGREG Error during execution of write to segment register function

AI_RESTORE_JTAG_CFG_DEFAULT Error restoring JTAG configuration settings to default

SEE ALSO

ai_mReadSegmentRegister

