Real Insight from Code to Silicon

SourcePoint™ ScanWorks®

In-System Fast Flash Programming Technologies

Larry Osborn

Project Manager for:
ScanWorks FPGA-Flash Programming
ScanWorks Processor-based Fast Programming
ScanWorks Embedded Diagnostics
SourcePoint Intel/AMD Debugger
June 29, 2021
Agenda

- Offboard vs. Onboard
- Technology Trends
- ScanWorks Addressing the Trends
 - Technology Trends
 - SoC Trends
 - FPGA Trends
- ScanWorks Programming Toolbox
 - Boundary-Scan Flash
 - Processor-based Flash
 - FPGA-based Flash
 - Controller-based Flash
- ScanWorks Programming Methods
 - Programming Method Considerations
 - Speed Comparisons
- Demo
 - Zedboard
 - BST
 - PFx
 - FFP
- Questions
Offboard vs. Onboard

- Offboard (preprogramming)
 - Inventory management
 - Engineering Change Orders (ECO)
 - Software updates
 - Device shortages

- Onboard (in-system programming)
 - No Inventory management issue
 - Preprogramming
 - Device Inventory shortage
 - ECO minimal impact
 - Software updates expected
 - UUT design dictates
 - Manufacturing beat rate
 - Speed of programming possible
Technology Trends

- Market Trends
 - Design starts
 - Artificial Intelligence
 - 5G
 - Defense - towards FPGAs for Cyber Security issues
 - Automated Driving Solutions (ADS)
 - Hyperscale Data Centers (HDC)
- Domain-specific architectures (DSA)
- Adaptive Computing
- Prototyping
SoC Trends

- Multi-core
 - Homogenous
 - Heterogenous
- Additional cores
 - FPGA
 - GPU
 - Embedded Controllers
- Flash expansion
 - G-bit SPI support
 - SDMMC/eMMC
 - NAND
FPGA Technology Trends

- FPGA Complexity Growth
 - 9 Million System Logic Cells
 - 2,072 User IO Cells
 - 80 28G Transceivers
 - UltraRAM
 - High Bandwidth Memory (HBM)
- Power consumption
- Adaptability curves
Programming Methods

Customer Design Dictates Fast Flash Programming methods possible.
Where is the flash device connected SoC, FPGA, Processor or JTAG only?

For the **SoC** that has both a processor core and FPGA core, is the flash device connected to processor core or to the FPGA fabric?

For the **FPGA** is there a system clock?
- System clock should run faster than sclk
- Instrument for Configuration SPI require special notation for pin assignment.

What is the **BST** chain clock rate? Slowest device clock rate in the chain determines the chain clock rate.

How large is the image?
ScanWorks

Boundary-Scan Test (BST)
Processor-based Fast Programming (PFP)
FPGA-based Fast Programming (FFP)
ScanWorks Boundary-Scan Test (BST)

- Design to simplify the test complexity
 - Automated
 - Model-based
 - Incremental test
- Programming support via JTAG
 - SPI, QSPI, OSPI
 - I2C, NAND, NOR
 - eMMC
PFx Product Family

- PFx
 - PFP – Processor-based Fast Programming
 - Fast programming (MB per second) a single solution for prototype and production
 - PFT – Processor-based Functional Test
 - At-speed functional test coupled with structural
 - PFTDDR – Processor-based Functional Test for DDR
 - DDR Test and Tune - Testing at GB per second speeds
 - Zynq-7000 tuning supported
 - UltraScale microcode
PFP- Processor-based Fast Programming

- PFP is a software target agent designed for programming at device speed
- Provides in-target, in-system programming.
- Eliminating costly pre-programmed inventory
- Programming at MBytes per sec

Improved Productivity and Improved Manufacturing beat-rate
ScanWorks FPGA-based Fast Programming (FFP)

- In-system programming
- Downloadable IP to shorten the programming time
ScanWorks SPI DIO and SPI Direct Programming Support

- SPI Direct
- RIC-1400 Only
- SPI DIO
- All controller but slower than SPI Direct

UUT

- JTAG

- SPI Direct/SPI DIO
 - Flash
 - SPI Header
 - Flash

© 2021, ASSET InterTech, Inc.
1) Short Chain – reduces the FPGA scan length to increase the data throughput

2) SPI Flash IP – IP embedded within the FPGA to increase the programming throughput

Note:
1) Supported Silicon Vendors Only: Xilinx, Altera, Microchip
2) FPGA Fabric Clock Driven by FFP
Programming Methods Consideration

- BST
 - SoC boundary scan
 - NAND, NOR, SPI, QSPI, eMCC
 - Connected to JTAG enable device
- SPI DIO
 - GPIO control
- SoC – Processor System or FPGA Fabric
 - If Processor – PFP
 - NAND, NOR, SPI, QSPI, SD/MMC, eMMC
 - Ethernet data download
 - If Programmable Logic – FFP
- FPGA Standalone
 - FFP
- SPI Direct – RIC-1400
 - Flash Header access
ScanWorks Programming Speed Technology Comparison

<table>
<thead>
<tr>
<th>Access Method</th>
<th>TCK</th>
<th>SoC Clock</th>
<th>FPGA Clock</th>
<th>Programming File Size</th>
<th>Erase/Program/Verify Time</th>
<th>Improvement</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary-Scan Chain</td>
<td>12 MHz</td>
<td>NA</td>
<td>NA</td>
<td>1 MB</td>
<td>35 minutes (2100 seconds)</td>
<td></td>
<td>UUT JTAG Clock Rate/BST Register</td>
</tr>
<tr>
<td>Short Chain</td>
<td>12 MHz</td>
<td>NA</td>
<td>1 MB</td>
<td>4 minutes (240 seconds)</td>
<td>~9x</td>
<td></td>
<td>Supported FPGA Families</td>
</tr>
<tr>
<td>SPI DIO</td>
<td>45 MHz</td>
<td>NA</td>
<td>NA</td>
<td>1 MB</td>
<td>2 minutes 5 seconds</td>
<td>17x</td>
<td>SPI Header</td>
</tr>
<tr>
<td>PFx Programming</td>
<td>30 Mhz</td>
<td>800 MHz</td>
<td>NA</td>
<td>1 MB</td>
<td>11 seconds</td>
<td>190x</td>
<td>UUT JTAG Clock Rate</td>
</tr>
<tr>
<td>PFx Programming Via Ethernet</td>
<td>30 Mhz</td>
<td>800 MHz</td>
<td>NA</td>
<td>1 MB</td>
<td>2.4 seconds</td>
<td>78x</td>
<td>Supported SoC Only</td>
</tr>
<tr>
<td>FPGA-based SPI Flash Programming</td>
<td>30 MHZ</td>
<td>100 MHz</td>
<td>100 MHz</td>
<td>1 MB</td>
<td>2.3 seconds</td>
<td>91x</td>
<td>Supported FPGA Families</td>
</tr>
<tr>
<td>SPI Direct</td>
<td>10 MHz</td>
<td>100 MHz</td>
<td>100 MHz</td>
<td>1 MB</td>
<td>2.3 seconds</td>
<td>91x</td>
<td>RIC-1400 and SPI Header</td>
</tr>
</tbody>
</table>
ScanWorks Demo Configuration
Zedboard Zynq-7000

- PS-PMOD
- PL-PMOD
- PL-PMOD 32MB SPI
- PL-PMOD DIO SPI
- SD Card
PL-PMOD 32MB SPI
ScanWorks Programming
Demo
Zedboard Zynq-7000

SoC

Processor

Ethernet

SPI

QSP

SD/MMC

FPGA

Short Chain

SPI Flash IP

FFP

PMOD

SPI

PMOD

SPI

SPI DIO

PMOD

SPI

SPI Direct

BST
ScanWorks Programming Speed Technology Comparison
Zedboard – XC7Z020

<table>
<thead>
<tr>
<th>Access Method</th>
<th>TCK</th>
<th>SoC Clock</th>
<th>FPGA Clock</th>
<th>Programming File Size</th>
<th>Program Time</th>
<th>Improvement</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boundary-Scan Chain</td>
<td>30 MHz</td>
<td>NA</td>
<td>NA</td>
<td>1 MB</td>
<td>10.5 minutes</td>
<td>-</td>
<td>UUT JTAG Clock Rate /BST Register</td>
</tr>
<tr>
<td>Short Chain</td>
<td>30 MHz</td>
<td>NA</td>
<td>NA</td>
<td>1 MB</td>
<td>2 minutes</td>
<td>5.3x</td>
<td>Supported FPGA Families</td>
</tr>
<tr>
<td>SPI DIO</td>
<td>30 MHz</td>
<td>NA</td>
<td>NA</td>
<td>1 MB</td>
<td>1.3 minutes</td>
<td>8x</td>
<td>UUT JTAG Clock Rate /BST Register</td>
</tr>
<tr>
<td>PFx Programming Via JTAG</td>
<td>30 MHz</td>
<td>800 MHz</td>
<td>NA</td>
<td>1 MB</td>
<td>8.7 seconds</td>
<td>74x</td>
<td>Supported SoC Only</td>
</tr>
<tr>
<td>FPGA-based SPI Flash</td>
<td>30 MHz</td>
<td>NA</td>
<td>100 MHz</td>
<td>1 MB</td>
<td>3.4 seconds</td>
<td>185x</td>
<td>Supported FPGA Families</td>
</tr>
<tr>
<td>PFx Programming Via Ethernet</td>
<td>30 MHz</td>
<td>800 MHz</td>
<td>NA</td>
<td>1 MB</td>
<td>2.4 seconds</td>
<td>262x</td>
<td>Supported SoC Only</td>
</tr>
<tr>
<td>SPI Direct</td>
<td>30 MHz</td>
<td>NA</td>
<td>?</td>
<td>1 MB</td>
<td>1.2 seconds</td>
<td>525x</td>
<td>RIC-1400 Only UUT SPI Header</td>
</tr>
</tbody>
</table>
ScanWorks Addressing Technology Trends

- We demonstrated 7 different ScanWorks actions to address the challenges of increased technology complexity, expansive software growth, and all accomplished via in-system programming with greater programming performance.
- The UUT design will ultimately determine the speed at which the devices can be programmed, and which programming technology is best suited.
- These solutions will save time in development and in production.
- Lower costs can be achieved with ScanWorks onboard solutions than offboard solutions.
Resources

- BST

- FFP

- PFP
Contact Information:
Larry Osborn
7161 Bishop Rd. Ste. 250
Plano, TX 75024
losborn@asset-intertech.com
www.asset-intertech.com