# Real Insight from Code to Silicon



SourcePoint ScanWorks®

# Embedded JTAG/Boundary Scan for Built-In Self-Test

Michael R. Johnson

ScanWorks BST Product Manager/Support Manager

### Agenda

- JTAG/Boundary Scan Overview
- ScanWorks Embedded Diagnostics (SED) for Test
- SED for Test Overview
- SED for Test Actions
- SED for Test Value
- SED for Test Demonstration
- SED for Test Block Diagram and Footprint
- Summary





### JTAG/Boundary Scan Overview

- JTAG/boundary scan is a static, vector-based test technology implemented through on-chip embedded instruments within commercial silicon
- Performs shorts/opens/stuck-at fault testing on PCBs with diagnostics to the device and net/pin level
- Useable throughout the entire lifecycle of a product
- A proven, mature test and programming technology









### ScanWorks Embedded Diagnostics (SED) for Test

- JTAG/boundary scan is typically used "locally" for PCB test development, production and system debug
- An external PC uses a dedicated hardware controller to test and program PCBs in development, production or perform debug on the benchtop
- Since JTAG/boundary scan is software that leverages on-chip embedded logic, it is possible to port that application directly onto the PCB itself
- SED for Test eliminates the need for hardware, cables, and fixturing for JTAG/boundary-scan testing
- SED for Test creates a "remote" JTAG/boundary-scan test and programming application







**Service Processor** 

### ScanWorks Embedded Diagnostics (SED) for Test

- ScanWorks Embedded Diagnostics (SED) for Test is a tool strategy that supports JTAG/boundary-scan testing and device programming capabilities embedded directly on an FPGA/SoC or service processor on a PCB
- SED for Test is applicable to a variety of industries and technologies where in situ, real time diagnostic data collection is valuable













#### SED for Test Actions

- Scan Path Verify (SPV)
  - Boundary Scan device validation
- Interconnect
  - Structural testing for shorts/opens/stuck-at faults to the device and net/pin level
- Memory Access Verify (MAV)
  - Structural and functional memory device testing



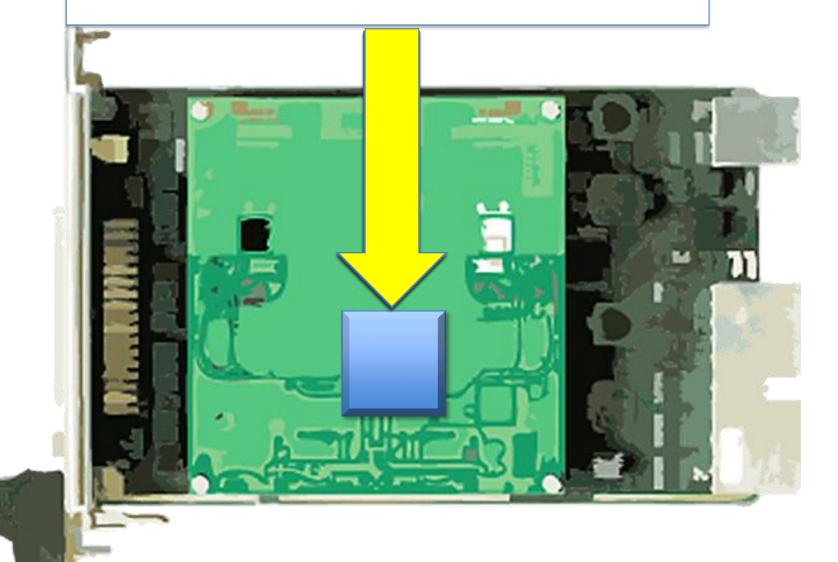


#### SED for Test Value

- SED for Test can be executed remotely and in situ with diagnostic data gathered in real time
- Can be executed as part of Built-In Self-Test (BIST), Power-On Self-Test (POST), system audits, and operational measurements
- Requires only that the elements of the PCB that implement SED for Test power up and be operational
- SED for Test is completely out of band
- Can be used in implementing System
  JTAG (SJTAG use of boundary scan
  within complex multi-board systems)










#### SED for Test Value

- SED for Test provides a level of diagnostic granularity not usually found via in-system functional tests
- The same ScanWorks PCB tests used in production can be reused in situ and during repair
- Data can be uploaded into a ScanWorks benchtop system for diagnostic processing and reporting
- Addresses intermittent faults and "No Fault Found" (NFF) issues









- SED Host Altera Cyclone V SoC
  - Dual Arm® Cortex®-A9 MPCore™ System On Chip (SoC) Cyclone® V SE FPGA
  - VxWorks Real-time operating system (RTOS)
  - Host for the embedded ScanWorks SEDPlayer which runs embedded JTAG/boundary-scan actions
  - Action results are stored in memory for retrieval
- Target ScanLite2
  - 3 JTAG/boundary-scan devices
  - Target for JTAG/boundary-scan actions run by the SEDPlayer
  - Switches for fault simulation









| Fault Switch | Default Setting | Fault Setting | Fault Type                                     |
|--------------|-----------------|---------------|------------------------------------------------|
| SW2          | Norm            | SA0           | 2 Drivers, 1 Receiver                          |
| SW3          | Norm            | SA0           | 1 Driver, 2 Receivers - Open                   |
| SW4          | Norm            | SA0           | 2 Drivers, 2 Receivers – 1 Pin Fail            |
| SW5          | Norm            | SA0           | TDO/TDI Error                                  |
| SW6          | Norm            | SA1           | Flip Flop Error                                |
| SW7          | Norm            | SA0           | Memory – D0                                    |
| SW8          | Norm            | Bridge        | Flash Interconnect Fail                        |
| SW9          | Norm            | SA0           | Memory – D1                                    |
| SW10         | Norm            | Bridge        | Address Fault                                  |
| SW11         | Norm            | SA0           | Short                                          |
| SW12         | Norm            | Open          | 1 Driver, 1 Receiver                           |
| Data Switch  | Default Setting |               | Data Type                                      |
| SW1 (1-4)    | Off             | On            | 3- Bits of Test Stimulus Data for U1 and LED's |























- A ScanWorks project and design was created to test the target
- Files transferred to the SoC (aside from the SEDPlayer.vxe) were generated during the normal ScanWorks test development process
  - eie, .gen, \_eie.gen, \_eie.apl, .mbs
- Files transferred from the SoC to ScanWorks were generated during the normal action run process
  - .log, .dtf
- The number at the end of the SEDPlayer command tells it which action to run
  - SPV = 1, Interconnect = 2, MAV = 3
- VxWorks was the operating system on the SoC but this could be any other operating system or RTOS; or SED for Test could even be implemented on a processor running without an operating system













## SED for Test Block Diagram and Footprint

- The resources required for the TAP Controller IP are small when compared to today's FPGAs
  - Uses < 4,000 Lookup Tables (LUTs)
  - Uses less than < 75kb memory</p>
- Action players run on the CPU
  - Occupies < 2MB flash footprint</li>
- Action data
  - Occupies ~ 300kB (typical) to >~1MB (for large designs)





#### Summary

- SED for Test embeds
  JTAG/boundary-scan test capabilities
  directly on a PCB
- Creates a powerful BIST without external hardware that can be used throughout the entire lifecycle of the PCB
- Can be executed as part of a POST or system audit, in situ, with data collected in real time
- Action diagnostic results can be uploaded and processed by a benchtop ScanWorks system
- Addresses intermittent faults and "No Fault Found" (NFF) issues









#### For More Information

- Go to our blog, Embedded JTAG for Built-In Self Test, <a href="https://www.asset-">https://www.asset-</a> <u>intertech.com/resources/blog/2018/04/embedded-jtag-for-built-in-self-test/</u>
- Download our eBook, Embedded JTAG for Boundary-Scan Test, <u>https://www.asset-intertech.com/resources/eresources/embedded-jtag-boundary-scan-test/</u>
- View our webinar, Embedded @Scale JTAG-based Debug of x86 Servers, <a href="https://www.asset-intertech.com/resources/blog/2021/03/webinar-embedded-scale-itag-based-debug-of-x86-servers/">https://www.asset-intertech.com/resources/blog/2021/03/webinar-embedded-scale-itag-based-debug-of-x86-servers/</a>





## Questions and Contact Information



**Contact Information:** 

Michael R. Johnson

7161 Bishop Rd. Ste. 250

Plano, TX. 75024

mjohnson@asset-intertech.com

www.asset-intertech.com









