Embedded JTAG/Boundary Scan for Built-In Self-Test

Michael R. Johnson
ScanWorks BST Product Manager/Support Manager
June 21, 2021
Agenda

- JTAG/Boundary Scan Overview
- ScanWorks Embedded Diagnostics (SED) for Test
- SED for Test Overview
- SED for Test Actions
- SED for Test Value
- SED for Test Demonstration
- SED for Test Block Diagram and Footprint
- Summary
JTAG/Boundary Scan Overview

- JTAG/boundary scan is a static, vector-based test technology implemented through on-chip embedded instruments within commercial silicon
- Performs shortsOpens/stuck-at fault testing on PCBs with diagnostics to the device and net/pin level
- Useable throughout the entire lifecycle of a product
- A proven, mature test and programming technology
ScanWorks Embedded Diagnostics (SED) for Test

- JTAG/boundary scan is typically used “locally” for PCB test development, production and system debug
- An external PC uses a dedicated hardware controller to test and program PCBs in development, production or perform debug on the benchtop
- Since JTAG/boundary scan is software that leverages on-chip embedded logic, it is possible to port that application directly onto the PCB itself
- SED for Test eliminates the need for hardware, cables, and fixturing for JTAG/boundary-scan testing
- SED for Test creates a “remote” JTAG/boundary-scan test and programming application
ScanWorks Embedded Diagnostics (SED) for Test

- ScanWorks Embedded Diagnostics (SED) for Test is a tool strategy that supports JTAG/boundary-scan testing and device programming capabilities embedded directly on an FPGA/SoC or service processor on a PCB.
- SED for Test is applicable to a variety of industries and technologies where in situ, real-time diagnostic data collection is valuable.
Scan Path Verify (SPV)
- Boundary Scan device validation
- Interconnect
 - Structural testing for shorts/opens/stuck-at faults to the device and net/pin level
Memory Access Verify (MAV)
- Structural and functional memory device testing
SED for Test can be executed remotely and in situ with diagnostic data gathered in real time

Can be executed as part of Built-In Self-Test (BIST), Power-On Self-Test (POST), system audits, and operational measurements

Requires only that the elements of the PCB that implement SED for Test power up and be operational

SED for Test is completely out of band

Can be used in implementing System JTAG (SJTAG – use of boundary scan within complex multi-board systems)
SED for Test Value

- SED for Test provides a level of diagnostic granularity not usually found via in-system functional tests
- The same ScanWorks PCB tests used in production can be reused in situ and during repair
- Data can be uploaded into a ScanWorks benchtop system for diagnostic processing and reporting
- Addresses intermittent faults and “No Fault Found” (NFF) issues
SED for Test Demonstration

- **SED Host - Altera Cyclone V SoC**
 - Dual Arm® Cortex®-A9 MPCore™ System On Chip (SoC) Cyclone® V SE FPGA
 - VxWorks Real-time operating system (RTOS)
 - Host for the embedded ScanWorks SEDPlayer which runs embedded JTAG/boundary-scan actions
 - Action results are stored in memory for retrieval

- **Target - ScanLite2**
 - 3 JTAG/boundary-scan devices
 - Target for JTAG/boundary-scan actions run by the SEDPlayer
 - Switches for fault simulation
Once the SEDPlayer and actions have been embedded, invoking the SEDPlayer, running actions, and storing results can be automated by a script or program.
SED for Test Demonstration

<table>
<thead>
<tr>
<th>Fault Switch</th>
<th>Default Setting</th>
<th>Fault Setting</th>
<th>Fault Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW2</td>
<td>Norm</td>
<td>SA0</td>
<td>2 Drivers, 1 Receiver</td>
</tr>
<tr>
<td>SW3</td>
<td>Norm</td>
<td>SA0</td>
<td>1 Driver, 2 Receivers - Open</td>
</tr>
<tr>
<td>SW4</td>
<td>Norm</td>
<td>SA0</td>
<td>2 Drivers, 2 Receivers – 1 Pin Fail</td>
</tr>
<tr>
<td>SW5</td>
<td>Norm</td>
<td>SA0</td>
<td>TDO/TDI Error</td>
</tr>
<tr>
<td>SW6</td>
<td>Norm</td>
<td>SA1</td>
<td>Flip Flop Error</td>
</tr>
<tr>
<td>SW7</td>
<td>Norm</td>
<td>SA0</td>
<td>Memory – D0</td>
</tr>
<tr>
<td>SW8</td>
<td>Norm</td>
<td>Bridge</td>
<td>Flash Interconnect Fail</td>
</tr>
<tr>
<td>SW9</td>
<td>Norm</td>
<td>SA0</td>
<td>Memory – D1</td>
</tr>
<tr>
<td>SW10</td>
<td>Norm</td>
<td>Bridge</td>
<td>Address Fault</td>
</tr>
<tr>
<td>SW11</td>
<td>Norm</td>
<td>SA0</td>
<td>Short</td>
</tr>
<tr>
<td>SW12</td>
<td>Norm</td>
<td>Open</td>
<td>1 Driver, 1 Receiver</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Switch</th>
<th>Default Setting</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW1 (1-4)</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3- Bits of Test Stimulus Data for U1 and LED’s</td>
</tr>
</tbody>
</table>
SED for Test Demonstration
A ScanWorks project and design was created to test the target.

Files transferred to the SoC (aside from the SEDPlayer.vxe) were generated during the normal ScanWorks test development process:

- .eie, .gen, _eie.gen, _eie.apl, .mbs

Files transferred from the SoC to ScanWorks were generated during the normal action run process:

- .log, .dtf

The number at the end of the SEDPlayer command tells it which action to run:

- SPV = 1, Interconnect = 2, MAV = 3

VxWorks was the operating system on the SoC but this could be any other operating system or RTOS; or SED for Test could even be implemented on a processor running without an operating system.
The resources required for the TAP Controller IP are small when compared to today’s FPGAs:

- Uses < 4,000 Lookup Tables (LUTs)
- Uses less than < 75kb memory
- Action players run on the CPU
- Occupies < 2MB flash footprint
- Action data
 - Occupies ~ 300kB (typical) to >~1MB (for large designs)
Summary

- SED for Test embeds JTAG/boundary-scan test capabilities directly on a PCB
- Creates a powerful BIST without external hardware that can be used throughout the entire lifecycle of the PCB
- Can be executed as part of a POST or system audit, in situ, with data collected in real time
- Action diagnostic results can be uploaded and processed by a benchtop ScanWorks system
- Addresses intermittent faults and “No Fault Found” (NFF) issues
For More Information

- View our webinar, Embedded @Scale JTAG-based Debug of x86 Servers, https://www.asset-intertech.com/resources/blog/2021/03/webinar-embedded-scale-jtag-based-debug-of-x86-servers/
Questions and Contact Information

Contact Information:
Michael R. Johnson
7161 Bishop Rd. Ste. 250
Plano, TX. 75024
mjohnson@asset-intertech.com
www.asset-intertech.com
Real Insight from Code to Silicon