
UEFI Debugging using SourcePoint® on Intel®
Platforms

A P P L I C A T I O N N O T E S

Overview
The Unified Extensible Firmware Interface (UEFI), commonly known as the UEFI Framework, is a well-established
firmware specification standard that defines a set of software interfaces and replaces the legacy BIOS found on tradi-
tional PC computers. This framework provides the kind of modularity, flexibility, and extensibility that were formerly
unavailable with traditional BIOS. With UEFI, BIOS developers can now write all their code in ‘C’, rather than assembly
language. See the UEFI website at http://www.uefi.org/ for more information on the UEFI Framework.

Along with this firmware architecture and the ‘C’ code that implements it comes the need for source-level debugging.
ASSET InterTech’s debugger, SourcePoint® for Intel® and Arm® processors, offers native debug support for UEFI
Framework platforms. Users can set breakpoints, single step, view variables, see the call stack, and access all of the
feature-rich functionality SourcePoint normally provides. SourcePoint also provides several types of trace display on
Intel-based systems. This includes source-level debugging during the SEC, PEI, DXE, BDS, and OS Boot phases of
UEFI. Below is a set of instructions for setting up SourcePoint to debug the UEFI Framework. Throughout this docu-
ment we will not only provide information about the macros that assist in UEFI debugging, but will also provide infor-
mation about built-in commands within SourcePoint that assist the user in debugging.

Brief UEFI Overview
There are three major areas of code in a UEFI build. These are PEI, Framework, and EFI (DXE). One way of visualizing
this topology is shown in Figure 1 below.

Figure 1: EFI Structure

After hardware reset, the SEC module executes. It starts with code written in assembly. This code runs in a special
hardware mode where real-mode addresses are extended to address the area at the top of 4 Gbytes of memory.
SourcePoint deals with this automatically, but instruction trace is not fully decoded. After only around 30 instructions

Application Notes Page 1

UEFI Debugging using SourcePoint® on Intel®
Platforms

and usually only three jumps, the processor is switched to protected mode and most debug features are available.
Because DRAM is not available until after MRC completes, Last Branch Record (LBR) instruction trace must be used
up to that point.

After early SEC code, the PEI scheduler is launched and PEI modules are executed. These modules are all written in ‘C’
and use special memory for the stack.

On completion of the PEI phase the DXE phase is launched, which supports all of the selected EFI modules. At some
point one of these EFI modules will cause an OS boot to begin. For more detail on this architecture refer to web mate-
rials including UEFI.org and Tianocore.org.

Project Initialization
Upon starting SourcePoint, a project file must be created. For the purposes of this Application Note, we will use the
default target configuration file for the Skylake Platform. (Skylake.tc)

EFI Macros
Note: The macros described below are installed in the Macro\EFI sub-folder of the SourcePoint install path. Several of the EFI macro files
contain directory paths to other macro files. If you move the macro files or change the current working directory in SourcePoint (via the
‘cwd’ command), you will need to update the macro files with the new locations.

EFI.mac
After installing SourcePoint, run the EFI.mac macro file located in the Macro\EFI directory. This creates ten custom
toolbar buttons and associates each with a corresponding EFI macro description as shown below:

Each macro action will be discussed below to help user can understand the action with respect to the EFI.

• The LoadCurrent button attempts to loads source and symbol debug information for the currently executing
code.

• The PEIMs (Pre-UEFI Initialization Modules) button loads the symbol files for the PEI modules found in target
memory.

• The DXEs (Driver Execution Environments) button loads the symbol files for the DXE modules found in target
memory.

• The GoToNextDriverEntry button attempts to run to the entry point of the next loaded DXE driver/application.
• The LoadSmramSymbols button scans SMRAM memory space for EFI debug symbol information and loads it.
• The GoToShadowedPeiCore button attempts to run to the PeiCore function when executing in shadowed RAM.
• The HOBs (Hand-Off Blocks) button displays a list of UEFI HOBs found in target memory.
• The SysConfigTable button displays the contents of the UEFI system configuration table.
• The DumpMemMap button displays the UEFI Memory Map.

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Application Notes Page 2

Figure 2: EFI.mac Toolbar Buttons

General UEFI Debugging
The LoadCurrent icon searches for symbols for the code at the current instruction pointer relative to the start of the
module. So, should you stop the code execution in the middle of an unknown module, you can load the source and
navigate to the beginning of the module in order to see where you are!

SEC and PEI Debugging
The SEC (Security) phase of code execution occurs just after the CPU comes out of reset. It is usually assembly lan-
guage code as there is no memory available for a stack. Among other things, the SEC code creates a temporary mem-
ory store for use as a stack, allowing PEI to be written in ‘C’ language. The PEI (Pre-EFI) phase locates, validates, and
dispatches PEI modules (PEIMs) that support platform features including full memory initialization. Since SEC and PEI
code exists uncompressed in the boot ROM, SourcePoint can scan and locate SEC and PEI debug information at any
time. Simply click the “PEIMs” button and SourcePoint will scan and load all SEC and PEI module debug information.
PEI gets control shortly after target reset. PEI modules are dispatched and executed after cache RAM is mapped into
system memory and the stack is initialized. To configure SourcePoint for source-level debugging of PEI code, follow
these steps.

1. Open a Command View this will allow you to see the output from the next step.
2. The PEIMs button will load the program symbols and point the code view back to the beginning of the code

block where the processor was stopped. Should there be an issue with the mapping of the symbols to the
source tree, you will need to correct the mapping by changing where the symbol file points to or mirrors the
source tree.

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Application Notes Page 3

Figure 3: Command Window After Running the PEIMs Macro Function

Application Notes Page 4

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Code can be traced using LBRs for pre-MRC areas and then later Intel Processor Trace (IPT) to memory when
memory is available. ASSET offers several eBooks that expand on this. Figure 5 shows an example.

Figure 4: Symbols window after loading PEIM modules

Figure 5: Code window after loading PEIM modules

Figure 6: LBR Trace of Early SEC Code

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Application Notes Page 5

WalkPeiDispatcher
Once PEI symbols are loaded, the “WalkPeiDispatcher” command can be entered in the SourcePoint command win-
dow. This command will attempt to break on the entry point of every dispatched PEIM and load its symbols. The result
is a list of the PEIMs with the order in which they are dispatched. This command will run until PeiDispatcher returns
or PeiCore is called again (usually just before shadowing to DRAM).

To execute this command in SourcePoint, follow these steps:
1. If not already opened, Open a Command View
2. In the Command View enter WalkPeiDispatcher()

Shadowed PEI Debugging
Once system RAM is initialized, some PEI code may shadow from ROM to DRAM. The PEI phase will then complete
execution from DRAM before transitioning to DXE. The GoToShadowedPei button will attempt to run to the first
PeiCore function call in DRAM.

Once there, the “WalkPeiDispatcher” command can be used to show the dispatch order of the PEIMs loaded in
Shadowed PEI.

Figure 7: WalkPeiDispatcher Executed in the Command Window

Figure 8: PEICore Shadowed in DRAM

Figure 9: WalkPeiDispatcher

DXE Debugging
Once system RAM is initialized and the PEI phase completes, the DXE environment is entered. This is less specialized
than PEI; nevertheless, it requires a few SourcePoint parameters to be set. The DXE drivers are compressed in the
ROM, so the symbols cannot be loaded prior to the driver loading. The simplest way to load DXE driver symbols is to
run the target to the UEFI shell or as far as it will go in DXE, stop the target, and then click the “DXEs” button to load
all of the symbols for the DXE drivers that have been dispatched so far. At this point you should be able to browse the
DXE driver symbols and set breakpoints.

To configure SourcePoint for source-level debugging of DXE code, follow these steps:
1. Run the target to the UEFI shell or as far as it will go in DXE.
2. Stop the target.
3. Click the DXEs toolbar icon to load the DXE symbols.
4. Browse the source code files using the Symbols window and set breakpoints in your code.
5. Reset the target and go until you hit a breakpoint.

IMPORTANT: There are no guarantees that DXE drivers will load in the same location on subsequent boots. However,
if no target hardware or software configuration changes have occurred, then in practice, the symbols should be in the
same locations. If breakpoints are not working, you can reload DXE driver symbols by clicking on the DXEs button.

If your target is fatally crashing (no debug access), then the following commands can be used to try to halt before the
crash occurs:

GoToDxeMain()- Attempt to locate and run to DxeMain.
GoToCoreDispatcher() - Attempt to locate and run to CoreDispatcher.
GoToNextDriverEntry() - Run to the entry point of the next loaded DXE image.
GoToNextDriverNameEntry(Name) - Run to the entry point of the DXE image that matches 'Name'. Stops at every
loaded image entry point to check for a Match.
GoToDriverSymbol(DriverName, SymbolName) - Run to the code symbol 'SymbolName' contained in the Driver
'DriverName'. Uses GoToNextDriverNameEntry if needed.

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Application Notes Page 6

Figure 10: DXE Code Window

Application Notes Page 7

HOBs
To configure SourcePoint for source-level debugging of HOB code, follow these steps:

1. If not already opened, Open a Command View
2. Click the HOBs toolbar icon to display the hand-off blocks on the target.

System Configuration Table
To configure SourcePoint for source-level debugging of System Configuration Table, follow these steps:

1. If not already opened, Open a Command View
2. Click the SysConfigTable toolbar button to display the contents of the contents of the UEFI system

configuration table on the target.

UEFI System Memory Map
To configure SourcePoint for source-level debugging for dumping the System Memory Map, follow these
steps:

1. If not already opened, Open a Command View
2. Click the DumpMemMap toolbar button to display the contents of the contents of the UEFI system

memory map on the target.

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Figure 11: Example of HOB Display

Figure 12: Example of System Configuration Table

Figure 13: Example of UEFI System Memory Map

Dumping the Call Stack
To configure SourcePoint for source-level debugging for Dumping the call Call Stack, follow these steps:

1. If not already opened, Open a Command View
2. Click the DumpCallStack toolbar button to display the contents of the contents of the call stack.

Notes
Loading Symbols from a copied Build Tree.
When debugging an EFI firmware build on the same system where the firmware was built, the symbol file paths
that are embedded in the firmware image, at build time, will match. However, if the build tree is copied to a differ-
ent system in a different location, SourcePoint will prompt the user with three options:

• Abort: Halt all symbol loading activities
• Retry: Allow the user to browse to the alternate file location on this system. This will create a

saved path substitution mapping used for future symbol loading. (e.g “f:=c:\efi;”)
• Ignore: Ignore this particular symbol file, but continue symbol loading activities. This is useful

when a single module was built in a different location.

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Figure 14: Example of DumpCallStack

Figure 15: Repath Files

Application Notes Page 8

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms
Available Commands: The following commands can be entered at the UEFI command line:
LoadSingleImage(Addr)
This function takes a code execution address and scans for relevant debug information which is loaded.

loadthis()
Scans for relevant debug information for the current IP, which is loaded.

LoadDriverName(Name)
Searches for a driver matching Name(string) and loads debug information.

LoadAllImages()
Loads symbols for all currently loaded DXE drivers

ShowDrivers()
Print out entry point address for all currently loaded DXE drivers. This function finds the EFI debug image table and
walks it to show what has been loaded.

LoadDriver(Index)
Load symbols of a driver by specify the driver Index. A driver's index value is get from ShowDrivers(). This function
simply calls the ShowDrivers() function with an index (passed in) to load symbols for a driver.

GoToShadowedPeiCore()
Attempt to locate and run to PeiCore in shadowed RAM.

GoToDxeMain()
Attempt to locate and run to DxeMain.

GoToCoreDispatcher()
Attempt to locate and run to CoreDispatcher.

GoToNextDriverEntry()
Run to the entry point of the next loaded DXE image.

GoToNextDriverNameEntry(Name)
Run to the entry point of the DXE image that matches 'Name'. Stops at every loaded image entry point to check for
a Match.

GoToDriverSymbol(DriverName, SymbolName)
Run to the code symbol 'SymbolName' contained in the Driver 'DriverName'. Uses GoToNextDriverNameEntry if
needed.

dgo()
This function tries to exit an EFI_DEADLOOP() and resume execution.

DumpAllEfiTables()
This function will dump all the EFI tables, including the EFI System Table, the Boot Service Table, the Runtime
Service Table, and the Configuration Table

DumpConfigTable()
This function dumps the content in EFI Configuration Table

Application Notes Page 9

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

2201 N. Central Expy., Ste 105, Richardson, TX 75080 Voice: 972-427-2800 outside the US E-mail: ai-info@asset-intertech.com. Web: www.asset-intertech.com.
-SourcePoint is a registered trademark of ASSET InterTech. Copyright © -2018 ASSET InterTech, Inc. A0163F-2018

DumpEfiTable(Addr)
This function will dump header and content of a EFI tables at a given start address, including the EFI System Table,
the Boot Service Table, and the Runtime Service Table

DumpHobs(Addr)
This function dumps the HOB list at Addr

DumpDxeHobs()
This function will find Hob list pointer in DXE Configuration Table and dump all the Hobs of this list

DumpVariable()
This function will dump content of NV variables
Usage:

DumpVariable ("VariableName") - Dump variable
DumpVariable ("*") - Dump all variables
DumpVariable ("abc*") - wildcard substitution
DumpVariable ("abc?") - wildcard substitution

DumpAcpiTable()
This function will dump ACPI tables

ShowEfiDevicePath(Addr)
This function parses content of device path in memory

DumpS3Script()
This function dumps all the entries in the S3 Boot Script Table and the Runtime Script Table

DumpCallStack()
This function dumps the call stack from the current instruction pointer

DumpExceptionContext()
This function dumps exception context preserved by UEFI code

A P P L I C A T I O N N O T E S

UEFI Debugging using SourcePoint on Intel Platforms

Application Notes Page 10

