A P P L I C A T I O N N O T E S

UEF] Debuyying using SuurssPulni® on lntsl®
Platiorms

Overview

The Unified Extensible Firmware Interface (UEFI), commonly known as the UEFI Framework, is a well-established
firmware specification standard that defines a set of software interfaces and replaces the legacy BIOS found on tradi-
tional PC computers. This framework provides the kind of modularity, flexibility, and extensibility that were formerly
unavailable with traditional BIOS. With UEFI, BIOS developers can now write all their code in ‘C’, rather than assembly
language. See the UEFI website at http://www.uefi.org/ for more information on the UEFI Framework.

Along with this firmware architecture and the ‘C’ code that implements it comes the need for source-level debugging.
ASSET InterTech’s debugger, SourcePoint® for Intel® and Arm® processors, offers native debug support for UEFI
Framework platforms. Users can set breakpoints, single step, view variables, see the call stack, and access all of the
feature-rich functionality SourcePoint normally provides. SourcePoint also provides several types of trace display on
Intel-based systems. This includes source-level debugging during the SEC, PEI, DXE, BDS, and OS Boot phases of
UEFI. Below is a set of instructions for setting up SourcePoint to debug the UEFI Framework. Throughout this docu-
ment we will not only provide information about the macros that assist in UEFI debugging, but will also provide infor-
mation about built-in commands within SourcePoint that assist the user in debugging.

Brief UEFI Overview
There are three major areas of code in a UEFI build. These are PEI, Framework, and EFI (DXE). One way of visualizing

this topology is shown in Figure 1 below.

Operating System or Late boot code

“ @ &2
= = =
3 3 3
E = =
& 5 &
FrameWork
1] &
] E] E]
S 2 2
= = =
B e d

Figure 1: EFI Structure
After hardware reset, the SEC module executes. It starts with code written in assembly. This code runs in a special

hardware mode where real-mode addresses are extended to address the area at the top of 4 Gbytes of memory.
SourcePoint deals with this automatically, but instruction trace is not fully decoded. After only around 30 instructions

Application Notes Page 1 q:—’.:flé W

A P P L I C A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms

and usually only three jumps, the processor is switched to protected mode and most debug features are available.
Because DRAM is not available until after MRC completes, Last Branch Record (LBR) instruction trace must be used
up to that point.

After early SEC code, the PEI scheduler is launched and PElI modules are executed. These modules are all written in ‘C’
and use special memory for the stack.

On completion of the PEI phase the DXE phase is launched, which supports all of the selected EFI modules. At some
point one of these EFl modules will cause an OS boot to begin. For more detail on this architecture refer to web mate-
rials including UEFI.org and Tianocore.org.

Project Initialization

Upon starting SourcePoint, a project file must be created. For the purposes of this Application Note, we will use the
default target configuration file for the Skylake Platform. (Skylake.tc)

EFl Macros

Note: The macros described below are installed in the Macro\EFI sub-folder of the SourcePoint install path. Several of the EFI macro files
contain directory paths to other macro files. If you move the macro files or change the current working directory in SourcePoint (via the
‘cwd’ command), you will need to update the macro files with the new locations.

EFl.mac

After installing SourcePoint, run the EFl.mac macro file located in the Macro\EFI directory. This creates ten custom
toolbar buttons and associates each with a corresponding EFlI macro description as shown below:

% LoadCurrent % PEIMs iﬁ DxEs % GoToMextDriverEntry % LeadSmramSymbels

*ﬁ GoToShadowedPeiCore % HOBs % SysConfigTable % DumpMemMap % DumpCallstack

Figure 2: EFl.mac Toolbar Buttons

Each macro action will be discussed below to help user can understand the action with respect to the EFI.

e The LoadCurrent button attempts to loads source and symbol debug information for the currently executing

code.

e The PEIMs (Pre-UEFI Initialization Modules) button loads the symbol files for the PEI modules found in target
memory.

» The DXEs (Driver Execution Environments) button loads the symbol files for the DXE modules found in target
memory.

e The GoToNextDriverEntry button attempts to run to the entry point of the next loaded DXE driver/application.

e The LoadSmramSymbols button scans SMRAM memory space for EFI debug symbol information and loads it.
e The GoToShadowedPeiCore button attempts to run to the PeiCore function when executing in shadowed RAM.
e The HOBs (Hand-Off Blocks) button displays a list of UEFI HOBs found in target memory.

e The SysConfigTable button displays the contents of the UEFI system configuration table.

e The DumpMemMap button displays the UEFI Memory Map.

Application Notes Page 2 4‘}2’

A P P L I C A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms

General UEFI Debugging

The LoadCurrent icon searches for symbols for the code at the current instruction pointer relative to the start of the
module. So, should you stop the code execution in the middle of an unknown module, you can load the source and
navigate to the beginning of the module in order to see where you are!

SEC and PEI Debugging

The SEC (Security) phase of code execution occurs just after the CPU comes out of reset. It is usually assembly lan-
guage code as there is no memory available for a stack. Among other things, the SEC code creates a temporary mem-
ory store for use as a stack, allowing PEI to be written in ‘C’ language. The PEI (Pre-EFI) phase locates, validates, and
dispatches PEI modules (PEIMs) that support platform features including full memory initialization. Since SEC and PEI
code exists uncompressed in the boot ROM, SourcePoint can scan and locate SEC and PEI debug information at any
time. Simply click the “PEIMs” button and SourcePoint will scan and load all SEC and PEI module debug information.
PEI gets control shortly after target reset. PEl modules are dispatched and executed after cache RAM is mapped into
system memory and the stack is initialized. To configure SourcePoint for source-level debugging of PEI code, follow
these steps.

1. Open a Command View this will allow you to see the output from the next step.

2. The PEIMs button will load the program symbols and point the code view back to the beginning of the code
block where the processor was stopped. Should there be an issue with the mapping of the symbols to the
source tree, you will need to correct the mapping by changing where the symbol file points to or mirrors the
source tree.

Cormmand

P0:LoadPein=

AmtStatusCodePei Entrv: FFDAOD4COL Ba=e: FFDAODZE0L "0 :~Build-Sky
BiozInfo Entrvy: FFDA1ZAOL Base: FFDA1040L "Q:-~Build-~Sky
CpuloPel Entrv: FFDAZ420L Ba=e: FFDAZ1COL "0Q:~Build-Sky
PoatSingleSegnentPociCigzPel Entrvy: FFDA42A0L Base: FFDA4040L "Q:~Build-~Sky
FPiSmmCommunicationPei Entrv: FFDAGZ60L Bas=ze: FFDAGOOOL Qo Build~Shky
SiRezunseZPei Entrv: FFDAS0Z0L Base: FFDAYDCOL "Q:~Build-Shky
SilnitPrelen Entrv: FFDEO3AOL Ba=se: FFDEO140L "Q:-~Build-Sky
P=iVariable Entrv: FFES891C0L Ba=se: FFESBEF&OL "Q:-~Build-Sky
FaultTolerantWritePel Entrv: FFESBAZ0L Base: FFESBEBYCOL "Q:-~Build-Sky
CapszulePe1 Entrv: FFESD4CO0L Base: FFESBDZe0L " :~Build-Sky
Capszuleind Entrv: FFE939E0L Base: FFE92720L "Q:~Build-Sky
Dzelpl Entry: FFE9C960L Ba=es: FFEQC700L "0 :~Build-Sky
Fhy=ical PrezencePeli Entrv: FFEASTVe0L Base: FFEAGSOOL "0 ~Build-Sky
TogPel Entrv: FFEAR1GOL Ba=es: FFEASRFOOL "0 :~Build-Sky
PeilverClock Entrv: FFEAACEOL Ba=e: FFEAAAODOL "0 :~Build-Sky
FlatformnInitPreden Entrv: FFEACBAQOL Ba=e: FFEACS940L "Q:~Build-Sky
CnosAccessPel Entrv: FFEF9080L Base: FFEFSEZO0L " :~Build-Skwy
DebugServicePel Entrv: FFEFBS530L Ba=es: FFEFE3Z0L " :~Build-Sky
FcdFPeim Entrv: FFEFD?7Z0L Ba=e: FFEFD4CO0L "0 :~Build-Sky
ReportStatu=CodeRouterPel Entrv: FFFO01A4AQ0L Ba=e: FFFO01340L " :~Build-Sky
FlatformStatusCodeHandlerPeil Entrv: FFFO03120L Ba=e: FFFOZECOL "0 :~Build-Sky
TraceHubStatu=sCodeHandlerPel Entrv: FFFOB1EOL Ba=se: FFFOAFS0L "Q:-~Build-~Sky
FlatformPort80HandlerPel Entrvy: FFFOFAZOL Base: FFFOFYCOL "Q:-~Build-~Shky
PeiCore Entry: FFFDO380L Ba=se: FFFDO120L "Q:~Build-~Sky
ReportFvEecoveryPei Entrv: FFFE7700L Ba=ze: FFFEY4A0L "0 :~Build-Shky
SECFDIE Entrv: FFFFD3IFOL Basze: FFFF2810L "Q:~Build-Shky
PO

4

Figure 3: Command Window After Running the PEIMs Macro Function

Application Notes Page 3 q:—’.:flé W

A P P L I C A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms

€1Symbols - Globals PO*

Name Value -
#-f MonoStatusCode. ef

-5 PeiCfgefi |] _—
#-[Fl PciErpress.efi |
g PeiCpulo.efi | |
#- [PeiMainefi | b
e PeiSmmRelocate. efi |

#-g PlatformStagel. efi v|

Globals £ Locals \Stack \ Classes]

F N

|
L

Figure 4: Symbols window after loading PEIM modules

EFI_STATUS
EFIAPI 3
PeiMain (
IN EFI_PEI_STARTUP_DESCRIPTOR #=PeiStartupDescriptor
)
/%t
Routine Description
Main entry point to Pei Core.
Arguments:
PeiStartupDescriptor — Information and services provided by SE

Returns:

This function never returns

—3
{
=2h23 return PeiCore (PeiStartupDescriptor, NULL):
124 T
FRT STATHS 2]
<0 (@) 2
0010:FFFD3531 =] [Sowee ~| GoCusor | SetBresk | & TracklP _ ViewlP | Refresh

Figure 5: Code window after loading PEIM modules

Code can be traced using LBRs for pre-MRC areas and then later Intel Processor Trace (IPT) to memory when
memory is available. ASSET offers several eBooks that expand on this. Figure 5 shows an example.

3 EElEa
(G Code (P0): (32-bit) Tracking IP: 0010:00000000 - 0010:FFFFFFFF oo s | ¢ WO iy ESifenfe
— STATE Fn FROM O -
219 I STATUS_CODE (02h) - mov dx. OCFSh
0010 FFFEDASO - ¥ a PO 00000000FFFF4BDS HOV . DX, 0cf8
0010:EFFFD452 E T PO 00000000FEFF4EDS OUT | DE.EAX
220 CALL MMY EarlyMicrocodelpdate mov dx. OCFCh
0010 FFFFDAS. fde PO 00D000DDFFFF4EDA MOV DX_Ocfc
gg}g SEEES:?C . ! R et mov eax, DVORD PTR _gPcd FizedhtBuild Poi
ptr Ea ocodelipdate PO 00000000FFFF4EDE HOV EAX.CS: [££F1d6b0]
221 STATUS_CODE (03h) or eax. (0 OR 1) PCIEX_LENGTH_BIT_SET
10010 FFEFD461 PO 00000000FFFF4BE4 OR EAX. 00000001
0010: FFFFD463 T PO 00000000FFFFEE? CUT T BREAX
222 CALL MMX SecPlatfor: nov esi, DWORD PTR _gPcd FixedAtBuild F
Sgig o ° il 0000D000FFFF4BES MOV ESI.CS: [£££fd6b0]
id esi. HCHEAR |
ID0010 e PO 00000000FFFFABEE ADD ESI, 00000048
nov eax, DUORD PTR _gPcd FixedAtBuild P
224 ISTATUE_CODE (04n) PO 00000000FFFF4BF2 HOV EAX.CS: [ffffdéel]
))) or eax, 1
gg}s E;gg:;g g PO 00000000FFFF4BF8 OR & r&l}x,éﬂﬂlgﬂﬂﬂgll
. - nov vor r [esi], eax
0 EEREDATT CALL MMX SecCarln F0 00000000FFFF4EFE MOV [ESI].EAX
B B ¥ E RET_EEP
E20010. FFEFD478 T 21 00000000FFFE4EFD JHE
0010:FFFFDA7B & JE E 2 00002 - 00000000FFFE4BFD 00000000FFEFD49E
nov esi, DUORD PTR _qPcd FixedAtBuild P
227 STATUS_CODE (0Sh) PO 00000000FFFFD49E MOV ESI. [ffffdeb0]
add esi. FCH_HPET_RE
0010 :FFEFD480 ¥ PO 00000000FFFFD4A4 ADD ESI.000£9060
0010: FFFFD482 nov al. PCH HPET AE
PO 00000000FFFED4AA MOV _80
6010 EFEDs) uow Byte Bix [esil. al
PO 00000000FFFFD4AC KOV [ESI].AL
0010 FFFFD4E 3 E 2cv al. Byte ptlr [e=i]
P0 00000000FFFEDIAE MOV AL, [ES
] STATUS-CO0E (he PO 00000000FFFFD4BO ;8; ==K'EEXEAK
0010 EFEFDA%D ouT mov esi, HPET CONP 1
[jup CallPeiCoreEntryPoint PO 00000000FFFFD4B2 MOV & IﬁE}I}.ln[lDDl?a
. —al nov word Ptr [esi
0010:FFFFD492 EE3: JHP ptr fEEE & PO 00000000FFFFD4E? MOV [ESI].EAX
nov esi. HPET COMP_2
! Postorn sasly placters intsislization ro e
A e - aman e msemmon E PO 00000000FFFFD4BE gg¥ == [ESI].EAX
0010FFFFO460 ~ (¢ [Mixed ~|(GoCurser | (ClearBresk | [v|Track P [ViewlP_| [Refiesh | PO 00000000FFFEDACO MOVD ESI.MM7
P 00000000FFFED4C3 JMP ESL
O Frotectediiodese FEFFDAGIL Executs ~00001 - 00000000FFFEDACS 00000000EFEFD4 6F
O ProtectedlicdeSe FFFFD46DL Exzcut: SRR (1 1
B Protectedlicd=se FFFFDI7 51 [e—— = e B e
CALL_MMY SecCarlnit
E s;Dtéﬂtegl{DdESQ EFFED““I EXEE“:‘ PO 00000000FFFFD473 MOV ESI.f£££d480 -
eiCoreBresk PeiCore recuto
i tPriTradTnace PeiToadToace Feecot <l L
et | [Ak | [Remove || Removerd || ‘ 0002 Miced ~| [Configure... | [Display F sitrste | [Rehiesh | |

Figure 6: LBR Trace of Early SEC Code

Application Notes Page 4 55[7-

A P P L I C A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms
WalkPeiDispatcher

Once PEI symbols are loaded, the “WalkPeiDispatcher” command can be entered in the SourcePoint command win-
dow. This command will attempt to break on the entry point of every dispatched PEIM and load its symbols. The result
is a list of the PEIMs with the order in which they are dispatched. This command will run until PeiDispatcher returns
or PeiCore is called again (usually just before shadowing to DRAM).

To execute this command in SourcePoint, follow these steps:
1. If not already opened, Open a Command View
2. In the Command View enter WalkPeiDispatcher ()

Command

Fl»GoToShadowvedPeiCore F
FPeiCore Entry: 965EB260L Base: 965EBOOOL "0:~Build-SkylakePlatSampleFPlkg-DEEUG V52008=x86~IA32 Hd=HoduleF
FO>WalkPeiDispatcher()

CpuloPei Entry: 965E9260L Ba=e: 965E9000L "0 :~Build-~SkylakePlatSamplePkg~DEBUG_VS52008=86~TA32 UefiCpuFkg
Dxelpl Entry: 965E0260L Ba=s: 965E0000L "Q:~Build~SkylakeFlatSamplePlg-DEEUG VS2008x86~IA32 ~HdeHoduleF
PeilverClock Entry: 965DE260L Bass: 965DEOOOL "0 :~Build-SkylakePlatSamplePkg-DEBEUG V52008=86~I432~5SkylakePls
FPlatformInit Entry: 950952601 Base: 950950001 "Q:~Build-SkylakePlatSamplePkg-DEEUG VS52008=86~IA32~5kylakeFla
SiIInit Entry: 94FB2260L Base: 94FB2000L "Q:~Build-SkylaksPlatSampleFPlkg DEBEUG_VS2008=86~IA32 SkylakeSiE
B0 3|

] 3

Figure 7: WalkPeiDispatcher Executed in the Command Window

Shadowed PEI Debugging

Once system RAM is initialized, some PEIl code may shadow from ROM to DRAM. The PEI phase will then complete
execution from DRAM before transitioning to DXE. The GoToShadowedPei button will attempt to run to the first
PeiCore function call in DRAM.

@ Code (P0*): Tracking IP: C\efi\...\mdemodulepkgcore\pei\ peimain’\peimain.c o || = £3
[e l;‘__e
YOID
EFIAFI
FeiCore (
IN CONST EFI_SEC_FPEI_HAND_OFF #SecCorelata,
IN COMST EFI_PEI_FPI_DESCRIFTOR *Ppilist,
IN VOID *Data
}
=142 {
FEI_CORE_INSTANCE FrivateData;
EFI_STATUS Status;
FPEI_CORE_TEMP_POINTERS TempPtr:
FEI_CORE_INSTANCE *01dCoreData;
EFI_PEI_CPU_IO_FPI *Cpulo:
EFI_FEI_PCI_CFG2_FFPI *PociCig:
EFI_HOBE_HANDOFF_INFO_TABLE #HandoffInformationTable,
Retrieve context passed into PEI Core
b
00 0: 719 7354 - @»J Source + | GoCursor Set Break V| Track IP Wiew IP Refresh

Figure 8: PEICore Shadowed in DRAM

Once there, the “WalkPeiDispatcher” command can be used to show the dispatch order of the PEIMs loaded in
Shadowed PEI.

> | Command | = || = @

Pl :zoToShadowsedPeiCore P
Feilore Entry: 71%E7:e0L Base: 7123E7000L "C:wefi~h=swecrb
Fl:WalkPeilispatcher()

CpuloPei Entry: 719ES260L Base: 719ES000L "C.“efishswcrkb
TcgPei Entry: 71%E2260L Base: 719E2000L “C:efihswv.crb
Felommaccess Entry: 71%E0:ZDOL Ba=se: 712E000OL "C:sefish=whcrb
AcpiVariablesHobOnSmranReserveHobTiiunlk Entry: 719DE260L Base: 719DEOODOL "C.“efi“hswcrb
Du=Ipl Entrv: 719D8260L Base: 719D8000L "C:efixhswhcrhb
PO

7 I

Figure 9: WalkPeiDispatcher

Application Notes Page 5 4'3'3:2: ~

A P P L I

c A T | 0O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms
DXE Debugging

Once system RAM is initialized and the PEI phase completes, the DXE environment is entered. This is less specialized
than PEI; nevertheless, it requires a few SourcePoint parameters to be set. The DXE drivers are compressed in the
ROM, so the symbols cannot be loaded prior to the driver loading. The simplest way to load DXE driver symbols is to
run the target to the UEFI shell or as far as it will go in DXE, stop the target, and then click the “DXEs” button to load
all of the symbols for the DXE drivers that have been dispatched so far. At this point you should be able to browse the
DXE driver symbols and set breakpoints.

To configure SourcePoint for source-level debugging of DXE code, follow these steps:
1. Run the target to the UEFI shell or as far as it will go in DXE.
2. Stop the target.
3. Click the DXEs toolbar icon to load the DXE symbols.
4. Browse the source code files using the Symbols window and set breakpoints in your code.
5. Reset the target and go until you hit a breakpoint.

QCode(Pﬂ*): Tracking IP: C:‘\efi\...\.mdemoduIepkg\core\dxe\dxemain‘\d:%{_emain.c o || E
37 dreturn This function should never redurn
YOID
EFIAFPI
Dzelain (
IN VOID =HobStart
)
k39 1
EFI_STATUS Status;
EFI_PHYSICAL ADDRESS HemoryBasehddress;
UINTE4 Hemorylength;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
[nitialize Debug Agent to support source level debug in DEE phase
IhltiallzeDebugAgent (DEBUG_AGENT _INIT DXE_CORE, HobStart. HNULL):
Initialize Memory Services
253 C;jreInit:i_alizeHemDrvServices {&HobStart, &MemoryBaseiddress, é&Memory

4]

0000000070B65608L » | 4~ | Source v | GoCursor Set Break J Track IP Wiew P Refresh

Figure 10: DXE Code Window

IMPORTANT: There are no guarantees that DXE drivers will load in the same location on subsequent boots. However,
if no target hardware or software configuration changes have occurred, then in practice, the symbols should be in the
same locations. If breakpoints are not working, you can reload DXE driver symbols by clicking on the DXEs button.

If your target is fatally crashing (no debug access), then the following commands can be used to try to halt before the
crash occurs:

GoToDxeMain()- Attempt to locate and run to DxeMain.

GoToCoreDispatcher() - Attempt to locate and run to CoreDispatcher.

GoToNextDriverEntry() - Run to the entry point of the next loaded DXE image.

GoToNextDriverNameEntry(Name) - Run to the entry point of the DXE image that matches 'Name'. Stops at every
loaded image entry point to check for a Match.

GoToDriverSymbol(DriverName, SymbolName) - Run to the code symbol 'SymbolName' contained in the Driver

‘DriverName’. Uses GoToNextDriverNameEntry if needed.
ASSET

Application Notes Page 6

A P P L I C A T I O N N O T E &S

HOB UEFI Debugging using SourcePoint on Intel Platforms
s

To configure SourcePoint for source-level debugging of HOB code, follow these steps:

1. If not already opened, Open a Command View
2. Click the HOBs toolbar icon to display the hand-off blocks on the target.

Command
AWE Resource descriptor at 001DEBECO8P

Resource type 0x0 (system memnory)
Attributes 0x3C03
Present
Initialized
Uncacheable
Urite-combinable
Urite-through cacheable
Vrite-back cacheable
0x0000000000000000

Base address

Length Ox00000000000AD000
HOH Resource descriptor at 001DEBEC38P

Resource type 0xS (reserved memory)
| Attributes 0x0 v
< ?

Figure 11: Example of HOB Display

System Configuration Table
To configure SourcePoint for source-level debugging of System Configuration Table, follow these steps:

1. If not already opened, Open a Gommand View
2. Click the SysConfigTable toolbar button to display the contents of the contents of the UEFI system
configuration table on the target.

C:“Program Files“American Arium™SourcePoint-IA™

iLoading User Defined Macro #3:

IDXE Services at 001F45C328P GUID=05AD34BA-6F02-4214-95-2E-4D-A0-39-8E
JHOB List at 001DEBE0O10P GUID=7739F24C-93D7-11D4-9A-3A-00-90-27-3F
IMemory Type Table at 001F45C9F0P GUID=4C19049F-4137-4DD3-9C-10-8B-97-A8-3F

[Loaded Images Table at

001F45D0OBCP

GUID=49152E77-1ADA-4764-B7-A2-7A-FE-FE-D9-

JACPI Table

JACPI 2.0-3.0 table at 001F6FE014P

at 001F6FEOOOP

GUID=EB9D2D30-2D88-11D3-9A-16-00-90-27-3F
GUID=8868E871-E4F1-11D3-BC-22-00-80-C7-3C

>

Figure 12: Example of System Configuration Table

UEFI System Memory Map

To configure SourcePoint for source-level debugging for dumping the System Memory Map, follow these

steps:

1. If not already opened, Open a Command View
2. Click the DumpMemMap toolbar button to display the contents of the contents of the UEFI system
memory map on the target.

emmand

Tyvpe

BS_code

available

ES_data
S_code

available

BS_code

murmi lablm
‘

Fl>Dumplentap

Start End

000oo0o0000000000-0000000000000£¢£ £

0000000000088000-000000000008ef ££
000000000008£000-000000000008FF4 £
0000000000090000-000000000009¢ 1 £ £
0000000000100000-000000000£E££££
000000001 0000000=000000001000aff £
AANANNNN AANRANN=NANANNNNTFFEFFF

Pages
Joo000o00o0000001

1000000000000007
1000000000000001
1000000000000010
J00000000000££00
J00000000000000b
MANNANAANNNNEF§5

Attributes

J00000000000000£

available 0000000000001000-000000000003cfEE 000D0D0OOO0DODO00D3c 00OOODOOOOOOOODE
ES code 000000000003d000-0000000000057£E£E 000OO00O0O0O00001L OOOODOOOOOODOODE
BS_data 0000000000058000-00000000000588€6¢ 0000000000000001 000000000000000F
available 00000000000S9000-000000000005¢£€6¢ 0Q000000000C00007 00OO000000000001
EBS_code 0000000000060000-0000000000087¢£¢ 0000000000000028 000000000000000F

00000000000D00DE
0000000000000004
000000000000000f
Jooooooooooonong
Jooopooooooooong
nnnnnnnANNANNnN§

Figure 13: Example of UEFI System Memory Map

ASSET

Application Notes Page 7

A P P L I C A T I O N N O T E

UEFI Debugging using SourcePoint on Intel Platforms
Dumping the Call Stack

To configure SourcePoint for source-level debugging for Dumping the call Call Stack, follow these steps:

1. If not already opened, Open a Command View
2. Click the DumpCallStack toolbar button to display the contents of the contents of the call stack.

ﬂCommand [= | ® @

W :DunpCallStack I
CoreloadImage+7H

(0) location 0=x0038:00000000708671
(1) location 0=0038:

(2) location 0x00
(3) location 0=
(4) location 0=00

eb : Coreloadlmnage+7H
. CoreDispatcher+10BH
. DxeMain+69CH
aoo0o 2d0 : _ModuleEntryPoint+10H
3:00000000719dbf 74

Figure 14: Example of DumpCallStack

Notes

Loading Symbols from a copied Build Tree.

When debugging an EFI firmware build on the same system where the firmware was built, the symbol file paths
that are embedded in the firmware image, at build time, will match. However, if the build tree is copied to a differ-
ent system in a different location, SourcePoint will prompt the user with three options:

. Abort: Halt all symbol loading activities

. Retry: Allow the user to browse to the alternate file location on this system. This will create a
saved path substitution mapping used for future symbol loading. (e.g “f:=c:\efi;”)

. Ignore: Ignore this particular symbol file, but continue symbol loading activities. This is useful

when a single module was built in a different location.

& Coen l-"H
(’;)@ L <« SYSTEMIC) » efi v hsw » crbhswedh2vB6nr » v |4 | o
Organize = New folder - Il e
CAD_Drawings
SourcePoint-Program SaceToole
BpCommonPkg
r A
Sg}cﬁoin: [} | |
. Could not find file in its build location:
fi\hswherbhswedk2vB6nr\Builld\HswClientX84P kg \DEBUG_VS2008:x86'X
64'\MdeModulePkg\ Core\Dxel DxeMain' DEBUG\DxeCore.pdb -
Abort: Abort all symbol loading. -
Retry: Browse to file if copied to a new location. . -
. B N - . pen - Cancel
Ignore: Skip this file (continue symbol loading).
Abort Retry Ignore
S 4

Figure 15: Repath Files

Application Notes Page 8 m.'s'z'_. .

A P P L I C A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms

Available Commands: The following commands can be entered at the UEFI command line:

LoadSinglelmage(Addr)
This function takes a code execution address and scans for relevant debug information which is loaded.

loadthis()
Scans for relevant debug information for the current IP, which is loaded.

LoadDriverName(Name)
Searches for a driver matching Name(string) and loads debug information.

LoadAllimages()
Loads symbols for all currently loaded DXE drivers

ShowDrivers()
Print out entry point address for all currently loaded DXE drivers. This function finds the EFI debug image table and
walks it to show what has been loaded.

LoadDriver(Index)
Load symbols of a driver by specify the driver Index. A driver's index value is get from ShowDrivers(). This function
simply calls the ShowDrivers() function with an index (passed in) to load symbols for a driver.

GoToShadowedPeiCore()
Attempt to locate and run to PeiCore in shadowed RAM.

GoToDxeMain()
Attempt to locate and run to DxeMain.

GoToCoreDispatcher()
Attempt to locate and run to CoreDispatcher.

GoToNextDriverEntry()
Run to the entry point of the next loaded DXE image.

GoToNextDriverNameEntry(Name)
Run to the entry point of the DXE image that matches ‘Name'. Stops at every loaded image entry point to check for
a Match.

GoToDriverSymbol(DriverName, SymbolName)
Run to the code symbol 'SymbolName' contained in the Driver 'DriverName'. Uses GoToNextDriverNameEntry if
needed.

dgo()
This function tries to exit an EFI_DEADLOOP() and resume execution.

DumpAllEfiTables()
This function will dump all the EFI tables, including the EFI System Table, the Boot Service Table, the Runtime
Service Table, and the Configuration Table

DumpConfigTable()
This function dumps the content in EFI Configuration Table

Application Notes Page 9 q:—s:'s'z'_. .

A P P L I CC A T I O N N O T E &S

UEFI Debugging using SourcePoint on Intel Platforms

DumpEfiTable(Addr)
This function will dump header and content of a EFI tables at a given start address, including the EFI System Table,
the Boot Service Table, and the Runtime Service Table

DumpHobs(Addr)
This function dumps the HOB list at Addr

DumpDxeHobs()
This function will find Hob list pointer in DXE Configuration Table and dump all the Hobs of this list

DumpVariable()
This function will dump content of NV variables

Usage:
DumpVariable ("VariableName") - Dump variable
DumpVariable ("*") - Dump all variables
DumpVariable ("abc*") - wildcard substitution
DumpVariable ("abc?") - wildcard substitution
DumpAcpiTable()

This function will dump ACPI tables

ShowEfiDevicePath(Addr)
This function parses content of device path in memory

DumpS3Script()
This function dumps all the entries in the S3 Boot Script Table and the Runtime Script Table

DumpCallStack()
This function dumps the call stack from the current instruction pointer

DumpExceptionContext()
This function dumps exception context preserved by UEFI code

Application Notes Page 10 4.51'5'1'_- -

2201 N. Central Expy., Ste 105, Richardson, TX 75080 Voice: 972-427-2800 outside the US E-mail: ai-info@asset-intertech.com. Web: www.asset-intertech.com.
-SourcePoint is a registered trademark of ASSET InterTech. Copyright © -2018 ASSET InterTech, Inc. A0163F-2018

