

THE

MINNOWBOARD

CHRONICLES

A JOURNEY OF DISCOVERY IN X86

ARCHITECTURE, UEFI, DEBUG &

TRACE, YOCTO LINUX AND OTHER

TOPICS

BY ALAN SGUIGNA

The MinnowBoard Chronicles

2

Alan Sguigna – Vice President of Sales & Customer Service

Alan has more than 20 years of experience in senior-level general management,

marketing, engineering, sales, manufacturing, finance and customer service

positions. Before joining ASSET, he worked in the telecom industry. He has had

profit and loss responsibility for a $150 million division of Spirent Communications, a supplier

of test products and services. Prior to his tenure with Spirent, Mr. Sguigna also served in

business development positions with Nortel Networks, overseeing the growth of its voice over

Internet protocol (VoIP) products.

The MinnowBoard Chronicles

3

Table of Contents
Foreword ... 5

Episode 1: SourcePoint Debugging the MinnowBoard Turbot .. 6

Episode 2: Updating the UEFI Firmware ... 8

Episode 3: Building the UEFI Image .. 13

Episode 4: UEFI Source Code .. 16

Episode 5: PEIM and DXE ... 19

Episode 6: LBR Trace ... 25

Episode 7: Single-Stepping through Code .. 28

Episode 8: The Reset Vector, and Boot Flow ... 32

Episode 9: SourcePoint Command Language and Macros ... 37

Episode 10: The UEFI shell .. 40

Episode 11: Using Instruction Trace... 45

Episode 12: Writing UEFI Applications ... 49

Episode 13: UEFI Applications using Standard ‘C’ ... 52

Episode 14: Poking around SecCore in UEFI... 55

Episode 15: More UEFI Application Development in ‘C’ ... 59

Episode 16: Delving into LBR Trace.. 70

Episode 17: Using LBR Trace without Source Code ... 74

Episode 18: Reverse-Engineering Code Execution .. 77

Episode 19: The Yocto Project ... 82

Episode 20: Building and Installing Linux ... 85

Episode 21: Building and Installing Linux, Part 2 .. 92

Episode 22: Project Yocto success! .. 95

Episode 23: Trying Wind River Pulsar Linux, and taking a break ... 99

The MinnowBoard Chronicles

4

Episode 24: New MinnowBoard, New PC, and a nod to Netgate .. 101

Episode 25: Yocto builds for the MinnowBoard and the Portwell Neptune Alpha.................... 106

Episode 26: Linux image build segmentation faults on AMD? .. 111

Episode 27: Segfault on my AMD Ryzen 7 1700X .. 116

Episode 28: Returning my AMD Ryzen 7 1700X CPU ... 119

Episode 29: My new AMD Ryzen 7 CPU works, kind of .. 120

Episode 30: Using all 16 threads on my Ryzen? .. 126

Episode 31: First attempts to debug the Linux kernel .. 129

Afterword .. 138

© 2017-2018 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks, and SourcePoint and the ScanWorks logo are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

The MinnowBoard Chronicles

5

Foreword

In September 2016, while attending the UEFI Forum Plugfest in Bellevue, WA, I got to thinking

about how complex and obscure this successor to the BIOS actually was. It seemed to be the

domain of technical gurus with a penchant for obscurity – or so it seemed to my “UEFI newbie”

mind. Although I had a nodding familiarity with terms like PEIM, DXE, HOBs, and so on, I

really had no direct experience with them. And it seemed difficult, if not impossible, to gain the

direct, hands-on learning that I like when exploring a new technical topic. There were few easy-

to-read books or YouTube videos that I could find. Maybe this was the way it was supposed to

be? Maybe you had to work in the field to actually learn the internals? Was this a “security

through obscurity” tactic?

While cogitating on this, I happened across the Intel test room at the Plugfest and struck up a

conversation with one of the application engineers there. When I expressed my lament, he asked

if I knew about the new MinnowBoard Turbot. “Open source hardware, open source software

and firmware – this is exactly what you want!”. After a short discussion, we parted ways, and I

continued my investigations.

A few weeks later, I was surfing the web and happened across the MinnowBoard website. This

was exactly what I was looking for! And access to the UEFI source, with complete build

instructions, was in an easy-to-read tutorial.

So, I got my MinnowBoard Turbot for Christmas, and so began a journey of exploration and

learning that has lasted over a year. As I explored all facets of the hardware, firmware and

software of the Minnow, I wrote about it in the ASSET InterTech blog site. Typically I wrote

something fresh once a week, sometimes once every two weeks when life got in the way.

If you are a newbie to UEFI, or want to learn all about firmware, Linux, platform debug, trace

features, and the Yocto Project from a set of fresh eyes, this is the place to be. I hope that you

enjoy the story as much as I did writing it.

Alan Sguigna

March 19, 2018

http://www.minnowboard.org/
https://minnowboard.org/tutorials/updating-the-firmware
http://blog.asset-intertech.com/

The MinnowBoard Chronicles

6

Episode 1: SourcePoint Debugging the MinnowBoard Turbot

January 8, 2017

It may not be everyone’s idea of a good time, but I was delighted to receive a MinnowBoard

Turbot for Christmas. I hooked it up to my copy of SourcePoint, and the results were pretty cool.

Imagine my surprise when I unwrapped one of my gifts to find a MinnowBoard Turbot inside.

This little PCB is an affordable open-source hardware platform for makers and hackers; think of

it as the Intel version of the Raspberry Pi. It sports a dual-core 64-bit Intel® Atom™ E3826

(code name “Bay Trail-I”) system-on-a-chip (SoC) with support for 2GB RAM, USB 2.0, USB

3.0, HDMI, Ethernet, GPIO, SATA2, MicroSD, and a number of other interfaces and built-in

capabilities. The entire hardware design is open source and set it up with a USB keyboard and

HDMI monitor and it boots right up into the EFI shell so you can play with it right away. It’s

easy enough to add support for a higher-level OS, such as Debian Linux, Windows IoT, Yocto,

or others.

But the really cool thing about the MinnowBoard is that it supports a high-speed expansion

(HSE) 60-pin connector on the bottom side of the board. This interface is used to connect to a

variety of breakout board “Lures” for fast prototyping and tinkering. One of these Lures is the

“Debugger Lure” from Tin Can Tools. The Debugger Lure is an expansion board that adds a

JTAG debugging interface for the Intel XDP. It is designed to work with Intel's In-Target Probe

(ITP) XDP JTAG debugger, but

of course it just hooks up to the

standard JTAG/XDP interface, so

it works with ASSET’s

SourcePoint debugger too. I was

really excited about hooking it up

to my ECM-XDP3 hardware

emulator and debugging UEFI on

the MinnowBoard. Hooked

together, it looks like this:

https://www.minnowboard.org/
http://www.tincantools.com/Debugger-Lure.html

The MinnowBoard Chronicles

7

The emulator plugs into the standard 60-pin XDP header on the Debugger Lure, which in turn

plugs into the HSE header on the bottom of the MinnowBoard. It was very easy to set up.

Once you have the hardware set up, getting SourcePoint configured is simple. I just opened a

New Project, imported the target configuration file for 2-core Bay Trail, powered on the target,

and then powered on the emulator. Everything came up the very first time, and after a couple of

minutes I had the target halted and in debug mode, with full display of the processor status, x86

registers, memory dump, and disassembled code window.

So, what’s next? Well, this is just the beginning. I’m planning on getting full source code and

symbols display down on my PC so I can single-step through code and use some of the trace

features on the Bay Trail to see how UEFI behaves. Maybe I’ll make some changes to the UEFI

code underneath and break stuff and see what happens. I also plan on adding Debian Linux to the

platform so I’ll be able to tinker with the Linux kernel and use SourcePoint to do some OS-aware

debugging. I’ll write about my adventures (or misadventures) in upcoming blogs.

If you want to know more about SourcePoint, please feel free to visit our website here. There’s

an excellent video of the GUI which shows the ease-of-use and power of the tool on that page.

You can also request a live demo here.

http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/registration/sourcepoint-intel-debug-and-trace-demo-intel-atom-core-xeon

The MinnowBoard Chronicles

8

Episode 2: Updating the UEFI Firmware

January 15, 2017

Last week, I wrote about my out-of-the-box experience with the MinnowBoard Turbot, and how

easy it was to start JTAG-based debugging on it with our SourcePoint tool. This week, I explored

the UEFI shell and updated the board firmware.

When I first powered up the MinnowBoard Turbot last week, it went directly into the UEFI shell.

It’s a natural reaction to type “help” at the Shell> prompt (Tip: type “help –b” so the information

doesn’t scroll off the page), and below is the first screen of what you’ll see:

It’s a powerful shell, with a full suite of commands and scripting operators (note to self: look for

some good online documentation (with examples) on the UEFI shell, beyond what is available

simply within the help system). Since UEFI is so low-level, you can explore the intrinsics of the

http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html

The MinnowBoard Chronicles

9

BIOS itself, as well as some architectural aspects of the board. For example, the “pci 00 00 00 –

i” command displays the PCI configuration space of Bus 0, Device 0, Function 0:

After tinkering with the UEFI environment for a while, I realized that the firmware that shipped

with the board was a little outdated. This is a picture of the UEFI boot manager screen that came

up when I first powered on the unit:

The MinnowBoard Chronicles

10

The release of this firmware is MNW2MAX1.X64.0090.R01.1601281003, or in short form 0.90.

By going onto the Intel firmware site, https://firmware.intel.com/projects/MinnowBoard-max, I

saw that the most recent version is 0.94. It was time to update the firmware – something that can

be somewhat difficult on Intel designs that you might have at home.

But on the MinnowBoard Turbot, it was easy. Intel’s firmware site provides the EFI shell script

as well as the full 64-bit binary image, which I downloaded onto a USB flash stick. Excellent

instructions on doing the firmware update are here:

https://MinnowBoard.org/tutorials/updating_your_firmware (another note to self: there’s a

Debug version of the firmware available too for later exploration). The beauty of it is that you

don’t need to flash the board with for example a Dediprog programmer; just run the included

UEFI script, and it takes care of the rest.

It took some contortions to get the MinnowBoard to recognize the USB stick file system (yet

another note to self: start with a small flash drive (8GB), and not a big one (128GB), and make

sure that it is FAT32-formatted), but after playing around a little, the update started, and

completed successfully:

https://firmware.intel.com/projects/minnowboard-max
https://minnowboard.org/tutorials/updating_your_firmware

The MinnowBoard Chronicles

11

And, you can see from the UEFI boot manager options screen that the new update (release 0.94)

is now installed:

The MinnowBoard Chronicles

12

It then occurred to me to launch SourcePoint and see what the code is doing while waiting for

keyboard input from the boot manager screen, as opposed to the UEFI shell from last week. I

went through the same procedure as last week, and you can see the disassembled code window

here:

What shows up in the Code window is basically identical to what we saw in last week’s blog,

except for being at a different address. The instruction pointer is sitting at a single RETN

instruction. That is worthwhile investigating!

Of course, it would be much clearer too if we had source code – that’s on my agenda for next

time.

The commercial is saved for the end: if you want to know more about SourcePoint, please feel

free to visit our website here. There’s an excellent video of the GUI which shows the ease-of-use

and power of the tool on that page. You can also request a live demo here.

http://www.asset-intertech.com/products/sourcepoint-intel
file://corp.asset-intertech.com/Users/alansguigna/Documents/see%20http:/blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/registration/sourcepoint-intel-debug-and-trace-demo-intel-atom-core-xeon

The MinnowBoard Chronicles

13

Episode 3: Building the UEFI Image

January 23, 2017

As I continue the journey to learn about the internals of UEFI and to debug it with SourcePoint, I

encounter some issues doing the firmware build.

Last week, I played around with the UEFI shell, and then updated the firmware on my

MinnowBoard to the latest release (v0.94). Then, I used SourcePoint to look at disassembled

code when the platform was sitting in the UEFI shell, waiting for keyboard input. From last time,

we can see a number of “INT 3” instructions, with opcode CC.

I wanted to explore this a little more but decided to be more aggressive and go ahead and try for

a full UEFI EDK II firmware build. My hope was to successfully create the symbol files to be

used as input to SourcePoint. With this in place, I can use our tool to do source-level debugging,

set breakpoints within modules such as DxeMain, use the Trace capabilities, and so on. Debug is

so much more powerful when source code and symbols are available.

Luckily, the Release Notes for Release 0.94 of the MinnowBoard UEFI firmware are very clear

when it comes to doing a build. The steps are broken down into the following:

1. Download the complete source from Tianocore using Git.

2. Get the binaries (the parts that are not available in source code).

3. Set up the build environment (in this case, Visual Studio 2013).

4. Install the needed IASL compiler.

5. Do the build.

I could spend hours describing the detail behind each step, but I’ll leave that for follow-up blogs.

I’ll simply describe the challenges and issues I ran into here.

#1 was easy. All that was required was to download Git from www.git-scm.com, and follow the

included instructions. Git is a version control repository and Internet hosting service. It was very

easy to use and allowed me to access the needed source files in my Windows PC workspace.

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-2.html
https://firmware.intel.com/projects/minnowboard-max
http://www.tianocore.org/
http://www.git-scm.com/

The MinnowBoard Chronicles

14

The binary files needed were another story. I was later to find that my anti-virus blocked the

downloading of some of these files (silently, of course). Many hours were spent trying to find out

why the build was not completing. For example, the anti-virus program did not like the

SmmControl.efi macro.

Getting my old dual-core Windows PC to install Visual Studio 2013 took about two hours.

Microsoft, of course, initially downloaded the newest Visual Studio 2015 Community – despite

my having accessed the Visual Studio 2013 page – but Visual Studio 2015 did not work. I had to

download and install Visual Studio 2013 explicitly before I could make any progress.

Another tip for those who might follow in this path: you do want to download the OpenSSL

source code. Don’t try to skip this step. I did, and it cost me another hour.

The IASL compiler is obtained from the ACPICA (Advanced Configuration and Power Interface

Component Architecture) website. Note to self: I want to dig into this a little later.

After all this, doing the build was easy. From “C:\MyWorkspace\Vlv2TbltDevicePkg” it was a

simple matter of typing into the Windows command window “Build_IFWI.bat MNW2 Release”

and waiting about 20 minutes.

https://acpica.org/

The MinnowBoard Chronicles

15

The final 8MB firmware binary image MNW2MAX1.X64.0094.R01.17601221828.bin appears

in the directory “C:\MyWorkspace\Vlv2TbltDevicePkg\Stitch”.

This coming week, I’ll be pulling the symbols into SourcePoint, and doing some hardware-

assisted source-level debug!

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

16

Episode 4: UEFI Source Code

January 29th, 2017

Success! This week, I managed to compile a debug version of the UEFI, load it into the

MinnowBoard, and see UEFI source code in SourcePoint for the first time.

Last week, in the MinnowBoard Chroncles Episode 3, I did a source build for the release BIOS

of the MinnowBoard Turbot (also known somewhat interchangeably as the MinnowBoard

MAX). With ASSET’s JTAG-based hardware-assisted x86 debugger, SourcePoint, I was able to

see disassembled code for the UEFI shell. This was interesting, but it only whet my appetite for

more investigation. By downloading the UEFI source tree, I had access to the source code, and

wanted to see it within our debugger in a meaningful code execution context. Making the source

code visible to the SourcePoint debugger took some extra steps.

The linker .map files contain information on the absolute (or relative) addresses for the code that

is part of the object build. When loaded into the target, the UEFI firmware on the target contains

strings that hold the paths to the program symbol files on your hard drive. SourcePoint macros

can be executed to read target memory, find these strings, then load the symbol files specified in

these paths. The symbol files must be located in the same path specified in the UEFI

firmware. So, it was a relatively straightforward matter to rebuild a Debug image with the

symbol information, and then run the EFI.mac macro file located in the SourcePoint

Macro\UEFI directory. This creates six custom toolbar buttons and associates each with a

corresponding UEFI procedure:

• The StartPEI icon resets the target, then runs to PeiMain and loads the PEI symbols.
• The PEIMs (Pre-UEFI Initialization Modules) icon loads the symbol files for the PEI

modules found in target memory.
• The DXEs (Driver Execution Environments) icon loads the symbol files for the DXE

modules found in target memory.
• The HOBs (Hand-Off Blocks) icon displays a list of UEFI HOBs found in target

memory.
• The SysConfigTable icon displays the contents of the UEFI system configuration table.
• The DumpMemMap icon displays the UEFI Memory Map.

After clicking on the DXE icon within SourcePoint, I loaded much of the DXE source code and

symbols. It took a few minutes, with clear progress bar indicators along the way:

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-3.html
http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

17

Ultimately, I got all the symbols and source code loaded and displayed, and could easily click on

Globals, Locals, a view of the Stack, and all Classes:

The Globals tab displays a hierarchy of loaded programs. Programs can be expanded to show

modules, procedures, and symbols.

The Locals tab shows the variables accessible in the current stack frame.

The Stack tab shows the stack as a list of stack frames.

The Classes tab lists structure and class definitions in a hierarchy similar to that under the

Globals tab.

The MinnowBoard Chronicles

18

Very impressive!

In my next episode of the MinnowBoard Chronicles, I’ll be exploring the PEI, looking at HOBs

and the UEFI System Configuration table, and loading symbols just before the DXE modules run

instead of running to the UEFI shell.

The MinnowBoard Chronicles

19

Episode 5: PEIM and DXE

February 5, 2017

This week, I explore DXE, and do a deeper dive into the PEI.

Last week in the MinnowBoard Chronicles, Episode 4, I achieved a significant milestone:

compiling a debug version of the UEFI, loading it into the MinnowBoard, and seeing UEFI

source code within the SourcePoint JTAG debugger for the first time.

But this, of course, has only whet my appetite for further exploration. I’m fortunate enough to

have the MinnowBoard available as an open source hardware and software platform that boots

into the UEFI shell. So, the sky’s the limit in terms of what I can learn about this x86-based

platform and the UEFI software which is at the heart of almost all Intel-based PCs, workstations

and servers. The fact that I also have available SourcePoint, which allows me to see all

architecturally visible aspects of the Intel hardware and firmware, creates a very powerful

learning environment.

Last week, I booted the MinnowBoard into the UEFI Shell, where it simply sits and waits for

keyboard input. Then I Halted the target to put it into debug mode (also known as probe mode);

after which the SourcePoint DXE macro loads the source symbols. After that, it’s a very simple

matter of opening the Symbols window to see the Globals, Locals, the Stack, and Classes.

If you want to poke around, it helps that Symbol Search on SourcePoint is screamingly fast. The

UEFI build is prodigiously large, and for example doing a “Find Symbol” wildcard search on

everything prefaced with “DXE” could in principle take a significant amount of time, given that

the database is so large. With SourcePoint, the search is displayed in real time!

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-4.html

The MinnowBoard Chronicles

20

There are also pre-built EFI macros available within SourcePoint to view the HOBs, System

Configuration Table, the System Memory Map, and other interesting structures. The debugger is

“UEFI-aware”.

The MinnowBoard Chronicles

21

The MinnowBoard Chronicles

22

I want to come back to DXE again sometime soon, but for this week, the PEI beckoned. I have a

deep interest in exploring the code executing as close to system reset as possible – and maybe

one day, before reset. But, for now, exploring early PEI was on the agenda.

First, I tried to take control of the target by initiating a PowerCycleReset out of SourcePoint, but

that seemed to put the MinnowBoard into a strange state, and the only way to recover was to

manually power cycle the board. I’m wondering if there’s a rogue watchdog coming from

somewhere, or if there’s something wrong with the emulator’s access to some of the key XDP

pins. I know that HOOK0 (PWRGOOD) is hooked up, because SourcePoint detects and displays

that when there is No Power on the board. HOOK6 (RESET_IN#) is hooked up, but I’m not sure

about HOOK7 (RESET_OUT#). This is something I need to check on the MinnowBoard

schematics when I have a little time. There might also be a flaw I guess in the Debugger Lure

design from Tin Can Tools, but unfortunately, the schematics are not available – I get the

dreaded 404 Page Not Found message – hopefully they’ll fix that soon, or steer me in the right

direction!

In the meantime, it’s easy enough to power cycle the target, turn on the emulator, and launch

SourcePoint to halt the target before it gets too far into the boot cycle. Then running the

http://wiki.minnowboard.org/images/b/bd/Minnowboard_Turbot_X205_Sch.pdf
http://www.tincantools.com/Debugger-Lure.html
http://www.tincantools.com/_newsite2013/userfiles/file/Debugger%20Lure%20Rev-A.pdf

The MinnowBoard Chronicles

23

LoadPeims macro (just by clicking on the PEIMs button) loads all the program symbols and

points the code view window back to the beginning of the code block where the processor was

stopped:

You can see from the Instruction Pointer on the left that the code is stopped at address

0x’000000007A3F7EBE’, different than where we stopped at the UEFI shell before at

0x’000000007849B171’, for example, within Episode 2 of the MinnowBoard Chronicles. We’re

also within PiSmmCore.

Scrolling back a little, we see that we are in the function IoRead8(). It’s also clear on the Stack

tab within the Symbols window:

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-2.html

The MinnowBoard Chronicles

24

This routine is called from SerialPortReadRegister() which is called from SerialPortWrite()

which in turn is called from DebugPrint(). So, we’ve caught the code in the middle of a “printf”

statement out to the console. I haven’t hooked a serial out console up to the MinnowBoard yet

(there’s another Lure available for that – a future purchase).

Well, that’s it for now. There’s a lot to digest. If you have any questions about getting started

using SourcePoint on the MinnowBoard to delve into the BIOS, drop me a note.

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

25

Episode 6: LBR Trace

February 12, 2017

This week, I delve into using LBR (Last Branch Record) Trace on the MinnowBoard and

continue my exploration into the UEFI source code.

Last week, in the MinnowBoard Chronicles – Episode 5, we saw how our SourcePoint debugger

could be used to view the UEFI Hand-off Blocks (HOBs), System Configuration Table, System

Memory Map, and other structures. Single-stepping through source code and watching the Call

Stack dynamically update in real-time was also fascinating. This is one of the best ways to gain

hands-on experience with UEFI, in my humble opinion.

This week, I decided to employ one of the most powerful capabilities within the Intel

architecture, the on-die Trace logic. Specifically, of interest are the Last Branch Record (LBR)

and Branch Trace Store (BTS) functions.

LBR trace displays a history of executed instructions. It does this by reading Branch Trace

Messages (BTMs) from the Last Branch Record MSRs in the processors. The advantage of LBR

trace is it is non-intrusive. The processor can run at full speed when using LBR trace. The

disadvantage of LBR trace is the limited number of LBRs available (typically 4 - 16). Each LBR

stores a single BTM. If you assume an average of 5 instructions between branches, then roughly

the last 80 instructions executed are traced.

BTS trace displays a history of executed instructions. It does this by reading Branch Trace

Messages (BTMs) from the Branch Trace Store (BTS), an area of system memory set aside for

trace. The BTS can be much larger and store many more BTMs than LBRs. The disadvantage of

using the BTS is that writing BTMs to memory takes longer than writing BTMs to LBRs. Each

branch results in 12-24 bytes of memory being written. For some applications BTS trace may

result in too high a speed penalty to use. Another disadvantage of BTS trace is the inability to

trace out of reset (if memory is unavailable). Still, getting the much larger buffer can be a good

trade-off.

It is worthwhile noting that LBR trace and BTS trace are not mutually exclusive. They can both

be enabled at the same time.

http://blog.asset-intertech.com/test_data_out/2017/02/the-minnowboard-chronicles-episode-5.html

The MinnowBoard Chronicles

26

To see LBR Trace in action, I used the SourcePoint LBR Trace Configuration tab to start tracing,

powered up the MinnowBoard, and halted it in the middle of an I/O intensive operation:

specifically, in the middle of a DebugPrint(). The displayed screen shows the Trace window in a

meaningful code context with the instruction pointer highlighted in the Code window:

Let’s look carefully at the screen shot to see exactly what is happening.

You see in the top left in the Code Window that we are viewing the code in “Mixed” mode: that

is, the ‘C’ source code is interleaved with its associated assembly language instructions. The

instruction pointer points to the beginning of the processor instructions associated with the line

of code:

while ((SerialPortReadRegister (SerialRegisterBase, R_UART_LSB)

& B_UART_LSR_TEMT) == 0)

The instruction pointer is at address ‘000000007889BEF5’L. Note that the ‘L’ signifies a

memory linear address, and we are in real (or protected) mode. This is the same as the physical

address if paging is not in effect. We are within the SerialPortWrite() function.

The MinnowBoard Chronicles

27

In the LBR Trace window, we see the instructions that were executed prior to the location of the

instruction pointer. The State field displays the state number (cycle number) of the instruction.

The trigger location is marked as 0. Cycles before the trigger are shown as negative numbers. In

the first cycle, you can see that we are inside the “while” loop; the five assembly language

instructions shown correspond to the last five assembly language instructions shown in the Code

window. This is the bottom of the “while” loop, where the JNE SerialPortWrite+e0 and

the JMP SerialPortWrite+c5 instructions handle the conditional logic of the loop.

But then the information in the Trace window gets interesting. Where State shows -000002, we

see a bunch of assembly language instructions ending in an IRETQ instruction. IRETQ is a 64-

bit return from an Interrupt. So, just before the MOVZX AX, AL instruction, we have just gotten

back from an interrupt service routine, wherein there were a bunch of POP statements that

restore the values of the general-purpose registers (GPRs) from the stack.

At least that’s my interpretation as of this moment. I’ll need to dig into this a little more to

confirm my theory. A good place to start might be to look at the SerialPortReadRegister function

in some more detail.

I’ll continue this exploration of the MinnowBoard using SourcePoint next week.

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

28

Episode 7: Single-Stepping through Code

February 20, 2017

This week, I single-step through source code to track the execution of programs, and better

understand how the MinnowBoard BIOS works.

I’m really curious as to the overall UEFI structure program flow as a platform boots up. A lot is

happening as the platform initializes, and the source code is very large, so it’s hard to see what

the code is doing from just a static viewpoint. I wanted to see what routines call and are called by

other routines. Seeing the code execution flow from close-up is definitely a learning experience.

The best way to do this is to step through the code at my own speed, as opposed to the speed that

the code normally executes at. SourcePoint provides stepping operations that, in conjunction

with the go/stop and breakpoint capabilities, allow me to effectively track through the execution

of programs.

It is worth noting that there are three stepping commands available:

Step Into. This single-steps the next instruction in the program and enters each function call that

is encountered. This is useful for detailed analysis of all execution paths in a program.

Step Over. This single-steps the next instruction in the program and runs through each function

call that is encountered without showing the steps in the function. This is useful for analysis of

the current routine while skipping the details of called routines.

Step Out Of. This single-steps the next instruction in the program and runs through the end of an

existing function context. This is useful for a quick way to get back to the parent routine.

To put these through their paces, I broke within the SerialPortWriteRegister() routine. The

source code and instruction pointer is visible on the left. From the Call Stack on the right, you

can see that SerialPortWriteRegister() is called by SerialPortWrite() which in turn is called from

DebugPrint():

http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

29

I decided to Step Into some number of execution steps, and as expected the

SerialPortWriteRegister() function returns, and I can come into SerialPortWrite() – as can be

seen by the StackFrame display updating in real-time:

The MinnowBoard Chronicles

30

It can be seen that within SerialPortWrite() I’m in the middle of a “for” loop that makes multiple

calls to SerialPortWriteRegister() indexed by the values of Index and NumberOfBytes. It’s easy

enough to hover over the values of these variables in SourcePoint and also look at the Locals tab

in the Symbols window to see how deep the “for” loop is:

Oh, this is going to take a while. Index is 8, and FifoSize is 16, but I also have to get

NumberOfBytes down to 0. So, I dutifully start to click Step Over, expecting this to take a while.

But wait! Maybe Step Out Of is a solution to my problem.

And that does turn out to be the case. I get right back into DebugPrint():

The MinnowBoard Chronicles

31

Step Into one more time puts me into a whole new section of code. I’m in

PeCoffLoaderExtraActionCommon() and within the pecoffextraactionlib.c (whereas before I was

in debuglib.c). What is this? More exploration forthcoming!

For those who would like to learn more, there’s an excellent eBook here: UEFI Framework

Debugging (note: requires registration).

http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint
http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

32

Episode 8: The Reset Vector, and Boot Flow

February 26, 2017

This is getting pretty intense. It’s time to explore the code that executes at the reset vector, and

see the printf messages coming out of the BIOS as the MinnowBoard boots.

Having gotten past my reset issues on the MinnowBoard, I set a hard breakpoint directly at the

reset vector (which is at physical address FFFFFFF0h on the MinnowBoard). The reset vector is

the default location (address) where the BayTrail CPU finds the first instruction it will execute

after a reset. You can see these first instructions in the SourcePoint debugger Code window:

There are a couple of NOP instructions, followed by a near JMP to address FFFFF6B8.

Everything is in assembly language because the initial code is being executed out of flash

memory. Looking at the code at FFFFF6B8 is informative.

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

33

The first instruction there is FPINIT, which initializes the processor floating point unit (FPU).

Then there is some more assembly language code, which I will have to determine the meaning of

later. It’s a good time to load the PEI modules and try to see some source code somewhere, by

clicking on the PEIMs button at the top of the screen. An excerpt of the output within the

Command window looks like this:

P0>LoadPeims

PlatformEarlyInit Entry: FFF203A0L Base: FFF20140L
"c:\myworkspace\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\IA32\Vlv2TbltDevicePk
g\PlatformInitPei\PlatformInitPei\DEBUG\PlatformEarlyInit.efi"

PchSmbusArpDisabled Entry: FFF29C20L Base: FFF299C0L FILE NOT
FOUND
"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\Smbus\Pei\PchSmbusArpDisabled\DEBUG\PchSmbusArpDisabled.
pdb"

VlvInitPeim Entry: FFF2B820L Base: FFF2B5C0L FILE NOT
FOUND
"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\NorthCluster\VlvInit\Pei\VlvInitPeim\DEBUG\VlvInitPeim.pdb"

PchInitPeim Entry: FFF2DA00L Base: FFF2D7A0L FILE NOT
FOUND
"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\PchInit\Pei\PchInitPeim\DEBUG\PchInitPeim.pdb"

PchSpiPeim Entry: FFF33280L Base: FFF33020L FILE NOT
FOUND

The MinnowBoard Chronicles

34

"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\Spi\Pei\PchSpiPeim\DEBUG\PchSpiPeim.pdb"

PeiSmmAccess Entry: FFF35880L Base: FFF35620L FILE NOT
FOUND
"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\CPU\SmmAccess\Pei\SmmAccess\DEBUG\PeiSmmAccess.pdb"

PeiSmmControl Entry: FFF37000L Base: FFF36DA0L FILE NOT
FOUND
"m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\SmmControl\Pei\SmmControl\DEBUG\PeiSmmControl.pdb"

S3Resume2Pei Entry: FFF38280L Base: FFF38020L
"c:\myworkspace\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\IA32\UefiCpuPkg\Unive
rsal\Acpi\S3Resume2Pei\S3Resume2Pei\DEBUG\S3Resume2Pei.efi"

A number of the modules cannot be found. But for those that are, there are handy pointers to the

source build tree and where the .MAP files are. More on this later.

As I prepare to delve even further into the source code involved in the early boot process, the

other indispensable aid is to take advantage of the debug printf statements that come out of the

serial port of the MinnowBoard. I obtained an inexpensive serial-to-USB cable on Amazon, and

hooked it up to my Mac using the CoolTerm application. That is when things got really exciting:

as I booted up the system, I saw some very interesting information come out to the terminal. An

excerpt of the first couple of screens are:

>>>>SecStartup

Mono Status Code PEIM Loaded
Install PPI: 1F4C6F90-B06B-48D8-A201-BAE5F1CD7D56
Install PPI: AB294A92-EAF5-4CF3-AB2B-2D4BED4DB63D
Register PPI Notify: F894643D-C449-42D1-8EA8-85BDD8C65BDE
DetermineTurbotBoard() Entry
MmioConf0[0xFED0E200], MmioPadval[0xFED0E208]
Gpio_S5_4 value is 0x3
Gpio_S5_17 value is 0x3
GGC: 0x00000210 GMSsize:0x00000002
CheckCfioPnpSettings: CFIO Pnp Settings Disabled
DetermineTurbotBoard() Entry
MmioConf0[0xFED0E200], MmioPadval[0xFED0E208]
Gpio_S5_4 value is 0x3
Gpio_S5_17 value is 0x3
Setting BootMode to BOOT_WITH_FULL_CONFIGURATION
Setup MMIO size ...

Install PPI: E767BF7F-4DB6-5B34-1011-4FBE4CA7AFD2
PROGRESS CODE: V3020003 I0
 PDB =
m:\Build\Vlv2TbltDevicePkg\DEBUG_VS2008x86\IA32\Vlv2DeviceRefCodePkg\Txe\SeCU
ma\SeCUmaPeim\DEBUG\SeCUma.pdb

https://www.amazon.com/Ftdi-TTL-232r-3v3-Serial-Converter-Cable/dp/B00M41OUYA
http://freeware.the-meiers.org/

The MinnowBoard Chronicles

35

Loading PEIM at 0x000FFFA2E20 EntryPoint=0x000FFFA3080 SeCUma.efi
PROGRESS CODE: V3020002 I0
Install PPI: CBD86677-362F-4C04-9459-A741326E05CF
Info: SeC PPI load sucessfully
PROGRESS CODE: V3020003 I0
 PDB =
c:\myworkspace\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\IA32\SourceLevelDebugP
kg\DebugAgentPei\DebugAgentPei\DEBUG\DebugAgentPei.pdb
Loading PEIM at 0x000FFFA49A0 EntryPoint=0x000FFFA4C00 DebugAgentPei.efi
PROGRESS CODE: V3020002 I0
Install PPI: 3CD652B4-6D33-4DCE-89DB-83DF9766FCCA
Debug Timer: FSB Clock = 200000000
Debug Timer: Divisor = 2
Debug Timer: Frequency = 100000000
Debug Timer: InitialCount = 10000000
Register PPI Notify: F894643D-C449-42D1-8EA8-85BDD8C65BDE

Set MRC paramaters for MinnowBoard Max.
MmioConf0[0xFED0E220], MmioPadval[0xFED0E228]
Gpio_S5_5 value is 0x3
Determine the memory size is [2GB]
DRAM_Speed is 1066MHz!
DRAM_Speed is type 1, EccEnabled = 0
tCL = 7
tRP_tRCD = 7
tWR = 8
tWTR = 5
tRRD = 6
tRTP = 4
tFAW = 28
PROGRESS CODE: V51001 I0
POSTCODE=<0024>
fastboot
MRC getting memory size from SeC ...
SeC Device ID: F18
SeC UMA Size Requested: 16384 KB
MRC SeCUmaSize memory size from SeC ... 10
MRC getting fTPM memory size from SeC ...
MRC SeCfTPMUmaSize memory size from SeC ... 0
PROGRESS CODE: V51002 I0
POSTCODE=<0025>
PROGRESS CODE: V51003 I0
POSTCODE=<0027>
Configuring Memory...
CheckMicrocodeRevision = 00000906, CpuId = 00030679
####: ConfigureMemory() Entry
Current function is MMRC_Init
 Current function is McEnableHPET
 Current function is ClearSelfRefresh
 Current function is OemTrackInitComplete
 Current function is ProgSFRVolSel
 Current function is ProgDdrTimingControl
 Current function is ProgBunit
 Current function is ProgMpllSetup
 Current function is ProgStaticDdrSetup
 Current function is ProgStaticInitPerf
 Current function is ProgStaticPwrClkGating

The MinnowBoard Chronicles

36

 Current function is DUnitBlMode
 Current function is ControlDDR3Reset
 Current function is EnableVreg
 Current function is ProgHmc
 Current function is ProgReadWriteFifoPtr
 Current function is ProgComp
 Current function is SetIOBUFACT
 Current function is ProgDdecodeBeforeJedec
 Current function is PerformDDR3Reset
 Current function is PreJedecInit
 Current function is PerformJedecInit
 Current function is SetDDRInitializationComplete
 Current function is DisableRank2RankSwitching
 Current function is MMRC_RcvnRestore
 Current function is MMRC_WrLvlRestore
 Current function is MMRC_RdTrainRestore
 Current function is MMRC_PerformanceSetting
 Current function is MMRC_PowerGatingSetting
 Current function is MMRC_SearchRmt
 START_RMT:
 . RxDqLeft RxDqRight RxVLow RxVHigh TxDqLeft TxDqRight
CmdLeft CmdRight

Channel 0 Rank 0 . -20 18 -23 17 -26 23 0
0
STOP_RMT:
CMD module is per channel only and without Rank differentiation
Current function is ProgDraDrb
 Current function is ProgMemoryMappingRegisters
 Current function is ProgDdrControl
 Current function is SetScrambler
 Current function is ChangeSelfRefreshSetting
 Current function is SetInitDone
 Current function is McDisableHPET
 Current function is FillOutputStructure
 MRC INIT DONE

There is a treasure trove of information here, relating the stages of the boot process, the PEIMs

being loaded, and the functions being performed. I’m at the point now where I can start relating

all of this activity back to the original source code within the debug build I created with Visual

Studio. Then use the SourcePoint debugger to single-step through the code and see its flow. It’s

going to get even more exciting from here on in.

The MinnowBoard Chronicles

37

Episode 9: SourcePoint Command Language and Macros

March 19, 2017

Today, I learn more about Intel Architecture and UEFI on the MinnowBoard, by using the built-

in commands and macros within SourcePoint.

SourcePoint has a very powerful built-in programming language that is very similar to ‘C’. This

language gives access to a plethora of commands for JTAG-based run-control, target access,

dumping of registers/memory/IO, etc. These allow for command-line control of the debugging

environment, as well as creation of scripts for automation of often-repeated tasks. The command

language complements source-level debugging, and is particularly useful for hardware

qualification and validation. The command language primitives in fact form the foundation of a

lot of the SourcePoint functionality, such as the Intel CScripts.

The command language syntax, data type support, use of expressions, control variables, and

other aspects are defined within the SourcePoint User Guide. I found the use of the command

language to be very easy. You can use the command language directly from the Command

window; below are some examples:

The MinnowBoard Chronicles

38

The first command issued was invoked by simply typing in:

printf(“Hello World!\n”)

Anyone familiar with ‘C’ will recognize this statement. As expected, it prints out “Hello World!”

to the console.

The following command, msr(17), prints out the contents of the mode-specific register at address

17H. Those familiar with Intel Architecture may recognize this as the MSR_PLATFORM_ID.

You can see from the “for” loop that it is possible to create complex statements in a single line.

It’s also possible to chain together multiple statements on a single line, and even wrap them onto

several lines.

The clock() macro returns the elapsed time (in ms) since SourcePoint started. The value is

‘051961C5’H; which is 85549.509 seconds, or about 24 hours.

The next command, cpuid_eax, executes the assembly language CPUID instruction and returns

the result in EAX (and to the screen). You can see that the result is ‘30679’H.

“devicelist” displays the attributes of the devices in the chain known to SourcePoint. The uncore

and the two device cores are visible.

Of course, it is possible to create command macro text files which contain multiple commands.

Creating command files helps to automate oft-repeated operations. Command files are also

referred to as macro files, script files or include files. There are several ways to execute a

command file:

• Use the include command in the Command window.
• Drag and drop a command file from Windows Explorer to the Command window.
• Select File | Macro | Load Macro from the main menu.
• Select File | Macro | Configure Macros to attach a command file to a user-defined

toolbar button, and then press the button.
• Select File | Macro | Configure Macros to attach a command file to an event. Examples

of events include: go, stop, project load, power cycle, etc. When the event occurs, the
macro will automatically execute.

• Define a breakpoint and specify a command file to execute when the breakpoint hits.

The MinnowBoard Chronicles

39

An example of a macro file which reads the Bay Trail-I MSRs up to ‘6E0’H consists of only

seven lines:

define ord8 i=0
define ord8 msrvalue = 0
while (i < 6E0) {
 msrvalue = msr(i)
 printf(“%x %x \n”, i, msrvalue)
 i += 1
}

The results can be compared against the MSR definitions for the Silvermont architecture, which

are also contained in the Intel Software Developers Manuals. Pretty cool, huh?

To have a look at the SourcePoint GUI, go here.

More information on SourcePoint Command macros can be found here.

Use of the SourcePoint command environment to invoke the Intel CScripts is found in our eBook

here (note: requires registration).

https://software.intel.com/en-us/articles/intel-sdm
https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/products/sourcepoint-macros
https://www.asset-intertech.com/eresources/intel-debug-using-python-cscripts-memory-crash-dump-caterr

The MinnowBoard Chronicles

40

Episode 10: The UEFI shell

March 26, 2017

Today, I created my first UEFI shell script. And, by a happy coincidence, I noticed a new book

in Amazon, Harnessing the UEFI Shell, by Michael Rothman, Vince Zimmer, and Tim Lewis.

In last week’s Episode 9 of the MinnowBoard Chronicles, I used the macro command language

within SourcePoint to print “Hello World”, read Intel MSRs, and display devices on the

MinnowBoard’s JTAG chain, among other things. I really liked the power of the command

environment: its ability to execute command line functions, chain multiple commands on a single

line, wrap multiple commands over multiple lines, and of course, execute scripts. The

SourcePoint command language has rich support for conditional logic, looping, branching, and

the other capabilities you might expect out of a scripting language. And since it comprehends the

‘C’ programming language and is identical to the legacy Intel ITP I programming language, my

learning curve was extremely short.

Since my interest is in UEFI, this week I decided to explore its shell, and see what capabilities

lay therein. It’s worthwhile to note that UEFI has support for both scripts and applications.

Scripts end with an “.nsh” suffix, whereas applications end with “.efi”. Creating UEFI

applications is a little more complicated, so I’ll leave that for another day. Instead, let’s see what

goes into creating a simple looping “Hello World” script, like I did last week with SourcePoint in

Episode 9.

The convenient thing about the MinnowBoard is that it boots out of the box into the UEFI shell.

Typing “Help” at the Shell prompt displays the following list of commands:

alias - Displays, creates, or deletes UEFI Shell aliases.

attrib - Displays or modifies the attributes of files or directories.

bcfg - Manages the boot and driver options that are stored in NVRAM.

cd - Displays or changes the current directory.

cls - Clears standard output and optionally changes background color.

comp - Compares the contents of two files on a byte-for-byte basis.

connect - Binds a driver to a specific device and starts the driver.

cp - Copies one or more files or directories to another location.

date - Displays and sets the current date for the system.

https://www.amazon.com/Harnessing-UEFI-Shell-Moving-Platform/dp/1934053147
http://blog.asset-intertech.com/test_data_out/2017/03/the-minnowboard-chronicles-episode-9.html
https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

41

dblk - Displays one or more blocks from a block device.

devices - Displays the list of devices managed by UEFI drivers.

devtree - Displays the UEFI Driver Model compliant device tree.

dh - Displays the device handles in the UEFI environment.

disconnect - Disconnects one or more drivers from the specified devices.

dmem - Displays the contents of system or device memory.

dmpstore - Manages all UEFI variables.

drivers - Displays the UEFI driver list.

drvcfg - Invokes the driver configuration.

drvdiag - Invokes the Driver Diagnostics Protocol.

echo - Controls script file command echoing or displays a message.

edit - Provides a full screen text editor for ASCII or UCS-2 files.

eficompress - Compresses a file using UEFI Compression Algorithm.

efidecompress - Decompresses a file using UEFI Decompression Algorithm.

else - Identifies the code executed when 'if' is FALSE.

endfor - Ends a 'for' loop.

endif - Ends the block of a script controlled by an 'if' statement.

exit - Exits the UEFI Shell or the current script.

for - Starts a loop based on 'for' syntax.

getmtc - Gets the MTC from BootServices and displays it.

goto - Moves around the point of execution in a script.

help - Displays the UEFI Shell command list or verbose command help.

hexedit -
Provides a full screen hex editor for files, block devices, or
memory.

if - Executes commands in specified conditions.

ifconfig - Modifies the default IP address of the UEFI IPv4 Network Stack.

load - Loads a UEFI driver into memory.

loadpcirom - Loads a PCI Option ROM.

ls - Lists the contents of a directory or file information.

map - Displays or defines file system mappings.

memmap - Displays the memory map maintained by the UEFI environment.

mkdir - Creates one or more new directories.

mm - Displays or modifies MEM/MMIO/IO/PCI/PCIE address space.

mode - Displays or changes the console output device mode.

mv -
Moves one or more files to a destination within or between file
systems.

openinfo - Displays the protocols and agents associated with a handle.

parse - Retrieves a value from a standard format output file.

pause - Pauses a script and waits for an operator to press a key.

pci -
Displays a PCI device list or PCI function configuration space
of a device.

ping - Pings the target host with an IPv4 or IPv6 stack.

The MinnowBoard Chronicles

42

reconnect - Reconnects drivers to the specific device.

reset - Resets the system.

rm - Deletes one or more files or directories.

sermode - Sets serial port attributes.

set - Displays or modifies UEFI Shell environment variables.

setsize - Adjusts the size of a file.

setvar - Displays or modifies a UEFI variable.

shift - Shifts in-script parameter positions.

smbiosview - Displays SMBIOS information.

stall - Stalls the operation for a specified number of microseconds.

time - Displays or sets the current time for the system.

timezone - Displays or sets time zone information.

touch -
Updates the filename timestamp with the current system date and
time.

type - Sends the contents of a file to the standard output device.

unload - Unloads a driver image that was already loaded.

ver - Displays UEFI Firmware version information.

vol - Displays or modifies information about a disk volume.

For example, typing “ver” yields the following:

Shell> ver
UEFI Interactive Shell v2.1
EDK II
UEFI v2.50 (EDK II, 0x00010000)

It is possible to print “Hello World” to the terminal with the “echo” command:

Shell> echo Hello World
Hello World
Shell>

Interestingly, it doesn’t seem possible to use the looping/branching commands on the command

line, as you can do with the shells in SourcePoint, Python, and other platforms. During my first

attempt to echo “Hello World” to the screen ten times, I got the below error message:

Shell> for (i=0; i<10; i++) echo Hello World!
The command 'for' is incorrect outside of a script
Command Error Status: Aborted

At this point, I decided it was time to look at the documentation. The UEFI Forum Specifications

page seemed like a good place to start, where I found the UEFI Shell Specification Version 2.2

(dated January 26, 2016) being the most current. This manual was fairly difficult to plumb

http://www.uefi.org/specifications
http://www.uefi.org/sites/default/files/resources/UEFI_Shell_2_2.pdf

The MinnowBoard Chronicles

43

through, but I finally managed to figure out that the equivalent UEFI shell script to print “Hello

World” ten times looks like this:

echo -off
for %i run (0 10 1)
echo Hello World!
endfor

There’s a fairly easy-to-use editor built into the UEFI Shell, appropriately named “edit”. I

decided to create a shell script named “junk.nsh” with the above program, and save it to the USB

stick plugged into my MinnowBoard; then it’s just a simple matter of typing it at the command

line to get my program running:

FS0:\> junk.nsh
FS0:\> echo -off
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
FS0:\>

And now for the amazing coincidence; after the above experiments, I happened to be browsing

on my LinkedIn account, and noticed that one of my connections had “Liked” a new book on the

UEFI Shell. Clicking on the link took me to Amazon, where I found Harnessing the UEFI Shell:

Moving the Platform Beyond DOS, written by Michael Rothman, Vince Zimmer, and Tim

Lewis. It’s recently published (March 6, 2017) and an update to a book that was originally

released in 2010, so I purchased it (warning, it’s not cheap!). An excerpt of the book’s preview in

Amazon is below:

Focusing on the use of the UEFI Shell and its recently released formal specification, this book

unlocks a wide range of usage models which can help people best utilize the shell solutions. This

text also expands on the obvious intended utilization of the shell and explains how it can be used

in various areas such as security, networking, configuration, and other anticipated uses such as

manufacturing, diagnostics, etc. Among other topics, Harnessing the UEFI Shell demonstrates

how to write Shell scripts, how to write a Shell application, how to use provisioning options and

https://www.amazon.com/Harnessing-Uefi-Shell-Moving-Platform/dp/1501514806
https://www.amazon.com/Harnessing-Uefi-Shell-Moving-Platform/dp/1501514806

The MinnowBoard Chronicles

44

more. Since the Shell is also a UEFI component, the book will make clear how the two things

interoperate and how both Shell developers as well as UEFI developers can dip into the other's

field to further expand the power of their solutions.

Harnessing the UEFI Shell is authored by the three chairs of the UEFI working sub-teams,

Michael Rothman (Intel, chair of the UEFI Configuration and UEFI Shell sub-teams), Vincent

Zimmer (Intel, chair of the UEFI networking sub-team and security sub-team), and Tim Lewis

(Insyde Software, chair of the UEFI security sub-team). This book is perfect for any OEMs that

ship UEFI-based solutions (which is all of the MNCs such as IBM, Dell, HP, Apple, etc.),

software developers who are focused on delivering solutions targeted to manufacturing,

diagnostics, hobbyists, or stand-alone kiosk environments.

I’ll review the book in an upcoming episode of The MinnowBoard Chronicles. I’m hoping the

book will give me some tips on creating an actual .efi UEFI application, after which I’ll debug it

using SourcePoint.

For a preview of how I’ll be using SourcePoint to debug my app, have a look at our eBook,

UEFI Framework Debugging (note: requires registration).

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

45

Episode 11: Using Instruction Trace

April 2, 2017

I discover an incredible Trace capability that’s built into the Intel Atom Bay Trail chip!

My MinnowBoard Turbot has a dual core 64-bit Intel® Atom™ “Bay Trail-I” E3826 System on

a Chip (SoC) on-board. Like most Intel CPUs, it supports the standard Last Branch Record

(LBR) and Branch Trace Store (BTS) trace capabilities.

LBR stores a very limited amount of trace information (typically 4 – 16 branch locations) inside

model-specific registers (MSRs). It has virtually no overhead.

BTS uses cache-as-RAM (CAR) or system DRAM to store many more instructions and events,

limited only by the amount of memory on the target system. Unlike LBR, BTS overhead impact

is anywhere from 20% to 100%.

So, LBR and BTS provide limited trace capabilities, limited by trace depth and performance

overhead, respectively. These constraints are one of the things that can make debugging Intel

platforms very challenging. Many different approaches to debug have emerged to work around

these constraints.

In my early days of tinkering with the MinnowBoard, I used LBR to demonstrate Trace on

ASSET’s JTAG-based debugger, SourcePoint. In Episode 6, there’s a good screenshot of the

instruction trace within a call to DebugPrint(). But the trace depth was very shallow; I wanted to

go back much further in time.

As it turns out, the Bay Trail platform supports a much more powerful trace capability, known as

Instruction Trace. One of the most important features of Instruction Trace in Intel’s newer ICs is

that it is nearly full speed: it has no significant impact on the execution speed of the program

being executed. In contrast, when using Branch Trace Messages (BTMs) with BTS (storage to

memory), there is a minimum of a 60% slow down. For some code this could be much greater.

Instruction Trace uses highly compressed packets and has no measurable impact on code

execution. This change in execution speed can often impact whether a bug does or does not

occur.

https://www.asset-intertech.com/products/sourcepoint-intel
http://blog.asset-intertech.com/test_data_out/2017/02/the-minnowboard-chronicles-episode-6.html

The MinnowBoard Chronicles

46

Instruction Trace is easily configured within SourcePoint by going into the Trace Configuration

dialog boxes for this capability. It’s a few mouse clicks to enable the feature and designate the

memory location and buffer size for the trace data to be stored:

https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

47

Once that was all configured, I reset the target and collected trace data while the target was

running a UEFI shell script to output the configuration space of a PCI device. With SourcePoint,

it’s possible to see the code instruction trace in several views, all of which provide great power to

the designer. Here is a view of the Call Tree and the timing statistics associated with the

invocation of the stacked functions:

It’s possible to use these very effectively to do a code walk-through and see where the firmware

is spending its time. But, even more powerfully, the Call Chart tab in the Instruction Trace

Search window provides a visual display of code execution:

The MinnowBoard Chronicles

48

The Call Graph display allows the SourcePoint user to look at large portions (or even all of) the

trace buffer, and view it in a graph showing call depth. Each line in this graph represents a

different function at a different point in time. Changes in color represent changes in a function.

Each line moving downwards represents another level of call depth. A moveable cursor points to

specific points on the timeline (the x-axis of graph). The left-hand column displays the names of

the functions, at each level, at the point indicated by the cursor. And the controls above the graph

allow the user to expand the graph (zoom in) at the point indicated by the cursor.

This was pretty amazing to see. I was under the impression that the older Bay Trail devices were

limited to LBR and BTS trace capabilities. But with Instruction Trace, much greater debugging

functionality is available. Tinkering around with this has really helped me understand the overall

flow of execution of the UEFI code base.

Incidentally, an excellent treatise on Instruction Trace is available in the eBook Intel Adds High-

Speed Instruction Trace (note: requires registration).

https://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint
https://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint

The MinnowBoard Chronicles

49

Episode 12: Writing UEFI Applications

April 9, 2017

In Episode 10 of the MinnowBoard Chronicles, I created my first UEFI Shell script. Today, I “up

the game” by writing an actual application in ‘C’.

In Episode 10, I created a simple “Hello World” program that ran as a UEFI shell script. This is

akin to writing a Basic program for beginning programmers. It was simple enough to create a

short text file (with suffix .nsh) within the built-in UEFI shell editor, and then just run it from the

command line. It’s analogous to Basic because the program just executes in an “interpreted”

form, with no previous steps of compiling, linking, etc. So, it was very simple to get up and

running.

With such simplicity, however, comes compromises. The UEFI shell scripting language is

somewhat constrained; although it does have support for looping, conditional logic, and such, the

language is unfamiliar, and creating a large application within it would be difficult. This is as

intended: the Shell is simple and useful and lightweight, and the list of commands available to

scripts using it is fairly limited.

Writing a full-fledged application or driver that executes directly within the UEFI environment is

a much larger challenge, but even more rewarding. These can be written in ‘C’, so the power of

that language is at your fingertips. And they can access services provided both by the UEFI and

the shell, so they can do so much more.

I decided to start with the familiar “Hello World” program, written in ‘C’, as below:

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefiLib.h>
EFI_STATUS
EFIAPI
UefiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 Print(L"Hello World \n");
 return EFI_SUCCESS;
}

http://blog.asset-intertech.com/test_data_out/2017/03/the-minnowboard-chronicles-episode-10.html

The MinnowBoard Chronicles

50

I will describe the process in more detail in an upcoming blog, but here’s an outline of the steps

needed to create this simple Hello World application:

1. Have the EDK II source build tree and tools available on your PC.

2. Run the edksetup script.

3. Create a new directory in your workspace and put the ‘C’ source file and its

corresponding .inf file there.

4. Update an existing .dsc file and add in support for your MyHelloWorld .inf file.

Specifically, right at the end of the [Components] section and right before the

[BuildOptions] section, add in this line:

MyHelloWorld/MyHelloWorld.inf

For reference, the .inf file looks like the below:

@file
Brief Description of UEFI MyHelloWorld

 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = MyHelloWorld
 FILE_GUID = 6467c5d1-d0f0-4b47-a6a4-0545624972ef
 MODULE_TYPE = UEFI_APPLICATION
 VERSION_STRING = 1.0
 ENTRY_POINT = UefiMain

The following information is for reference only and not required by the
build.

 VALID_ARCHITECTURES = X64

 [Sources]
 MyHelloWorld.c

 [Packages]
 MdePkg/MdePkg.dec

 [LibraryClasses]
 UefiApplicationEntryPoint
 UefiLib

 [Guids]

 [Ppis]

 [Protocols]

The MinnowBoard Chronicles

51

 [FeaturePcd]

[Pcd]

Put these three files in the same directory, launch the Developer Command Prompt for VS2013,

and type in:

Build –p MyHelloWorld/DuetPkgX64.dsc

It runs for a minute, but I got a lot of joy out of seeing (after numerous failures due to my own

ineptitude) a successful compile:

After that, it was a simple matter of copying the MyHelloWorld.efi file over to a USB stick,

launching the UEFI shell, and typing in MyHelloWorld at the UEFI shell prompt. I always get a

kick out of seeing “Hello World!” show up on a screen.

Next week, I’ll see what I can do to develop a more sophisticated application and explore what

debugging tools are available for UEFI applications. In the meantime, to pay the bills, I’ll direct

you to more fascinating UEFI material, in particular our eBook on UEFI Framework Debugging

(note: requires registration).

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

52

Episode 13: UEFI Applications using Standard ‘C’

April 17, 2017

This week, I updated the firmware on the MinnowBoard Turbot to the latest release, and

struggled with creating a UEFI application using standard ‘C’ functions.

I subscribe to the @MinnowBoard Twitter feed, and received a notice from @Intel_Brian that a

new version of the firmware was available for download, and that it came highly recommended.

So, as I last did in Episode 4, I downloaded the full source tree and built the v0.95 image via the

detailed instructions available with the release.

This time, I decided to build a Release version of the firmware, rather than the Debug version.

The Debug version was quite interesting to work with, because it streamed out the BIOS printf

messages to the CoolTerm application on my Mac via the MinnowBoard serial port. It was

enlightening to look at some of these messages and trace them back to the source code, and see

what it was doing at various stages of the boot process. But, the Debug image takes a lot longer

to boot (55 seconds, as opposed to a few seconds for the Release version), so in the interest of

saving time, since I was rebooting the platform a lot, I tried the Release version.

Alas, I found out that the default build options of the Build_IFWI.bat command running under

the Developer Command Prompt for VS2013 yielded a build without the necessary symbols and

source links. So, when I fired up SourcePoint to continue my explorations, all I could see was

assembly code. This wouldn’t allow me to continue my learnings about the UEFI internals, so I

fell back again to building a Debug version and reflashing the MinnowBoard with this release.

In Episode 11, I built and ran a simple UEFI “Hello World” shell script. And in Episode 12, I

undertook the more complicated development of a real UEFI application. The latter is a

precursor for building more sophisticated tools like drivers. But it involves a more complicated

build process and requires a deeper understanding of the source tree file structure. Nonetheless, I

succeeded in creating a simple “Hello World” application using the built-in UEFI “print”

function, which is like “printf” in that it outputs the string to the standard console device.

The Harnessing the UEFI Shell book that I purchased refers to writing UEFI applications using

standard ‘C’ member functions. It seemed to be a simple matter of doing for example a #include

file://corp.asset-intertech.com/datastore/wkgroup/Marketing/Marketing/Marketing%20in%20Work/WhitePapers/eBooks/B033/@Minnowboard
file://corp.asset-intertech.com/datastore/wkgroup/Marketing/Marketing/Marketing%20in%20Work/WhitePapers/eBooks/B033/@Intel_Brian
http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-4.html
https://firmware.intel.com/sites/default/files/MinnowBoard_MAX-Rel_0_95-ReleaseNotes.txt
https://www.asset-intertech.com/products/#sourcepoint
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-11.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html

The MinnowBoard Chronicles

53

<stdio.h> at the front end of the code, and then feeling free to use the standard ‘C’ functions that

I’m familiar with. Now, that seemed like a good prospect for learning something new: I could

develop a few more sophisticated applications using the built-in ‘C’ functions I’m comfortable

with, and then graduate later to a deeper understanding of the UEFI-specific functions. My new

MyHelloWorld2.c application using this approach looked like this:

#include <stdio.h>
int
main(int arg, char **argv)
{
 printf(“Hello World!\n”);
}

Looks familiar, right?

And the setup file for this application, MyHelloWorld2.inf, looks like:

@file
.inf file for MyHelloWorld2

 [Defines]
 INF_VERSION = 0x00010005
 BASE_NAME = MyHelloWorld2
 FILE_GUID = 721f92fb-43f7-49b4-9a2a-142eac0d49ac
 MODULE_TYPE = UEFI_APPLICATION
 VERSION_STRING = 1.0
 ENTRY_POINT = UefiMain

The following information is for reference only and not required by the
build.

 VALID_ARCHITECTURES = X64

 [Sources]
 MyHelloWorld2.c

 [Packages]
 StdLib/StdLib.dec
 MdePkg/MdePkg.dec

 [LibraryClasses]
LibC

 [Guids]

 [Ppis]

 [Protocols]

The MinnowBoard Chronicles

54

 [FeaturePcd]

 [Pcd]

Alas (and I realize this is the second “alas” within this article), after numerous attempts, I never

could get this to successfully compile, always getting errors of the type:

Error 4000: Instance of library class [LibCType] is not found:

I suspect that I’m missing something out of the .dsc file that’s part of the build, but I’m not sure

at the moment. I’ll return to this in a future exploration. Any ideas on how to proceed would be

appreciated!

And now, a word from our sponsor: do you want to learn more about debugging UEFI

applications? Check out this whitepaper here: UEFI Framework Debugging (note: requires

registration).

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

55

Episode 14: Poking around SecCore in UEFI

May 6, 2017

This week, I poke around the code from the reset vector, in the heart of the CPU initialization

firmware, and try to reverse-engineer what is going on.

Using our JTAG hardware-assisted SourcePoint debugger, it is easy to power-cycle the

MinnowBoard target and have the system stop right at the reset vector, which is at the well-

known address X’FFFFFFF0’L. A screen shot of the Code view is as below:

The processor executes two NOP instructions, followed by a JMP to address FFFFF6B8. This is

where some interesting code shows up:

https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

56

At the bottom of the screen, in the Command window, some of the last few lines are displayed

where I’ve loaded the symbols into SourcePoint for the PEI modules. Note that the SecCore

module has the entry address of FFFFF6B8, which is exactly where we are in the Code window.

Note also that even though the Code window is in “Mixed” mode where we should see both

source and object code, there are no symbols visible; you can see the “FILE NOT FOUND” in

the Command window, which means the .pdb file is not available. This makes a lot of sense,

since SEC (the UEFI Security phase) is the root of trust. So, this is part of a “binary blob”, and

all we have is the assembly language code to look at; but we can still peek and poke around and

use SourcePoint to get some useful insights into what the platform is doing right out of reset.

The Stack Frame window is empty; this is because we are executing hand-crafted assembly code

within the SPI flash, and there is no memory available for a stack yet.

The first instruction initializes the floating point unit (FPU).

The next couple of handful of instructions are the following, with my comments:

MOVD MM0, EAX // Stores the value of EAX into MM0 register
CLI // Clear the interrupt flag in the EFLAGS register
XOR EAX, EAX // Ensures there are all ‘0’ stored in EAX

The MinnowBoard Chronicles

57

MOV AX, CS // Puts the contents of the code segment register
(F000) in AX
MOV DS, AX // Puts F000 in data segment register
MOV AX, F000 // Puts X’F000’ in EAX (note it was already
there)
MOV ES, AX // Puts X’F000’ into “extra segment” register
MOV AL, byte ptr ES: [0000fff0] // Moves X’90’ into the first byte of EAX
CMP AL, EA // Compares X’EA’ to the first 8 bits of EAX
(X’90’)
JNE short ptr FFFFF6E6L // If not equal (they are not), jumps to
FFFFF6E6
MOV CX, 001B // Loads CX w/ X’1B’; address of
IA32_APIC_BASE
RDMSR // Reads contents of MSR into EDX:EAX
TEST AH, 01 // Compares EAX second byte (BSP FLAG) to ‘1’
JE short ptr FFFFF722L // If equal, jump to FFFFF722

By single-stepping through the code, I can see the contents of the general-purpose registers

(GPRs) changing and confirming what I think is happening. On every single step, the registers

whose values are changing appear in green:

As expected, the code immediately after the JNE is not executed; instead, the CPU jumps ahead

to address FFFFF6E6, and a lot more code executes.

The MinnowBoard Chronicles

58

Further single-stepping through the code and reverse-engineering it is a task for another day; for

now, I decided to jump ahead and use the SourcePoint built in “step n” command, which allows

me to step through “n” instructions.

After about X’80’ steps through the code, I came across something rather interesting: a write to

the MSR at address X’79’, the IA32_BIOS_UPDT_TRIG MSR. According to the Intel Software

Developer Manual, this causes a microcode update to be loaded into the processor.

But, as I tried to single-step through the MSR write instruction (WRMSR), the MinnowBoard

went into never-never land; I tried repeatedly but could never successfully single-step through

that WRMSR, without the platform hanging. The only way to recover the target was to power-

cycle it.

I did find that I could “game the system” by changing the target of the WRMSR to a different

MSR address, but that is a topic for a future episode.

This is pretty cool, isn’t it? Please feel free to make my employer happy by downloading a free

eBook, such as Hardware Assisted Debug and Trace within the Silicon (note: requires (free)

registration).

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

59

Episode 15: More UEFI Application Development in ‘C’

May 14, 2017

In Episode 12, I wrote a simple “Hello World!” application in ‘C’ using the built-in UEFI shell

functions. In Episode 13, I failed in an attempt to re-write that application using standard ‘C’

library functions, such as printf(). I’ve learned a lot since then – here’s how to write more

sophisticated programs.

From Episode 12 Writing UEFI Applications, I took a simple ‘C’ program and adapted it to print

“Hello World” to the screen.

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefiLib.h>
EFI_STATUS
EFIAPI
UefiMain (
 IN EFI_HANDLE ImageHandle,
 IN EFI_SYSTEM_TABLE *SystemTable
)
{
 Print(L"Hello World \n");
 return EFI_SUCCESS;
}

Note that this program differs from other simple ‘C’ programs in that the entry point is not the

familiar main(INT argc, CHAR16 **argv) that I wanted to use to pass in a command line string.

Also, it uses the UEFI shell “print” command rather than the “printf” that I am used to.

I decided to start with a program that echoes the command line to the screen, similar to the

“echo” shell command.

So, one step at a time. I first wanted to learn how to modify my program to accept command line

parameters and manipulate them. I found out that I needed to change the module entry point

from “UefiMain” to “ShellAppMain” to pass parameters in on the command line. And, to do

that, the HelloWorld.inf file must be updated to have ENTRY_POINT set to ShellCEntryLib,

Packages must include ShellPkg/ShellPkg.dec, and LibraryClasses must include ShellCEntryLib.

And finally, the DuetPkgX64.dsc file must have the path to ShellCEntryLib explicitly added:

ShellCEntryLib|ShellPkg/Library/UefiShellCEntryLib/UefiShellCEntryLib.inf

http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-13-uefi-applications-using-standard-c.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html

The MinnowBoard Chronicles

60

So here is a “new and improved” version of MyHelloWorld.c that takes the user input from the

command line and echoes it back on the screen:

/**
My Hello World!
**/

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefiLib.h>

INTN
EFIAPI
ShellAppMain (
 IN UINTN Argc,
 IN CHAR16 **Argv[]
)
{
 int i;
 for (i = 1; i < Argc; i++)
 Print(L"%s ", Argv[i]);
 Print(L"\n");
 return EFI_SUCCESS;
}

The MyHelloWorld.inf file that is used within the build is as follows:

@file

[Defines]
 INF_VERSION = 0x00010006
 BASE_NAME = MyHelloWorld
 FILE_GUID = 6467c5d1-d0f0-4b47-a6a4-0545624972ef
 MODULE_TYPE = UEFI_APPLICATION
 VERSION_STRING = 1.0
 ENTRY_POINT = ShellCEntryLib

The following information is for reference only and not required by the
build.

 VALID_ARCHITECTURES = X64

[Sources]
 MyHelloWorld.c

[Packages]
 MdePkg/MdePkg.dec
 ShellPkg/ShellPkg.dec

[LibraryClasses]
 UefiApplicationEntryPoint

The MinnowBoard Chronicles

61

 UefiLib
 ShellCEntryLib

[Guids]

[Ppis]

[Protocols]

[FeaturePcd]

[Pcd]

And finally, the DuetPkgX64.dsc file which is the driver for the build (that is, it uses the defined

source code, packages and library classes to build the application) is as follows:

@file
An EFI/Framework Emulation Platform with UEFI HII interface supported.

Developer's UEFI Emulation. DUET provides an EFI/UEFI IA32/X64 environment
on legacy BIOS,
to help developing and debugging native EFI/UEFI drivers.

Copyright (c) 2010 - 2013, Intel Corporation. All rights reserved.

This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD
License
which accompanies this distribution. The full text of the license may be
found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

###

Defines Section - statements that will be processed to create a Makefile.

###

[Defines]
 PLATFORM_NAME = DuetPkg
 PLATFORM_GUID = 199E24E0-0989-42aa-87F2-611A8C397E72
 PLATFORM_VERSION = 0.4
 DSC_SPECIFICATION = 0x00010005
 OUTPUT_DIRECTORY = Build/DuetPkgX64
 SUPPORTED_ARCHITECTURES = X64
 BUILD_TARGETS = DEBUG
 SKUID_IDENTIFIER = DEFAULT
 FLASH_DEFINITION = DuetPkg/DuetPkg.fdf

The MinnowBoard Chronicles

62

###

Library Class section - list of all Library Classes needed by this
Platform.

###

[LibraryClasses]
 #
 # Entry point
 #
 PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf
 DxeCoreEntryPoint|MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf

UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint
.inf

UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplic
ationEntryPoint.inf
 #
 # Basic
 #
 BaseLib|MdePkg/Library/BaseLib/BaseLib.inf

SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationL
ib.inf
 BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
 PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
 CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf
 IoLib|MdePkg/Library/BaseIoLibIntrinsic/BaseIoLibIntrinsic.inf
 PciLib|MdePkg/Library/BasePciLibCf8/BasePciLibCf8.inf
 PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf
 PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf

CacheMaintenanceLib|MdePkg/Library/BaseCacheMaintenanceLib/BaseCacheMaintenan
ceLib.inf
 PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf

PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGe
tEntryPointLib.inf
 #
 # UEFI & PI
 #

UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServ
icesTableLib.inf

UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRu
ntimeServicesTableLib.inf
 UefiRuntimeLib|MdePkg/Library/UefiRuntimeLib/UefiRuntimeLib.inf
 UefiLib|MdePkg/Library/UefiLib/UefiLib.inf

UefiHiiServicesLib|MdeModulePkg/Library/UefiHiiServicesLib/UefiHiiServicesLib
.inf
 HiiLib|MdeModulePkg/Library/UefiHiiLib/UefiHiiLib.inf
 DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

The MinnowBoard Chronicles

63

UefiDecompressLib|MdePkg/Library/BaseUefiDecompressLib/BaseUefiDecompressLib.
inf
 DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf

DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLib.in
f
 UefiCpuLib|UefiCpuPkg/Library/BaseUefiCpuLib/BaseUefiCpuLib.inf
 ShellCEntryLib|ShellPkg/Library/UefiShellCEntryLib/UefiShellCEntryLib.inf

 #
 # Generic Modules
 #
 UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf
 UefiScsiLib|MdePkg/Library/UefiScsiLib/UefiScsiLib.inf

OemHookStatusCodeLib|MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookSta
tusCodeLibNull.inf

GenericBdsLib|IntelFrameworkModulePkg/Library/GenericBdsLib/GenericBdsLib.inf

SecurityManagementLib|MdeModulePkg/Library/DxeSecurityManagementLib/DxeSecuri
tyManagementLib.inf
 CapsuleLib|MdeModulePkg/Library/DxeCapsuleLibNull/DxeCapsuleLibNull.inf

PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffEx
traActionLibNull.inf

CustomizedDisplayLib|MdeModulePkg/Library/CustomizedDisplayLib/CustomizedDisp
layLib.inf
 #
 # Platform
 #
 PlatformBdsLib|DuetPkg/Library/DuetBdsLib/PlatformBds.inf
 TimerLib|DuetPkg/Library/DuetTimerLib/DuetTimerLib.inf
 #
 # Misc
 #

PerformanceLib|MdePkg/Library/BasePerformanceLibNull/BasePerformanceLibNull.i
nf
 DebugAgentLib|MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf
 PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocati
onLib.inf
 HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf

ExtractGuidedSectionLib|MdePkg/Library/DxeExtractGuidedSectionLib/DxeExtractG
uidedSectionLib.inf

PlatformHookLib|MdeModulePkg/Library/BasePlatformHookLibNull/BasePlatformHook
LibNull.inf

SerialPortLib|MdeModulePkg/Library/BaseSerialPortLib16550/BaseSerialPortLib16
550.inf
 MtrrLib|UefiCpuPkg/Library/MtrrLib/MtrrLib.inf

The MinnowBoard Chronicles

64

 LockBoxLib|MdeModulePkg/Library/LockBoxNullLib/LockBoxNullLib.inf

CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeCpuExcept
ionHandlerLib.inf
 LocalApicLib|UefiCpuPkg/Library/BaseXApicLib/BaseXApicLib.inf

 #
 # To save size, use NULL library for DebugLib and ReportStatusCodeLib.
 # If need status code output, do library instance overriden as below
DxeMain.inf does
 #
 DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugP
rintErrorLevelLib.inf

ReportStatusCodeLib|MdePkg/Library/BaseReportStatusCodeLibNull/BaseReportStat
usCodeLibNull.inf

[LibraryClasses.common.DXE_CORE]
 HobLib|MdePkg/Library/DxeCoreHobLib/DxeCoreHobLib.inf

MemoryAllocationLib|MdeModulePkg/Library/DxeCoreMemoryAllocationLib/DxeCoreMe
moryAllocationLib.inf

###

Pcd Section - list of all EDK II PCD Entries defined by this Platform

###

[PcdsFixedAtBuild]
 gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x0
 gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x0
 gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x0
 gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange|FALSE

[PcdsFeatureFlag]
 gEfiMdeModulePkgTokenSpaceGuid.PcdTurnOffUsbLegacySupport|TRUE

###
######################

Components Section - list of the modules and components that will be
processed by compilation
tools and the EDK II tools to generate PE32/PE32+/Coff
image files.

Note: The EDK II DSC file is not used to specify how compiled binary images
get placed
into firmware volume images. This section is just a list of modules
to compile from
source into UEFI-compliant binaries.
It is the FDF file that contains information on combining binary
files into firmware

The MinnowBoard Chronicles

65

volume images, whose concept is beyond UEFI and is described in PI
specification.
Binary modules do not need to be listed in this section, as they
should be
specified in the FDF file. For example: Shell binary
(Shell_Full.efi), FAT binary (Fat.efi),
Logo (Logo.bmp), and etc.
There may also be modules listed in this section that are not
required in the FDF file,
When a module listed here is excluded from FDF file, then UEFI-
compliant binary will be
generated for it, but the binary will not be put into any firmware
volume.

###
######################
[Components]
 DuetPkg/DxeIpl/DxeIpl.inf {
 <LibraryClasses>
 #
 # If no following overriden for ReportStatusCodeLib library class,
 # All other module can *not* output debug information even they are use
not NULL library
 # instance for DebugLib and ReportStatusCodeLib
 #

ReportStatusCodeLib|MdeModulePkg/Library/DxeReportStatusCodeLib/DxeReportStat
usCodeLib.inf
 }

 MdeModulePkg/Core/Dxe/DxeMain.inf {
 #
 # Enable debug output for DxeCore module, this is a sample for how to
enable debug output
 # for a module. If need turn on debug output for other module, please
copy following overriden
 # PCD and library instance to other module's override section.
 #
 <PcdsFixedAtBuild>
 gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x07
 gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x2F
 gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x80000042
 <LibraryClasses>

DebugLib|IntelFrameworkModulePkg/Library/PeiDxeDebugLibReportStatusCode/PeiDx
eDebugLibReportStatusCode.inf

ReportStatusCodeLib|DuetPkg/Library/DxeCoreReportStatusCodeLibFromHob/DxeCore
ReportStatusCodeLibFromHob.inf
 }

 MdeModulePkg/Universal/PCD/Dxe/Pcd.inf
 MdeModulePkg/Universal/WatchdogTimerDxe/WatchdogTimer.inf
 MdeModulePkg/Core/RuntimeDxe/RuntimeDxe.inf

MdeModulePkg/Universal/MonotonicCounterRuntimeDxe/MonotonicCounterRuntimeDxe.
inf

The MinnowBoard Chronicles

66

 DuetPkg/FSVariable/FSVariable.inf
 MdeModulePkg/Universal/CapsuleRuntimeDxe/CapsuleRuntimeDxe.inf
 MdeModulePkg/Universal/MemoryTest/NullMemoryTestDxe/NullMemoryTestDxe.inf
 MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf
 MdeModulePkg/Universal/Console/ConPlatformDxe/ConPlatformDxe.inf
 MdeModulePkg/Universal/Console/ConSplitterDxe/ConSplitterDxe.inf {
 <LibraryClasses>
 PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
 }
 MdeModulePkg/Universal/HiiDatabaseDxe/HiiDatabaseDxe.inf
 MdeModulePkg/Universal/SetupBrowserDxe/SetupBrowserDxe.inf
 MdeModulePkg/Universal/DisplayEngineDxe/DisplayEngineDxe.inf

 MdeModulePkg/Universal/Console/GraphicsConsoleDxe/GraphicsConsoleDxe.inf
 MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf
 MdeModulePkg/Universal/DevicePathDxe/DevicePathDxe.inf
 MdeModulePkg/Universal/SmbiosDxe/SmbiosDxe.inf

 DuetPkg/SmbiosGenDxe/SmbiosGen.inf
 #DuetPkg/FvbRuntimeService/DUETFwh.inf
 DuetPkg/EfiLdr/EfiLdr.inf {
 <LibraryClasses>
 DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

NULL|IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/LzmaCustomDecomp
ressLib.inf
 }
 IntelFrameworkModulePkg/Universal/BdsDxe/BdsDxe.inf {
 <LibraryClasses>
 PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
 }
 MdeModulePkg/Universal/EbcDxe/EbcDxe.inf
 UefiCpuPkg/CpuIo2Dxe/CpuIo2Dxe.inf
 UefiCpuPkg/CpuDxe/CpuDxe.inf
 PcAtChipsetPkg/8259InterruptControllerDxe/8259.inf
 DuetPkg/AcpiResetDxe/Reset.inf
 DuetPkg/LegacyMetronome/Metronome.inf

 PcAtChipsetPkg/PcatRealTimeClockRuntimeDxe/PcatRealTimeClockRuntimeDxe.inf
 PcAtChipsetPkg/8254TimerDxe/8254Timer.inf
 DuetPkg/PciRootBridgeNoEnumerationDxe/PciRootBridgeNoEnumeration.inf
 DuetPkg/PciBusNoEnumerationDxe/PciBusNoEnumeration.inf
 IntelFrameworkModulePkg/Bus/Pci/VgaMiniPortDxe/VgaMiniPortDxe.inf
 IntelFrameworkModulePkg/Universal/Console/VgaClassDxe/VgaClassDxe.inf

 # IDE/AHCI Support
 DuetPkg/SataControllerDxe/SataControllerDxe.inf
 MdeModulePkg/Bus/Ata/AtaAtapiPassThru/AtaAtapiPassThru.inf
 MdeModulePkg/Bus/Ata/AtaBusDxe/AtaBusDxe.inf
 MdeModulePkg/Bus/Scsi/ScsiBusDxe/ScsiBusDxe.inf
 MdeModulePkg/Bus/Scsi/ScsiDiskDxe/ScsiDiskDxe.inf

 # Usb Support
 MdeModulePkg/Bus/Pci/UhciDxe/UhciDxe.inf
 MdeModulePkg/Bus/Pci/EhciDxe/EhciDxe.inf

The MinnowBoard Chronicles

67

 MdeModulePkg/Bus/Usb/UsbBusDxe/UsbBusDxe.inf
 MdeModulePkg/Bus/Usb/UsbKbDxe/UsbKbDxe.inf
 MdeModulePkg/Bus/Usb/UsbMassStorageDxe/UsbMassStorageDxe.inf

 # ISA Support
 PcAtChipsetPkg/IsaAcpiDxe/IsaAcpi.inf
 IntelFrameworkModulePkg/Bus/Isa/IsaBusDxe/IsaBusDxe.inf
 IntelFrameworkModulePkg/Bus/Isa/IsaSerialDxe/IsaSerialDxe.inf
 IntelFrameworkModulePkg/Bus/Isa/Ps2KeyboardDxe/Ps2keyboardDxe.inf
 IntelFrameworkModulePkg/Bus/Isa/IsaFloppyDxe/IsaFloppyDxe.inf

 MdeModulePkg/Universal/Disk/DiskIoDxe/DiskIoDxe.inf
 MdeModulePkg/Universal/Disk/UnicodeCollation/EnglishDxe/EnglishDxe.inf
 MdeModulePkg/Universal/Disk/PartitionDxe/PartitionDxe.inf

 # Bios Thunk
 DuetPkg/BiosVideoThunkDxe/BiosVideo.inf

 #
 # Sample Application
 #
 # MdeModulePkg/Application/HelloWorld/HelloWorld.inf

 MyHelloWorld/MyHelloWorld.inf

###
######################

BuildOptions Section - Define the module specific tool chain flags that
should be used as
the default flags for a module. These flags are
appended to any
standard flags that are defined by the build
process. They can be
applied for any modules or only those modules with
the specific
module style (EDK or EDKII) specified in
[Components] section.

###
######################
[BuildOptions]
 MSFT:*_*_*_CC_FLAGS = /FAsc /FR$(@R).SBR

Now I’ll go through a detailed step-by-step process description for the build.

I put the ‘C’ source code, MyHelloWorld.inf file and the modified DuetPkgX64.dsc file into a

folder entitled MyHelloWorld within the MyWorkSpace folder.

Firstly, launch “Developer Command Prompt for VS2013”.

Navigate (using the “cd” change directory command) to the MyWorkSpace directory that

contains all the build files.

The MinnowBoard Chronicles

68

Type in “edksetup”.

Type in “build –p MyHelloWorld/DuetPkgX64.dsc”.

The application builds perfectly and echoes the command line arguments out to the screen. For

example, if you type:

MyHelloWorld.efi This is a test!

You see the “This is a test!” echoed back on the following line. Pretty cool.

A couple of interesting notes:

On the HDMI monitor I’ve hooked the MinnowBoard to, I simply see the text “This is a test!”

echoed to the screen. But on the CoolTerm application I’ve got hooked into the serial port, I see

the following:

FS0:\> MyHelloWorld.efi This is a test!
InstallProtocolInterface: 5B1B31A1-9562-11D2-8E3F-00A0C969723B 762CBC00
 PDB =
c:\myworksspace2\Build\DuetPkgX64\DEBUG_VS2012x86\X64\MyHelloWorld5\MyHelloWo
rld\DEBUG\MyHelloWorld.pdb
Loading driver at 0x00077CD1000 EntryPoint=0x00077CD12C0 MyHelloWorld.efi
InstallProtocolInterface: BC62157E-3E33-4FEC-9920-2D3B36D750DF 762BAC58
InstallProtocolInterface: 752F3136-4E16-4FDC-A22A-E5F46812F4CA 78851848
This is a test!

Also, I’ve noted that the compiler rejects the following:

for (int i = 1; i > Argc; i++)

But, rather, it wants the variable declaration to be in a distinct statement:

int i;
for (i = 1; i > Argc; i++)

I don’t know why that is. Maybe I am using an older version of Visual Studio (VS2013)? That’s

something to figure out for another day.

To summarize, in this episode I’ve graduated from creating a simple ‘C’ program that printed

“Hello World” to the screen, to actually taking shell command parameters and echoing those out

to the terminal. It may seem like a small step, but it really helped me understand how the ‘C’

The MinnowBoard Chronicles

69

source and build files interact with each other. This should enable me to write more sophisticated

code going forward, and to understand how more complex programs, like drivers, are put

together.

For others who might also like to take such a self-taught journey, a good debugger is

indispensable. SourcePoint is probably the best UEFI hardware-assisted tool available; read more

at the product website page SourcePoint for Intel Platforms.

https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

70

Episode 16: Delving into LBR Trace

May 21, 2017

This week, I decided to do a thorough analysis of how Last Branch Record (LBR) trace works, to

see how useful it is in tracing back what might be the root cause of system failures.

LBR trace within SourcePoint displays a history of executed instructions. The last branch

recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL

instructions), but also other operations that cause a change in the instruction pointer (like

external interrupts, traps and faults).

The advantage of LBR trace is it is non-intrusive. The processor can run at full speed when using

LBR trace. The disadvantage of LBR trace is the limited number of LBRs available (on the

MinnowBoard BayTrail-I CPU, which is based on the Intel Silvermont core architecture, there

are eight). A branch record consists of a branch-from and a branch-to instruction address.

If you assume an average of 5 instructions between branches, then roughly the last 40

instructions executed are traced.

I learned all I know about how LBR works from the Intel Software Developer Manual. Volume 3

deals with how to configure the platform to use LBR. In particular, there are certain registers,

such as MSRs IA32_DEBUGCTL[0] and IA32_PERF_CAPABILITIES[5:0], that must be used

to activate LBR and define the format of the addresses defined within the LBR stack. And the

source and destination instruction addresses of recent branches are contained within MSRs. For

example:

MSR_LASTBRANCH_0_FROM_IP stores a source address.
MSR_LASTBRANCH_0_TO_IP stores a destination address.
MSR_LASTBRANCH_TOS contains a pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded.

Let’s see how this works within SourcePoint. I booted up the MinnowBoard to the UEFI shell

and then launched SourcePoint, turned on LBR, and then hit Run. Just as a starting effort, I typed

in “pci 00 00 00 –i” into the shell, which provides a verbose display of the PCI config

information for bus 0, device 0, function 0, and then halted the processor. I then used the “msr”

command to examine some of the content of the LBR MSRs. Here’s what I saw:

https://www.asset-intertech.com/products/#sourcepoint
https://software.intel.com/en-us/articles/intel-sdm

The MinnowBoard Chronicles

71

The result is fascinating and a real learning experience to delve into.

Firstly, the Code window shows that the instruction pointer is at 78871DEC which is within a

“do” loop that is incrementing the value of the “Count” variable.

The LBR Trace window shows the backtrace of what’s happening. You can see the exact ‘C’

program and the function therein that’s being executed at the time the platform was halted. The

actual file is at:

C:\myworksspac2\mdepkg\library\baselib\linkedlist.c

and the function we’re in is:

InternalBaseLibIsNodeInList

There’s a lot of detail displayed in the Trace window, including the line number within the

source code file, and the source/symbols with associated disassembly. It’s pretty cool that I can

go back to the source within the build on my PC and see what the purpose of this function is.

Here’s an excerpt:

The MinnowBoard Chronicles

72

Having access to the comments within the source code really adds to my understanding of what

the software is doing.

It’s also fascinating to correlate what is on the SourcePoint screen with the contents of the LBR-

related MSRs. As you can see, I ran the SourcePoint “msr()” command on many of the source

and destination address MSRs. They are at 78871E0B and 78871DDA respectively. This makes

sense; looking at the Trace window, at address 78871E0B is the JC

InternalBaseLibIsNodeInList+1ce back to the top of the “do/while” loop, and 78871DDA is the

MOV RAX, [RSP]+28 that is the beginning of the first instruction (related to the ‘C’ line Ptr =

Ptr->ForwardLink; that is the branch at the top of the “do/while” loop.

This particular LBR traceback isn’t particularly interesting, because we’re just stuck in a loop

outputting information to the screen. That’s why all the source and destination addresses don’t

change; they just repeat as far back as the limited number of LBR MSRs will allow. In my next

blog, I’ll break somewhere more interesting, so we’ll have a more dynamic traceback. I’ll also

weave together what we see in SourcePoint with what we see in the source build tree to get the

big picture on the value of trace.

The MinnowBoard Chronicles

73

And a final word from our sponsor: the beautiful thing about SourcePoint is that it shows the

traced instructions in a meaningful context with the code that is currently executing. But, we do

know that interrupts, exceptions, and other logic elements running in parallel with the mainline

code can contribute to system bugs and failures. For a good eBook on how Trace can be used to

track down bugs from parallel and preemptive multitasking execution on Intel-based designs, see

our eBook, Hardware Assisted Debug and Trace within the Silicon (note: it’s free, but requires

registration).

https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

74

Episode 17: Using LBR Trace without Source Code

May 26, 2017

My curiosity got the better of me this week. I decided to play detective and see what I can learn

from LBR trace data if I pretend I don’t have access to the source code.

In Episode 16, I learned about how Last Branch Record (LBR) trace can be used to look at the

true flow of program execution, which may or may not be easily gleaned from just looking at the

static view within the SourcePoint Code window. Having access to the source code where the

system “breaks” makes it very easy to understand what is going on. But there are situations

where the source code and symbols are unavailable: it is obfuscated within some confidential

parts of UEFI, comes from a third-party driver, etc. Or alternatively, there are situations where

the symbols are available but not the source code. Becoming a top-notch debugger sometimes

means we need to roll up our sleeves and make do with what we have.

To simulate this kind of debugging experience, I decided to run a simulation with SourcePoint. I

would break at a random point within DXE, with LBR Trace active. Then I would backtrace

code execution by looking at the LBR MSR source and destination addresses and see what I

might be able to glean.

There were a couple of preparation steps I needed to take beforehand. Firstly, I wanted to write a

short SourcePoint macro that dumped all the LBR addresses, so I wouldn’t have to do that by

hand tediously. This macro simply looks like this:

define ord8 i=40
define ord8 msrvalue_from_address = 0
define ord8 msrvalue_to_address = 0
for (I = 40; I <= 47; i++) {
 msrvalue_from_address = msr(i)
 msrvalue_to_address = msr(i + 20)
 printf(“%x %x %x \n”, i, msrvalue_from_address, msrvalue_to_address)
 i += 1
}

Secondly, although the DXE modules are relocatable, I’ve found that from boot to boot, the entry

point addresses of the DXE modules do not change. In fact, when I run the DXE macro within

SourcePoint, I always get the same output, an excerpt of which is below.

http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-16-delving-into-lbr-trace.html
https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

75

DxeCore Entry: 0000000078852300L Base:
0000000078852000L
"c:\myworksspace2\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\X64\MdeModulePkg\Co
re\Dxe\DxeMain\DEBUG\DxeCore.efi"

PcdDxe Entry: 0000000077BA62FCL Base:
0000000077BA6000L
"c:\myworksspace2\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\X64\MdeModulePkg\Un
iversal\PCD\Dxe\Pcd\DEBUG\PcdDxe.efi"

ReportStatusCodeRouterRuntimeDxe Entry: 00000000780A62FCL Base:
00000000780A6000L
"c:\myworksspace2\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\X64\MdeModulePkg\Un
iversal\ReportStatusCodeRouter\RuntimeDxe\ReportStatusCodeRouterRuntimeDxe\DE
BUG\ReportStatusCodeRouterRuntimeDxe.efi"

StatusCodeHandlerRuntimeDxe Entry: 000000007809E2FCL Base:
000000007809E000L
"c:\myworksspace2\Build\Vlv2TbltDevicePkg\DEBUG_VS2012x86\X64\MdeModulePkg\Un
iversal\StatusCodeHandler\RuntimeDxe\StatusCodeHandlerRuntimeDxe\DEBUG\Status
CodeHandlerRuntimeDxe.efi"

So, I want to put the addresses of the DXE module entry points in a table, so I can easily map the

addresses I get out of LBR trace to a piece of software. An excerpt of this is below:

Module Entry Base
PchReset 7807B03C 7807A000
SmmControl 7808603C 78085000
RuntimeDxe 780902FC 78090000
CpuIoDxe 780982FC 78098000
StatusCodeHandlerRuntimeDxe 7809E2FC 78090000
ReportStatusCodeRouterRuntimeDxe 780A62FC 780A6000
DxeCore 78852300 78852000

So, here we go. I boot the MinnowBoard and then halt it while in the DXE phase, as it waits to

get to the shell. Here’s the output of my macro:

40 78098e3f 780986d0
41 780986d5 780986e3
42 780986f7 78098704
43 7809872f 7809873d
44 78098743 78098a05
45 78098a10 78098a1c
46 78098a5a 78098a93
47 78098aa7 78099180

Also, typing in msr(1C9) gives x’7’, and given that the lowest significant 3 bits of the TOS

Pointer MSR (MSR_LASTBRANCH_TOS, address 1C9H) contains a pointer to the MSR in the

The MinnowBoard Chronicles

76

LBR stack that contains the most recent branch, interrupt, or exception recorded, the last

“from_address” is x’78098aa7’ and the last “to_address” is x’78099180’.

Pretty cool, huh? Even without source code, based upon the addresses, you can see that the

software is likely somewhere within CpuIoDxe.

And, if you want to cheat a little, taking the last branch “to_address”, x’78098190’, is an offset

X’e84’ (or decimal 3,716) from the entry point of CpuIoDxe, address x’780982fc’. You can look

at the CpuIoDxe.map file in the source build to estimate what function within CpuIoDxe we

might be in. As it turns out, it’s somewhere within MmioWrite64():

Address Public by Value
0001:00000bb8 InternalMathDivRemU64x32
0001:00000c10 MmioRead8
0001:00000c38 MmioWrite8
0001:00000c64 MmioRead16
0001:00000cc8 MmioWrite16
0001:00000d30 MmioRead32
0001:00000d90 MmioWrite32
0001:00000df4 MmioRead64
0001:00000e58 MmioWrite64
0001:00000ec0 IoRead8

For a great video on what the SourcePoint GUI looks like, take a peek at our webpage here:

SourcePoint for Intel.

A good eBook on trace features is at Intel Trace Hub (note: it’s free, but requires registration).

https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/eresources/intel-trace-hub-faster-software-debug-finding-root-cause

The MinnowBoard Chronicles

77

Episode 18: Reverse-Engineering Code Execution

June 11, 2017

In my last article, I used Last Branch Record (LBR) Trace to manually capture UEFI program

flow source and destination addresses. This week, I look at the associated instruction opcodes

and mnemonics and try to figure out what is going on.

In last week’s MinnowBoard Chronicles, Episode 17: Using LBR Trace without Source Code,

we stopped somewhere in DXE and dumped all of the branch-from and branch-to instruction

address pairs, up to a maximum of 8 within the Intel Silvermont architecture.

Why is this interesting? Well, there may be an event you want to debug on an Intel platform

where the only “breadcrumbs” are the last branch addresses of code execution immediately prior.

As we learned in Episode 16, these are captured within some model-specific registers (MSRs)

dedicated to this purpose. On the MinnowBoard, based upon an Intel BayTrail-I processor (that

has Silvermont cores), these source/destination pairs are MSR addresses x’40’ through x’47’ and

x’60’ through x’67’.

Recall that the LBR recording mechanism tracks not only branch instructions (like JMP, Jcc,

LOOP and CALL instructions), but also other operations that cause a change in the instruction

pointer (like external interrupts, traps and faults). It has the advantage of being active soon after

reset if needed; whereas other tracing mechanisms, such as Branch Trace Store (BTS) and Intel

Processor Trace, require system memory to be initialized. LBR is the most “low-level” of tracing

features on Intel silicon, so to speak.

To follow up on Episode 17, this week I again halted the system and put it into probe mode

within DXE. Then I ran my LBR MSR dump macro to see the branch-from and branch-to

address pairs. The address traceback looked like this:

From: To:
7785b0e4 7785b0c4
7785b0d1 77855c10
77855c29 7785b0d6
7785b0e4 7785b0c4
7785b0d1 77855c10
7785b0e4 7785b0c4
7785b0d1 77855c10

http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-17-using-lbr-trace-without-source-code.html
http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-16-delving-into-lbr-trace.html
http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-17-using-lbr-trace-without-source-code.html

The MinnowBoard Chronicles

78

77855c29 7785b0d6

We also know from the Intel Architectures Software Developers Manuals that the TOS Pointer

MSR (MSR_LASTBRANCH_TOS, address x’1C9’) contains a pointer to the MSR in the LBR

stack that contains the most recent branch, interrupt, or exception recorded. In this case, using

the SourcePoint msr(1C9) command, I found that it equaled x’04’, so the last “from_address” is

x’7785b0d1’ and the last “to_address” is x’77855c10’ from above. Also, I could see from the

SourcePoint Code window that the instruction pointer is at x’77855c1f’. And then the branch

traceback goes backwards from there.

Going into the SourcePoint Code window, with its built-in disassembler, we can easily see the

assembly language code flow as we go backwards in time. There’s a lot of code here. Let’s look

at the individual “chunks” of code sorted by the above “from” and “to” addresses:

MSR_LASTBRANCH_0_FROM_IP
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L
MSR_LASTBRANCH_0_TO_IP
000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]
000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

MSR_LASTBRANCH_1_FROM_IP:
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L
MSR_LASTBRANCH_1_TO_IP:
0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL
0000000077855C22L 8A0424 MOV AL,byte ptr [RSP]
0000000077855C25L 4883C418 ADD RSP,00000018
0000000077855C29L C3 RETN

MSR_LASTBRANCH_2_FROM_IP:
0000000077855C29L C3 RET
MSR_LASTBRANCH_2_TO_IP
000000007785B0D6L 88442428 MOV byte ptr [RSP]+28,AL
000000007785B0DAL 0FB6442428 MOVZX EAX,byte ptr [RSP]+28
000000007785B0DFL 83E020 AND EAX,00000020
000000007785B0E2L 85C0 TEST EAX,EAX
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L

MSR_LASTBRANCH_3_FROM_IP
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L
MSR_LASTBRANCH_3_TO_IP
000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]

https://software.intel.com/en-us/articles/intel-sdm

The MinnowBoard Chronicles

79

000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

MSR_LASTBRANCH_4_FROM_IP
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L
MSR_LASTBRANCH_4_TO_IP
0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL //
Instruction pointer!
0000000077855C22L 8A0424 MOV AL,byte ptr [RSP]
0000000077855C25L 4883C418 ADD RSP,00000018
0000000077855C29L C3 RETN

MSR_LASTBRANCH_5_FROM_IP
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L
MSR_LASTBRANCH_5_TO_IP
000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]
000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

MSR_LASTBRANCH_6_FROM_IP
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L
MSR_LASTBRANCH_6_TO_IP
0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL
0000000077855C22L 8A0424 MOV AL,byte ptr [RSP]
0000000077855C25L 4883C418 ADD RSP,00000018
0000000077855C29L C3 RETN

MSR_LASTBRANCH_7_FROM_IP
0000000077855C29L C3 RETN
MSR_LASTBRANCH_7_TO_IP
000000007785B0D6L 88442428 MOV byte ptr [RSP]+28,AL
000000007785B0DAL 0FB6442428 MOVZX EAX,byte ptr [RSP]+28
000000007785B0DFL 83E020 AND EAX,00000020
000000007785B0E2L 85C0 TEST EAX,EAX
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L

Seeing the actual flow of the code without any source code or automated tools is challenging, but

it is do-able. I wanted to be able to simulate a debugging scenario whereby you might have

access to extracting MSR data (as with a ScanWorks Embedded Diagnostics (SED) On-Target

Diagnostic (OTD)), as opposed to a benchtop debugger (such as SourcePoint). Knowing where

the instruction pointer is, and working backwards, the actual code flow is reconstructed below:

https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

80

000000007785B0E4L 74DE JE short ptr 000000007785b0c4L

000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]
000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL
0000000077855C22L 8A0424 MOV AL,byte ptr [RSP]
0000000077855C25L 4883C418 ADD RSP,00000018
0000000077855C29L C3 RETN

000000007785B0D6L 88442428 MOV byte ptr [RSP]+28,AL
000000007785B0DAL 0FB6442428 MOVZX EAX,byte ptr [RSP]+28
000000007785B0DFL 83E020 AND EAX,00000020
000000007785B0E2L 85C0 TEST EAX,EAX
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L

000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]
000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL
0000000077855C22L 8A0424 MOV AL,byte ptr [RSP]
0000000077855C25L 4883C418 ADD RSP,00000018
0000000077855C29L C3 RETN

000000007785B0D6L 88442428 MOV byte ptr [RSP]+28,AL
000000007785B0DAL 0FB6442428 MOVZX EAX,byte ptr [RSP]+28
000000007785B0DFL 83E020 AND EAX,00000020
000000007785B0E2L 85C0 TEST EAX,EAX
000000007785B0E4L 74DE JE short ptr 000000007785b0c4L

000000007785B0C4L 0FB7057D320000 MOVZX EAX,word ptr
[000000007785e348]
000000007785B0CBL 83C005 ADD EAX,00000005
000000007785B0CEL 4863C8 MOVSXD RCX,EAX
000000007785B0D1L E83AABFFFF CALL 0000000077855c10L

0000000077855C10L 48894C2408 MOV qword ptr [RSP]+08,RCX
0000000077855C15L 4883EC18 SUB RSP,00000018
0000000077855C19L 0FB7542420 MOVZX EDX,word ptr [RSP]+20
0000000077855C1EL EC IN AL,DX
0000000077855C1FL 880424 MOV byte ptr [RSP],AL

The MinnowBoard Chronicles

81

This is a little better. The location of the instruction pointer is at the bottom and highlighted. I’ve

put spaces between the “cycles” associated with branches to make the code more readable. You

can see how powerful Trace is, because it goes backwards in time – as opposed to purely run-

control, which stops at an event and allows you to single-step forward in time. The dynamic flow

of the code is visible, and the direction taken by the conditional branches gives you a sense of the

program logic; for example, the two instructions:

TEST EAX, EAX
JE short ptr 000000007785b0c4L

Yield a jump to address x’7785b0c4’ if the outcome of the TEST instruction yields a zero flag of

one (ZF = 1) within the EFLAGS register. The only way that the zero flag will be set by TEST

EAX, EAX is if the contents of the EAX register is zero. So, you can see that the jump actually

happens, without explicitly having knowledge of or access to the contents of the EAX register.

This is often the case if you are using SED for backtracing program flow prior to a catastrophic

event, such as perhaps a CATERR or IERR.

By going back to the source build for the MinnowBoard, I note that the code I’m in is within

PchInitDxe. And I don’t have the source code for that; it’s part of one of the binary blobs within

the build. All I have are associated files with suffixes .efi, .depex, .inf and .pdb. What should I do

next? Maybe acquire a copy of IDA Pro to help me decompile the code? So much to learn, so

little time…

Of course, I wouldn’t even have gotten this far without easy access to SourcePoint. Register for

our UEFI Framework Debugging eBook to learn more about JTAG-assisted debug and trace.

https://www.hex-rays.com/
https://www.asset-intertech.com/products/#sourcepoint
https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

82

Episode 19: The Yocto Project

July 16, 2017

After working with UEFI over the last 18 episodes of the MinnowBoard Chronicles, I’ve decided

to install Linux on my MinnowBoard. It is turning out to be harder than I thought.

Installing Ubuntu 16.04.1 LTS on the MinnowBoard Turbot is actually pretty easy. There is a

tutorial available online at https://MinnowBoard.org/tutorials/installing-ubuntu-16.04-on-

MinnowBoardmax, and it is fairly clear and easy to understand and follow. But, never one to be

satisfied with doing the obvious, I decided to do my own Linux build for the MinnowBoard

using the Yocto Project. I’m using this as a “training exercise” for doing a complete OpenBMC

build on the new Portwell Neptune Alpha board I’ve got:

I intend to document my OpenBMC work within a forthcoming series of The Neptune Alpha

Chronicles, but, first, I wanted to get comfortable with the Yocto Project first.

What is the Yocto Project? It’s described on its website as:

The Yocto Project is an open source collaboration project that provides templates, tools and

methods to help you create custom Linux-based systems for embedded products regardless of the

hardware architecture. It was founded in 2010 as a collaboration among many hardware

https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax
https://www.yoctoproject.org/
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

83

manufacturers, open-source operating systems vendors, and electronics companies to bring

some order to the chaos of embedded Linux development.

Why use the Yocto Project? It's a complete embedded Linux development environment with tools,

metadata, and documentation - everything you need. The free tools are easy to get started with,

powerful to work with (including emulation environments, debuggers, an Application Toolkit

Generator, etc.) and they allow projects to be carried forward over time without causing you to

lose optimizations and investments made during the project’s prototype phase. The Yocto Project

fosters community adoption of this open source technology allowing its users to focus on their

specific product features and development.

In other words, Yocto will allow me to build a complete open source Linux image for the

MinnowBoard, and then ultimately for the Neptune Alpha. That sounds like fun!

A good place to start for this little effort of mine is at the Yocto Quick Start Guide. In fact, the

Quick Start Guide has an example specifically targeted for the MinnowBoard, which is ideal.

I quickly realized that I had some work to do to get the build host minimum configuration set up:

A build host with a minimum of 50 Gbytes of free disk space that is running a supported Linux

distribution (i.e. recent releases of Fedora, openSUSE, CentOS, Debian, or Ubuntu).

Not having a Linux box at home (remember, I’m not really an engineer; just a salesperson with a

keen interest in technology, so I lack high-powered hardware!), it was time to set up a Linux VM

on the pokey dual-core Windows desktop I have at home. Spending many hours on this (that

may be a subject of a future blog by itself), I finally got it working thanks to directions from

Linux Fundamentals by Paul Cobbaut, and the VirtualBox User Manual from Oracle.

Following the Yocto Quick Start Guide, I first need to install lots of new packages, and then

clone the poky repository and check out the latest Yocto Project Release (as of the time of this

writing, 2.3):

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
\
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect
\
xz-utils debianutils iputils-ping libsdl1.2-dev xterm

http://www.yoctoproject.org/docs/2.3/yocto-project-qs/yocto-project-qs.html
http://linux-training.be/linuxfun.pdf
https://www.virtualbox.org/manual/

The MinnowBoard Chronicles

84

$ git clone git://git.yoctoproject.org/poky
Cloning into 'poky'...
remote: Counting objects: 361782, done.
remote: Compressing objects: 100% (87100/87100), done.
remote: Total 361782 (delta 268619), reused 361439 (delta 268277)
Receiving objects: 100% (361782/361782), 131.94 MiB | 6.88 MiB/s, done.
Resolving deltas: 100% (268619/268619), done.
Checking connectivity... done.
$ git checkout pyro

That’s as far as I got this week. Next week, I’ll do the image build, maybe try it out on the

QEMU emulator, and then install it into my MinnowBoard.

And now, a word from my sponsor: I eventually plan to debug this with ASSET’s SourcePoint

JTAG hardware-assisted debugger. And, my interest in OpenBMC stems from our ScanWorks

Embedded Diagnostics remote JTAG run-control solution for hyperscale platforms. For more

information, read our technical overview (note: requires registration).

https://www.asset-intertech.com/products
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

85

Episode 20: Building and Installing Linux

July 25, 2017

I have a little secret to share: even though I may make it look easy, getting Linux onto my

MinnowBoard is hard, hard work.

In Episode 19 of the MinnowBoard Chronicles, I mentioned that doing a Yocto image build from

scratch for the MinnowBoard was at the top of my to-do list. As a matter of fact, after spending a

few hours unsuccessfully at this task, I decided to return to the basics: follow the tutorial at

https://MinnowBoard.org/tutorials/installing-ubuntu-16.04-on-MinnowBoardmax first to install

Ubuntu, then return to the more complex task.

Unfortunately, somewhere in the middle of all this, my HP USB keyboard stopped working on

the MinnowBoard. At first it worked intermittently; then it stopped working entirely. I used

CoolTerm on my Mac to do some rudimentary command line entries over the serial connection,

but as soon as I exited the UEFI shell and went into the Boot Options screen, I became stuck (the

arrow keys did not work).

I tried a lot of different things, including looking at the serial output of the debug log with

CoolTerm (to try to trace back to the UEFI code that was failing to initialize with the keyboard),

but eventually, I gave up and bought a new keyboard. Eureka! That did the trick. I got to the

Boot Manager screen, and selected the EFI USB Device:

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-19-the-yocto-project.html
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax

The MinnowBoard Chronicles

86

Then the Ubuntu install began, with the dots marching across the screen:

But, then, boom! I got an error message from initramfs:

No matter what I did, I continued to get this error. I tried two different USB sticks and still the

problem persists. So, I decided to put this activity on hold for now, and return to my goal of

using Yocto to build an image, run it on the QEMU emulator, and then flash it into my

MinnowBoard. I’ll certainly get back to this later – it’s a necessary step in my learning process.

As I mentioned in Episode 19, I am using a VM on a slow Windows PC at home. But, following

the instructions in the Yocto Quick Start Guide, all seemed to be going according to plan….until

I ran out of memory on my hard drive! So, I have to do some cleanup before I can try this again.

Stay tuned for Episode 21!

http://www.yoctoproject.org/docs/2.3/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

87

For those who may learn from my mistakes, below is the complete console file from my efforts

building the image. I almost got there! And at the bottom is the error message displayed on the

screen by the VM, warning of my out-of-memory condition. At the very bottom is a good

graphic of my feelings after doing all of this work.

I can’t wait to get this finished so I can begin debugging with SourcePoint! In particular, I’ll be

wanting to debug the ASPEED AST25xx, once I’m done.

alan@debian:~$ git clone git://git.yoctoproject.org/poky
Cloning into 'poky'...
remote: Counting objects: 371109, done.
remote: Compressing objects: 100% (89063/89063), done.
remote: Total 371109 (delta 275824), reused 370786 (delta 275514)
Receiving objects: 100% (371109/371109), 134.20 MiB | 3.02 MiB/s, done.
Resolving deltas: 100% (275824/275824), done.
Checking connectivity... done.
Checking out files: 100% (5301/5301), done.

alan@debian:~$ ls
Desktop Documents Downloads Music Pictures poky Public Templates Videos

alan@debian:~$ cd poky

alan@debian:~/poky$ ls
bitbake meta meta-skeleton oe-init-build-env README.hardware
documentation meta-poky meta-yocto oe-init-build-env-memres README.LSB
LICENSE meta-selftest meta-yocto-bsp README scripts

alan@debian:~/poky$ git checkout pyro
Branch pyro set up to track remote branch pyro from origin.
Switched to a new branch 'pyro'

alan@debian:~/poky$ ls
bitbake meta meta-skeleton oe-init-build-env README.hardware
documentation meta-poky meta-yocto oe-init-build-env-memres scripts
LICENSE meta-selftest meta-yocto-bsp README

alan@debian:~/poky$ git checkout -b pyro origin/pyro
fatal: A branch named 'pyro' already exists.

alan@debian:~/poky$ cd ~/poky

alan@debian:~/poky$ git checkout -b pyro origin/pyro
fatal: A branch named 'pyro' already exists.

alan@debian:~/poky$ ls -l
total 68
drwxr-xr-x 6 alan alan 4096 Jul 5 03:52 bitbake
drwxr-xr-x 14 alan alan 4096 Jul 5 03:52 documentation
-rw-r--r-- 1 alan alan 515 Jul 5 03:52 LICENSE
drwxr-xr-x 20 alan alan 4096 Jul 5 03:52 meta
drwxr-xr-x 5 alan alan 4096 Jul 5 03:52 meta-poky
drwxr-xr-x 8 alan alan 4096 Jul 5 03:52 meta-selftest
drwxr-xr-x 7 alan alan 4096 Jul 5 03:52 meta-skeleton
drwxr-xr-x 3 alan alan 4096 Jul 5 03:52 meta-yocto
drwxr-xr-x 9 alan alan 4096 Jul 5 03:52 meta-yocto-bsp
-rwxr-xr-x 1 alan alan 2121 Jul 5 03:52 oe-init-build-env
-rwxr-xr-x 1 alan alan 2559 Jul 5 03:52 oe-init-build-env-memres
-rw-r--r-- 1 alan alan 2467 Jul 5 03:52 README
-rw-r--r-- 1 alan alan 14836 Jul 5 03:52 README.hardware
drwxr-xr-x 8 alan alan 4096 Jul 5 03:52 scripts

alan@debian:~/poky$ source oe-init-build-env
You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to, for
example, select a different MACHINE (target hardware). See conf/local.conf
for more information as common configuration options are commented.

You had no conf/bblayers.conf file. This configuration file has therefore been
created for you with some default values. To add additional metadata layers
into your configuration please add entries to conf/bblayers.conf.

http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/products/sourcepoint-bmc-support

The MinnowBoard Chronicles

88

The Yocto Project has extensive documentation about OE including a reference
manual which can be found at:
 http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:
 http://www.openembedded.org/

Shell environment set up for builds. ###

You can now run 'bitbake <target>'

Common targets are:
 core-image-minimal
 core-image-sato
 meta-toolchain
 meta-ide-support

You can also run generated qemu images with a command like 'runqemu qemux86'

alan@debian:~/poky/build$ ls -l
total 4
drwxr-xr-x 2 alan alan 4096 Jul 5 03:55 conf

alan@debian:~/poky/build$ cd conf

alan@debian:~/poky/build/conf$ ls
bblayers.conf local.conf templateconf.cfg

alan@debian:~/poky/build/conf$ ls -l
total 20
-rw-r--r-- 1 alan alan 280 Jul 5 03:55 bblayers.conf
-rw-r--r-- 1 alan alan 10293 Jul 5 03:55 local.conf
-rw-r--r-- 1 alan alan 15 Jul 5 03:55 templateconf.cfg

alan@debian:~/poky/build$ bitbake core-image-sato
WARNING: /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb: Exception during
build_dependencies for create_shar
WARNING: /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb: Error during finalise of
/home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb
ERROR: ExpansionError during parsing /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb
Traceback (most recent call last):
bb.data_smart.ExpansionError: Failure expanding variable create_shar, expression was # copy in the template
shar extractor script
 cp /home/alan/poky/meta/files/toolchain-shar-extract.sh /home/alan/poky/build/tmp/work/qemux86-poky-
linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-
core-image-tiny-initramfs-i586-toolchain-2.3.1.sh

 rm -f /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/pre_install_command /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/post_install_command

 if [1 -eq 1] ; then
 cp /home/alan/poky/meta/files/toolchain-shar-relocate.sh
/home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/temp/post_install_command
 fi
 cat << "EOF" >> /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/pre_install_command

EOF

 cat << "EOF" >> /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/post_install_command

EOF
 sed -i -e '/@SDK_PRE_INSTALL_COMMAND@/r /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-
tiny-initramfs/1.0-r0/temp/pre_install_command' \
 -e '/@SDK_POST_INSTALL_COMMAND@/r /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-
image-tiny-initramfs/1.0-r0/temp/post_install_command' \
 /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

 # substitute variables
 sed -i -e 's#@SDK_ARCH@#x86_64#g' \
 -e 's#@SDKPATH@#/opt/poky/2.3.1#g' \
 -e 's#@SDKEXTPATH@#~/poky_sdk#g' \
 -e 's#@OLDEST_KERNEL@#2.6.32#g' \
 -e 's#@REAL_MULTIMACH_TARGET_SYS@#i586-poky-linux#g' \
 -e 's#@SDK_TITLE@#${@d.getVar("SDK_TITLE").replace('&', '\&')}#g' \
 -e 's#@SDK_VERSION@#2.3.1#g' \

The MinnowBoard Chronicles

89

 -e '/@SDK_PRE_INSTALL_COMMAND@/d' \
 -e '/@SDK_POST_INSTALL_COMMAND@/d' \
 -e 's#@SDK_GCC_VER@#${@oe.utils.host_gcc_version(d)}#g' \
 /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

 # add execution permission
 chmod +x /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

 # append the SDK tarball
 cat /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-
core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.tar.xz
>> /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-core-image-
tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.sh

 # delete the old tarball, we don't need it anymore
 rm /home/alan/poky/build/tmp/work/qemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-
core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.tar.xz
 which triggered exception OSError: [Errno 12] Cannot allocate memory

Summary: There were 2 WARNING messages shown.
Summary: There was 1 ERROR message shown, returning a non-zero exit code.
alan@debian:~/poky/build$ bitbake core-image-sato
Loading cache: 100% |##| Time: 0:00:02
Loaded 922 entries from dependency cache.
Parsing recipes: 100% |##| Time: 0:01:36
Parsing of 830 .bb files complete (583 cached, 247 parsed). 1299 targets, 48 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies

Build Configuration:
BB_VERSION = "1.34.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "debian-8"
TARGET_SYS = "i586-poky-linux"
MACHINE = "qemux86"
DISTRO = "poky"
DISTRO_VERSION = "2.3.1"
TUNE_FEATURES = "m32 i586"
TARGET_FPU = ""
meta
meta-poky
meta-yocto-bsp = "pyro:0920b28c93632ed53e1d50c24f260f9359fcc150"

NOTE: Fetching uninative binary shim from http://downloads.yoctoproject.org/releases/uninative/1.6/x86_64-
nativesdk-libc.tar.bz2;sha256sum=2b4fffa308d9f19e0742a1a404ff42495fb50c165e5ca0458cedca157372691a
--2017-07-05 04:19:24-- http://downloads.yoctoproject.org/releases/uninative/1.6/x86_64-nativesdk-libc.tar.bz2
Resolving downloads.yoctoproject.org (downloads.yoctoproject.org)... 198.145.20.127
Connecting to downloads.yoctoproject.org (downloads.yoctoproject.org)|198.145.20.127|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 2535308 (2.4M) [application/octet-stream]
Saving to:
‚Äò/home/alan/poky/build/downloads/uninative/2b4fffa308d9f19e0742a1a404ff42495fb50c165e5ca0458cedca157372691a/x
86_64-nativesdk-libc.tar.bz2‚Äô

2017-07-05 04:19:28 (584 KB/s) -
‚Äò/home/alan/poky/build/downloads/uninative/2b4fffa308d9f19e0742a1a404ff42495fb50c165e5ca0458cedca157372691a/x
86_64-nativesdk-libc.tar.bz2‚Äô saved [2535308/2535308]

Initialising tasks: 100% |###| Time: 0:01:02
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
WARNING: The free space of /home/alan/poky/build/sstate-cache (rootfs) is running low (0.991GB left)
ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!
WARNING: The free space of /home/alan/poky/build/downloads (rootfs) is running low (0.990GB left)
ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!
WARNING: The free space of /home/alan/poky/build/tmp (rootfs) is running low (0.990GB left)
ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!
NOTE: Tasks Summary: Attempted 102 tasks of which 0 didn't need to be rerun and all succeeded.

Summary: There were 3 WARNING messages shown.
Summary: There were 3 ERROR messages shown, returning a non-zero exit code.
alan@debian:~/poky/build$ ls
bitbake.lock cache conf downloads sstate-cache tmp
alan@debian:~/poky/build$ gedit local.conf

** (gedit:12624): WARNING **: Error when getting information for file '/home/alan/poky/build/local.conf': No
such file or directory

The MinnowBoard Chronicles

90

alan@debian:~/poky/build$ ls -l
total 20
-rw-r--r-- 1 alan alan 0 Jul 5 04:17 bitbake.lock
drwxr-xr-x 2 alan alan 4096 Jul 5 04:20 cache
drwxr-xr-x 2 alan alan 4096 Jul 5 03:59 conf
drwxr-xr-x 4 alan alan 4096 Jul 5 04:57 downloads
drwxr-xr-x 43 alan alan 4096 Jul 5 04:58 sstate-cache
drwxr-xr-x 12 alan alan 4096 Jul 5 04:55 tmp
alan@debian:~/poky/build$ cd conf
alan@debian:~/poky/build/conf$ ls
bblayers.conf local.conf sanity_info templateconf.cfg
alan@debian:~/poky/build/conf$ gedit local.conf
alan@debian:~/poky/build/conf$ cd ..
alan@debian:~/poky/build$ ls
bitbake.lock cache conf downloads sstate-cache tmp
alan@debian:~/poky/build$ bitbake core-image-sato
WARNING: /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb: Exception during build_dependencies for
create_shar
WARNING: /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb: Error during finalise of
/home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb
ERROR: ExpansionError during parsing /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb
Traceback (most recent call last):
bb.data_smart.ExpansionError: Failure expanding variable create_shar, expression was # copy in the template
shar extractor script
 cp /home/alan/poky/meta/files/toolchain-shar-extract.sh /home/alan/poky/build/tmp/work/qemux86-poky-
linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-shell-image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-
i586-toolchain-2.3.1.sh

 rm -f /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/pre_install_command /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/post_install_command

 if [1 -eq 1] ; then
 cp /home/alan/poky/meta/files/toolchain-shar-relocate.sh
/home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/temp/post_install_command
 fi
 cat << "EOF" >> /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/pre_install_command

EOF

 cat << "EOF" >> /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/post_install_command

EOF
 sed -i -e '/@SDK_PRE_INSTALL_COMMAND@/r /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-
image/1.0-r0/temp/pre_install_command' \
 -e '/@SDK_POST_INSTALL_COMMAND@/r /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-
shell-image/1.0-r0/temp/post_install_command' \
 /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.sh

 # substitute variables
 sed -i -e 's#@SDK_ARCH@#x86_64#g' \
 -e 's#@SDKPATH@#/opt/poky/2.3.1#g' \
 -e 's#@SDKEXTPATH@#~/poky_sdk#g' \
 -e 's#@OLDEST_KERNEL@#2.6.32#g' \
 -e 's#@REAL_MULTIMACH_TARGET_SYS@#i586-poky-linux#g' \
 -e 's#@SDK_TITLE@#${@d.getVar("SDK_TITLE").replace('&', '\&')}#g' \
 -e 's#@SDK_VERSION@#2.3.1#g' \
 -e '/@SDK_PRE_INSTALL_COMMAND@/d' \
 -e '/@SDK_POST_INSTALL_COMMAND@/d' \
 -e 's#@SDK_GCC_VER@#${@oe.utils.host_gcc_version(d)}#g' \
 /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.sh

 # add execution permission
 chmod +x /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.sh

 # append the SDK tarball
 cat /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.tar.xz >>
/home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-shell-image-
populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.sh

 # delete the old tarball, we don't need it anymore
 rm /home/alan/poky/build/tmp/work/qemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-shell-
image-populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.tar.xz
 which triggered exception OSError: [Errno 12] Cannot allocate memory

Summary: There were 2 WARNING messages shown.

The MinnowBoard Chronicles

91

Summary: There was 1 ERROR message shown, returning a non-zero exit code.

The MinnowBoard Chronicles

92

Episode 21: Building and Installing Linux, Part 2

July 31, 2017

This week, I had some success building a Linux image using the Yocto Project. But, that’s the

good news.

From last week’s Episode 20 of the MinnowBoard Chronicles, I described the trials and

tribulations of the two projects I have underway: installing Ubuntu 16.04.1 LTS on my

MinnowBoard Turbot, and building a complete Linux image using the Yocto Project.

To install the Ubuntu image, I’ve just been following the directions at the MinnowBoard site’s

tutorial. The procedure is very straightforward, but the bad news is that I haven’t yet gotten it

completed. Last week, I kept getting the following error message:

(intraramfs) Unable to find a medium containing a live file system

I found that I could get past this stage, and actually get to the main installer page, by putting the

USB stick with the ISO image on the top USB port, and the keyboard input on the bottom USB

port, opposite to what is described in the tutorial, as diagrammed below:

The above is what’s in the tutorial.

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-20-building-and-installing-linux.html
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive

The MinnowBoard Chronicles

93

When I swap them, I don’t get the intraramfs error, and am able to get to the first installation

screen:

But, I can’t get any further! The MinnowBoard won’t accept any keyboard or mouse input at that

point. I think maybe it wants the keyboard/mouse USB hub to be plugged into USB port 1. I’m

not exactly sure what is going on here; I think I’ll need to try yet another USB flash stick, as my

next step.

So, being not easily discouraged, I returned to my second project in-work, which is building the

Yocto image. Last week, the build blew up due to a lack of space on my PC hard drive. As I

mentioned before, I’m building this within a Debian VM using VirtualBox on my old, slow

Windows PC at home. By poking around a little, I discovered that I had only allocated 8GB of

hard disk space to the VM, as per the Linux tutorial I had used months ago to help me learn

about virtual machines and Linux. I quote from page 20:

“8GB should be plenty for learning about Linux servers.”

But, of course, learning about Linux, and building an image, are two different things. I decided I

needed about 10X that amount of space to do a complete build.

http://linux-training.be/linuxfun.pdf

The MinnowBoard Chronicles

94

So, that’s what I did. It took me a couple of hours to create the bigger VM, and then re-follow

the Yocto build instructions. After 15 hours of my home PC running flat out, below is the screen

I saw:

1,230 of 6,060 tasks have been executed after 15 hours. So, at this rate, it’s going to take a few

days to complete the build!

I know, I know, don’t laugh. I’ve got to get a faster PC. This machine is about seven years old.

And I shouldn’t be running in a VM. So, that’s a project for another day: building a state-of-the-

art faster machine. I hear there are good prices available for the new AMD Ryzen 16-core

Threadripper, or maybe an Intel Skylake-X…..and I’d like to get a good graphics card with it too

(for gaming, and also to learn something about cryptocurrency mining). All these hobbies,

though, take me away from blogging (and, oh yes, there’s that work thing too….hopefully my

boss hasn’t read this far).

In any event, I hope to finish the Yocto build in time for Episode 22!

Of course, all this work is aimed at debugging UEFI, GRUB, and ultimately Linux on the

MinnowBoard, with our SourcePoint product. I’m particularly interested in using Intel Processor

Trace (see Episode 11) to watch the boot flow. A great eBook on that subject is at Intel Adds

High-Speed Instruction Trace (note: requires registration).

http://www.asset-intertech.com/products/sourcepoint-intel
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-11.html
http://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint
http://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint

The MinnowBoard Chronicles

95

Episode 22: Project Yocto success!

August 7, 2017

In the last episode of the MinnowBoard Chronicles, I shared my progress with building a

qemux86 reference image using the Yocto Project. I’m pleased to say that the build is complete!

Here’s how I did it.

In Episode 21, I at least got the image build started on Sunday afternoon, and as of Monday

morning it had completed 1,230 out of 6,060 tasks. I’ve been simply following the Yocto Project

Quick Start tutorial instructions, and kicked off the build with:

bitbake core-image-sato

I wanted to start building an image for the QEMU emulator first, and then move to creating an

actual MinnowBoard Turbot image.

The two WARNINGs in yellow below were worrisome, but it seemed to keep going, so I just let

it run through Monday afternoon and evening:

Tuesday morning, I got up, and the first thing I did was to go look at the progress of the build.

Disaster!

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
http://www.yoctoproject.org/docs/2.3.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/2.3.1/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

96

Out of the 6,060 tasks, it completed 4,049 of them, and then crashed!

The error messages weren’t particularly meaningful, and I did notice that we had had a home

router outage sometime on Monday night (thanks Spectrum!), so I wondered if those were

related. So, I just fired up bitbake again, and it proceeded where it left off: no work was lost!

When I got home from work on Tuesday, the build was finished! Yahoo! It only took about 48

hours:

The MinnowBoard Chronicles

97

The ultimate test, of course, is to see if the image works. For that, I wanted to run the image

within the QEMU emulator, with this command:

runqemu qemux86

That worked too! I was delighted to see it launch the first time. Here are a couple of screenshots:

That’s all I had time for this week. In my next installment, I’ll build another image for the

MinnowBoard, and have it running on real hardware. Stay tuned!

The MinnowBoard Chronicles

98

And now, a word from our sponsor: once I’ve got your image built, I’m going to want to debug

the lowest levels of the boot process with SourcePoint. A good introduction to this technology is

in our eBook, Intel Trace Hub | Finding Root Cause (note: requires registration).

http://www.asset-intertech.com/eresources/intel-trace-hub-faster-software-debug-finding-root-cause

The MinnowBoard Chronicles

99

Episode 23: Trying Wind River Pulsar Linux, and taking a break

September 4, 2017

I’ve been stymied on both fronts: my MinnowBoard Turbot finally stopped recognizing the

keyboard, and my home computer build machine has crashed!

In Episode 21, Building and Installing Linux Part 2, I vented my frustrations in getting the

MinnowBoard to install Ubuntu Linux. Once I got past the EFI shell, the Minnow would stop

taking keyboard input. So, I’d be sitting there staring at the Ubuntu installation screen; so near,

and yet so far. Everything I tried, including using different keyboards, swapping the keyboard

and USB flash stick between USB ports, using different USB flash sticks, etc. etc. were to no

avail.

I even tried installing Wind River Pulsar Linux instead of Ubuntu. There are some very clear

instructions on the MinnowBoard site here. But, alas, I would again get to a stage in the

installation process and could get no further. Note to self: look up “linux promiscuous mode”

sometime:

And now, the Minnow won’t take keyboard commands even at the EFI shell (this used to work).

I’ve googled this extensively, and the closest I can seem to get to a diagnosis is in some of its

Amazon reviews, where someone said that “The USB ports are underpowered/not load protected

enough…overall, it’s a great board, if you can avoid damaging the USB ports”. In any event, I

think I’ve tried everything, and I’m pretty sure what I’m left with is a hardware failure. I plan to

RMA the board with Netgate soon.

So, following up on Episode 22, Project Yocto Success!, I continued working on building a

MinnowBoard Linux image using the Yocto project. From last time, I was halfway through the

build. But then my seven-year-old dual-core home computer crashed. And the hard disk was

wiped out. I guess the 48-hour Yocto builds took too great a toll.

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
https://minnowboard.org/tutorials/installing-windriver-pulsar-linux-on-minnowboard-turbot
http://blog.asset-intertech.com/test_data_out/2017/08/the-minnowboard-chronicles-episode-22-project-yocto-success.html

The MinnowBoard Chronicles

100

Where does this leave me? Well, this weekend, I finished ordering all of the parts for my

replacement dream machine. AMD Ryzen 7 1700X (sorry Intel, I couldn’t resist the prices; my

next dream machine will be Intel-based) with eight cores and 16 threads, 16GB RAM, 500GB

SSD, 2TB HDD, NVIDIA GTX 1060. Those Yocto builds should scream then. I’ll keep you all

posted on the dream machine build! It might take me a couple of weekends, so stay tuned.

It’ll be nice to get a new, fast machine. Some of the work I need to do with SourcePoint, such as

running CScripts, requires a lot of horsepower from the remote host. For more information on

some of these Python-based massive scripts, see our eBook, SourcePoint CScripts Support (note:

requires registration).

http://www.asset-intertech.com/eresources/intel-debug-using-python-cscripts-memory-crash-dump-caterr

The MinnowBoard Chronicles

101

Episode 24: New MinnowBoard, New PC, and a nod to Netgate

October 11, 2017

In Episode 23, I mentioned taking a short sabbatical, because my MinnowBoard USB ports

stopped working, and my 7-year-old home PC build machine crashed. The good news is both

issues are both fixed! Let the fun begin again.

In Episode 23, I experienced the “perfect storm” of failures: after an extended period of

intermittent behavior, my MinnowBoard Turbot finally stopped recognizing the keyboard,

mouse, and USB flash sticks entirely. This made installing a Linux image impossible. And, my

seven-year-old, Intel Core 2 Duo machine I was using to build a Yocto Linux image for the

MinnowBoard crashed for good in the middle of one of the interminable 48-hour builds.

For the MinnowBoard USB problem, I tried dozens of different things (different keyboard,

different mouse, different USB port, etc.) to try to fix or work around this problem, to no avail; it

was toast. I finally threw in the towel and decided to contact the supplier for an RMA. Having

purchased the Minnow six months ago (it was still under warranty), I had to go back and find my

purchase materials – as it turns out, I purchased it through Amazon, but the supplier was Netgate,

and the board was built by ADI Engineering.

I have to say, that the experience with Netgate was a delight. I always approach these kinds of

situations with a bit of trepidation – you never know what kind of customer service you’re going

to receive. In this instance, I simply created a userid on their Support Portal, and got a Live Chat

going with one of their staff (note that this was on a holiday weekend!). After exchanging some

information, I received an RMA number, and shipped the Minnow back to them. As it turns out,

they performed a post-mortem on the unit I sent to them and were able to verify the symptoms. I

received my new MinnowBoard that same week. That’s great turnaround and customer service!

The proof of the pudding, of course, was whether the new Minnow was able to install Ubuntu

Linux. There’s a great tutorial on the MinnowBoard site on Installing Ubuntu 16.04.1 LTS that

walks you through it. And the installation started, with full keyboard and mouse control. I was

ecstatic:

http://blog.asset-intertech.com/test_data_out/2017/09/the-minnowboard-chronicles-episode-23-trying-wind-river-pulsar-linux-and-taking-a-break.html
https://www.netgate.com/
http://www.adiengineering.com/
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax

The MinnowBoard Chronicles

102

But, when trying to do:

sudo apt-get –y update
sudo apt-get –y dist-upgrade

to bring Ubuntu up-to-date with patches, I got an error message:

Problem executing scripts APT::Update::Post-Invoke-Success

Googling this led me to the workaround to remove libappstream3 with the CLI command:

sudo apt-get remove libappstream3

That did the trick. The install completed successfully, and I got a working version of Ubuntu on

my Minnow:

The MinnowBoard Chronicles

103

So, while all this was going on, I finished building my new home PC to replace the aging seven-

year-old Yocto build machine. I equipped it with the AMD Ryzen 7 1700X CPU, 16GB RAM,

500GB SSD, NVIDIA GEForce GTX 1060 video card, and Windows 10 Home. I was one of the

lucky people that build the machine and have it boot up the first time (well, there were a couple

of scary moments, but I’ll gloss over those for now).

With the machine assembled and Windows booting off of the SSD (what a joy to boot Windows

in seconds versus about four minutes on my old machine), I installed a 2TB 7200RPM SATA III

hard drive and installed Debian 9 Linux on it. This is where I plan to do most of the Yocto

builds:

The MinnowBoard Chronicles

104

Following the tutorial in the Yocto Project Quick Start Guide, I quickly fired up an image build

for emulation (QEMU). Running the command:

bitbake core-image-sato

took 1 hour, 5 minutes; compared to 48 hours on the old machine!!! So, about 50X faster. My

productivity should leap forward now:

http://www.yoctoproject.org/docs/2.3.2/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

105

If you compare the top above screen with that in Episode 21, you can see that the new computer

is running the compilation multi-threaded (as opposed to only two running tasks/threads on the

old machine). That speeds things up tremendously. And the Yocto tutorial says that subsequent

builds past the first one are much faster, because the OpenEmbedded build system re-uses files

from previous builds as much as possible. Sweet!

Next time, I’ll do a Yocto build for the MinnowBoard Turbot, and install it. Those who follow

the MinnowBoard Chronicles know that I’ve tried this before and failed. But, with a faster

machine and a new Minnow, we’ll see!

And now, a word from our sponsor: my employer is kind enough to allow me to use my

weekends exploring technology and writing about my experiences. If you are enjoying this

series, and are also interested in learning more about this fascinating technology, please feel free

to register for one of our eBooks at ASSET’s eResources on Software Debug.

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
https://www.asset-intertech.com/eresources/software-debug

The MinnowBoard Chronicles

106

Episode 25: Yocto builds for the MinnowBoard and the Portwell Neptune
Alpha

October 16, 2017

In Episode 24, I finished off my new build machine, successfully did a QEMU image build on it,

and loaded an off-the-shelf Ubuntu image into my new MinnowBoard Turbot. This week, I

tackled a MinnowBoard Linux image build using Yocto, loaded it into my MinnowBoard, and

also set about doing a Yocto image build for the Portwell Neptune Alpha board. But I ran into

some problems.

At the end of Episode 24, I was floating on Cloud 9: my new PC did a Yocto image build for the

QEMU emulator screamingly fast: about fifty times faster than my old PC. So, I looked forward

to having a lot more fun exploring this technology, and faster too. On the other hand, another

way to look at this is, I could make 50X more mistakes in the same amount of time.

To put it to the test, I tackled a MinnowBoard Turbot Yocto image build, using the instructions

in the Yocto Project Quick Start Guide. Granted, these instructions are for the MinnowBoard

MAX, opposed to the MinnowBoard Turbot that I have, but I figured they were close enough

that it should just work. I fired up the bitbake core-image-base as per the instructions, and after

about 45 minutes, the build completed!

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://www.yoctoproject.org/docs/2.3.2/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

107

Needless to say, I was pretty excited at this point. If you’ve been following the MinnowBoard

Chronicles series, you’ll know that I’ve been working on this for quite some time. It was about

time I got a break!

Alas, after using the Linux “dd” command to create a bootable image on a USB stick, and

booting it in the MinnowBoard, I got the following messages up-front, after which the Minnow

just hung:

After trying it several times with different USB sticks, I kept getting the same installation failure.

So, I decided to take a rest, and do something else for a while.

At the office, our engineering group is doing some development for our ScanWorks Embedded

Diagnostics embedded JTAG product on a board we procured from Portwell. This Portwell

board, part of the Neptune Alpha OpenBMC Development Kit, has an ASPEED AST2500 BMC

that we have ported our embedded Intel x86 hardware-assisted debugging agent onto. Our

engineers are kind enough to allow me to tinker with it after-hours. But, first, I wanted to use

Yocto myself to build an image for this board.

Instructions on how to work with OpenBMC are on the Facebook OpenBMC GitHub. The

directions are fairly straightforward, and fairly similar to building an image for the

http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/products/embedded-diagnostics
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php
http://portwell.com/solutions/pdf/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.pdf
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview
https://github.com/facebook/openbmc

The MinnowBoard Chronicles

108

MinnowBoard. I’m pretty sure that the Neptune Alpha platform is meta-fbtp in the meta-

openbmc/meta-facebook directory. So I fired up bitbake again:

alansguigna@debian:~/poky/build$ bitbake fbtp-image
NOTE: Your conf/bblayers.conf has been automatically updated.
WARNING: Host distribution "Debian-9.1" has not been validated with this version of
the build system; you may possibly experience unexpected failures. It is recommended
that you use a tested distribution.
Parsing recipes: 100% |###| Time: 00:00:15
Parsing of 1912 .bb files complete (0 cached, 1912 parsed). 2460 targets, 379 skipped,
0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies

Build Configuration:
BB_VERSION = "1.30.0"
BUILD_SYS = "x86_64-linux"
NATIVELSBSTRING = "Debian-9.1"
TARGET_SYS = "arm-fb-linux-gnueabi"
MACHINE = "fbtp"
DISTRO = "poky"
DISTRO_VERSION = "0.4"
TUNE_FEATURES = "arm armv6"
TARGET_FPU = "soft"
meta
meta-yocto
meta-yocto-bsp = "krogoth:426bc4c3575a85391a60328edb1f7c6a6bdb95fd"
meta-oe
meta-networking
meta-python = "krogoth:55c8a76da5dc099a7bc3838495c672140cedb78e"
meta-openbmc
meta-aspeed
meta-facebook
meta-fbtp = "helium:900b1f1e10b3d4a3b7ce9b8db01182f79f0831ea"

NOTE: Fetching uninative binary shim from
http://downloads.yoctoproject.org/releases/uninative/1.0.1/x86_64-nativesdk-
libc.tar.bz2;sha256sum=acf1e44a0ac2e855e81da6426197d36358bf7b4e88e552ef933128498c8910f
8
NOTE: Preparing RunQueue
NOTE: Checking sstate mirror object availability (for 1101 objects)
NOTE: Executing SetScene Tasks
NOTE: Executing RunQueue Tasks
WARNING: byacc-native-20150711-r0 do_fetch: Failed to fetch URL ftp://invisible-
island.net/byacc/byacc-20150711.tgz, attempting MIRRORS if available
WARNING: logrotate-3.9.1-r0 do_fetch: Checksum mismatch for local file
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz
Cleaning and trying again.
WARNING: logrotate-3.9.1-r0 do_fetch: Renaming
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz to
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz_bad-
checksum_e475e2e83d8c63dc7efe648cc50aabf6
WARNING: logrotate-3.9.1-r0 do_fetch: Checksum failure encountered with download of
https://fedorahosted.org/releases/l/o/logrotate/logrotate-3.9.1.tar.gz - will attempt
other sources if available
WARNING: lmsensors-3.4.0-r0 do_fetch: Failed to fetch URL http://dl.lm-sensors.org/lm-
sensors/releases/lm_sensors-3.4.0.tar.bz2, attempting MIRRORS if available
WARNING: bios-util-0.2-r1 do_package_qa: QA Issue: /usr/bin/bios-util contained in
package bios-util requires /usr/bin/python, but no providers found in RDEPENDS_bios-
util? [file-rdeps]

The MinnowBoard Chronicles

109

WARNING: mTerm-0.1-r1 do_package_qa: QA Issue:
/usr/local/fbpackages/mTerm/mTerm_server contained in package mTerm requires
libc.so.6(GLIBC_2.4), but no providers found in RDEPENDS_mTerm? [file-rdeps]
ERROR: lzo-2.09-r0 do_configure: autoreconf execution failed.
ERROR: lzo-2.09-r0 do_configure: Function failed: do_configure (log file is located at
/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-
r0/temp/log.do_configure.30301)
ERROR: Logfile of failure stored in: /home/alansguigna/poky/build/tmp/work/armv6-fb-
linux-gnueabi/lzo/2.09-r0/temp/log.do_configure.30301
Log data follows:
| DEBUG: Executing python function sysroot_cleansstate
| DEBUG: Python function sysroot_cleansstate finished
| DEBUG: SITE files ['endian-little', 'bit-32', 'arm-common', 'arm-32', 'common-
linux', 'common-glibc', 'arm-linux', 'arm-linux-gnueabi', 'common']
| DEBUG: Executing shell function autotools_preconfigure
| DEBUG: Shell function autotools_preconfigure finished
| DEBUG: Executing python function autotools_copy_aclocals
| DEBUG: SITE files ['endian-little', 'bit-32', 'arm-common', 'arm-32', 'common-
linux', 'common-glibc', 'arm-linux', 'arm-linux-gnueabi', 'common']
| DEBUG: Python function autotools_copy_aclocals finished
| DEBUG: Executing shell function do_configure
| Unescaped left brace in regex is deprecated, passed through in regex; marked by <--
HERE in m/\${ <-- HERE ([^ \t=:+{}]+)}/ at
/home/alansguigna/poky/build/tmp/sysroots/x86_64-linux/usr/bin/automake line 3939.
| Unescaped left brace in regex is deprecated, passed through in regex; marked by <--
HERE in m/\${ <-- HERE ([^ \t=:+{}]+)}/ at
/home/alansguigna/poky/build/tmp/sysroots/x86_64-linux/usr/bin/automake line 3939.
| automake (GNU automake) 1.15
| Copyright (C) 2014 Free Software Foundation, Inc.
| License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl-2.0.html>
| This is free software: you are free to change and redistribute it.
| There is NO WARRANTY, to the extent permitted by law.
|
| Written by Tom Tromey <tromey@redhat.com>
| and Alexandre Duret-Lutz <adl@gnu.org>.
| AUTOV is 1
| NOTE: Executing ACLOCAL="aclocal --system-
acdir=/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-
r0/build/aclocal-copy/" autoreconf --verbose --install --force --exclude=autopoint -I
/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-r0/lzo-
2.09/autoconf/
| autoreconf: Entering directory `.'
| autoreconf: configure.ac: not using Gettext
| autoreconf: running: aclocal --system-
acdir=/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-
r0/build/aclocal-copy/ -I /home/alansguigna/poky/build/tmp/work/armv6-fb-linux-
gnueabi/lzo/2.09-r0/lzo-2.09/autoconf/ -I /home/alansguigna/poky/build/tmp/work/armv6-
fb-linux-gnueabi/lzo/2.09-r0/lzo-2.09/autoconf/ --force
| acinclude.m4:162: warning: the serial number must appear before any macro definition
| acinclude.m4:206: warning: the serial number must appear before any macro definition
| Segmentation fault
| aclocal: error: echo failed with exit status: 139
| autoreconf: aclocal failed with exit status: 139
| WARNING: exit code 1 from a shell command.
| ERROR: autoreconf execution failed.
| ERROR: Function failed: do_configure (log file is located at
/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-
r0/temp/log.do_configure.30301)
ERROR: Task 2622 (/home/alansguigna/poky/meta/recipes-support/lzo/lzo_2.09.bb,
do_configure) failed with exit code '1'
NOTE: Tasks Summary: Attempted 1906 tasks of which 15 didn't need to be rerun and 1
failed.
Waiting for 0 running tasks to finish:

The MinnowBoard Chronicles

110

Summary: 1 task failed:
 /home/alansguigna/poky/meta/recipes-support/lzo/lzo_2.09.bb, do_configure
Summary: There were 8 WARNING messages shown.
Summary: There were 2 ERROR messages shown, returning a non-zero exit code.

Okay, something basic is going wrong. I have to figure it out. I’ve googled some of this, without

any success yet. One tip might be that I’m building on Debian 9 on my new machine, and I got

the same warning from both the MinnowBoard Turbot and the Neptune Alpha builds:

WARNING: Host distribution "Debian-9.1" has not been validated with this version of
the build system; you may possibly experience unexpected failures. It is recommended
that you use a tested distribution.

Stay tuned!

Just as an aside, I’m keenly interested in the Neptune Alpha board, because it bills itself as the

platform for OpenBMC development. OpenBMC is, of course, the toolchain for system

management for most if not all hyperscale cloud computing environments. Embedded JTAG

control, or ScanWorks Embedded Diagnostics, adds tremendous value to system management

for said environments. I’ll write more on this topic later.

https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

111

Episode 26: Linux image build segmentation faults on AMD?

October 22, 2017

It has been quite an adventure over the last week. I’m getting intermittent segmentation faults

during my Yocto Linux image builds. Could it be a problem with my new AMD Ryzen 7 1700X

CPU?

In Episode 24, having built my new screamingly-fast AMD Ryzen 7 1700X based machine, I

used Yocto to successfully build a new QEMU image in record time. But in last week’s Episode

25, I had a mixed bag of results. I did successfully build a Yocto image for my MinnowBoard,

but unfortunately it failed to boot on my hardware. And when I tried to build a Yocto image for

the Portwell Neptune Alpha, it failed.

Last week, I presumed that the source of the problems was that I was building the images using

Debian 9.1. I would always get the following message right after the bitbake started:

WARNING: Host distribution "Debian-9.1" has not been validated with this version of the

build system; you may possibly experience unexpected failures. It is recommended that you

use a tested distribution.

So, I proceeded to somewhat haphazardly try to troubleshoot this, by first trying to re-install an

earlier version of Debian on my build machine. I rationalized this by remembering that when I

was doing builds under Virtualbox on my old PC, I was running off of Debian 8.2, and those

worked. So, I tried that first.

Alas, Debian 8.2 refused to install on my new machine. I tried the same thing with the most

current “obsolete stable” release of Debian 8 (“jessie”), 8.9. I got the same error message at the

beginning of each install, and it just hangs:

core perfctr but no constraints; unknown hardware!

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

112

I’m guessing here that these older version of Debian won’t work with the Ryzen 7 chip; the last

release of jessie was dated July 22, 2017.

So, it’s back to Debian 9.1. At least I know that I can successfully install that version on my PC.

Eventually, the Yocto project will do some testing on this release, and do some updates.

But, this time, when I tried to do the QEMU image build, it crashed!

This time (and thanks to my colleague, Adam Ley, for reminding me), I went into the log file at:

~/poky/build/tmp/work/x86_64-linux/qemu-native/2.8.0-r0/temp/log.do_compile.23003

and saw this error message:

/home/alan/poky/build/tmp/work/x86_64-linux/qemu-native/2.8.0-r0/qemu-

2.8.0/tcg/tcg.c:2800:12: internal compiler error: Segmentation fault

The “Segmentation fault” error got my attention. What’s that all about? I happened to google this

topic, and saw the article at New Ryzen Is Running Solid Under Linux, No Compiler

Segmentation Fault Issue. These segmentation fault issues seemed to happen on earlier Ryzen

chips, under heavy loads such as Linux compiles.

Could I have possibly received an older part (manufactured prior to Week 25) that exhibits this

fault under very special conditions? I’m going to do some more testing and see if this was a

coincidence or happens repeatedly. I’ve read that there’s a “Kill Ryzen” script that can manifest

the issue. If this is my situation, it’s reassuring to know that AMD has an RMA process for this

issue.

My end goal, of course, is to have my build platform rock-solid, so I can build images for the

Portwell Neptune Alpha board. This target is a development vehicle for OpenBMC, and supports

the ASPEED AST2500 BMC, the most common service processor on cloud computing servers.

Our ScanWorks Embedded Diagnostics team is using this board for its in-house development.

The MinnowBoard Chronicles Episode 27: Segfault on my AMD Ryzen 7 1700X

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh
http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics

The MinnowBoard Chronicles

113

Last week, I suspected that I might be seeing segmentation fault failures on my new AMD Ryzen

7 1700X computer. I dug into this some more this week and learned a lot!

I’m pretty conservative when it comes to calling suppliers with problems regarding my

electronics at home. I tend to want to dig into the issue and try to figure it out myself, often

spending hours in the process. Some might call this a waste of time, but I often learn a lot in the

process. And as an outcome, I really know what I’m talking about, when it comes time to call

Tech Support. My wife thinks that this inclination is related to my refusal to ask for directions

when I’m driving. Fortunately, in this era of Google Maps and built-in navigation systems, the

latter is no longer an issue.

So, when my new AMD-based PC started throwing segmentation faults during my Yocto Linux

builds (see Episode 26), I figured I should dig into it a little bit first. As I was tinkering around, I

got a notification on my Debian 9.1 home page that a new release was available. I clicked on the

“Updates” button, and soon enough, I now had Debian 9.2 on-board.

Also interestingly, about mid-week last week, I noticed that documentation for Yocto has been

updated for Yocto: http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html

has been updated to version 2.4 (“Rocko”), while before I was using version 2.3 (“Pyro”). So, I

had to do a little work to get onto the new update.

I then jumped in with both feet, and did a build for the Portwell Neptune Alpha, and it

succeeded! And I no longer got the warnings about Debian incompatibility, so between the jump

to Rocko and the update to Debian 9.2, that somehow resolved itself. Very encouraging!

Emboldened, I backed up and then did a build for QEMU (Quick Emulator). But, it crashed with

a segmentation fault!

Finished binary package job, result 0, filename /home/alan/poky/build/tmp/work/i586-poky-linux/gcc-

runtime/7.2.0-r0/deploy-rpms/i586/libssp-dev-6.2.0-r0.i586.rpm

Segmentation fault

WARNING: exit code 139 from a shell command

DEBUG: Python function do_package_rpm finished

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-26-linux-image-build-segmentation-faults-on-amd.html
http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

114

DEBUG: Python function do_package_write_rpm finished

: Function failed: BUILDSPEC (log file is located at /home/ala/poky/build/tmp/work/i586-poky-linux/gcc-

runtime/7.2.0-r0/temp/log.do_package_write_rpm.30372

I then ran several different builds, for QEMU, the MinnowBoard, and the Neptune Alpha; and

sometimes it would fail, and sometimes succeed. But mostly it would fail. So, it was time to get

more rigorous on this. Having read the articles at Ryzen Is Running Solid Under Linux, No

Compiler Segmentation Fault Issue and about the Kill Ryzen script, I began to suspect that

maybe there was something wrong with my CPU, and it was an older model. So I used Git to

download the Kill Ryzen script, and ran it:

Yes, it crashed after five minutes. And this happened repeatedly.

But the screen shot didn’t say why it crashed. I found from the Kill-Ryzen script README.md

that I had to go into the /mnt/ramdisk/workdir/buildloop.d/loop-6/build.log to see the details

behind the failure (note that the “6” comes from the signified “loop-6” failure in the screenshot

above).

And the failure logged was, indeed, a segmentation fault, as can be seen from the fifth line below

of the last lines in the log:

checking for suffix of executables...

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh

The MinnowBoard Chronicles

115

checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... /bin/bash: line 22: 2529 Segmentation
fault /bin/bash $s/$module_srcdir/configure --
srcdir=${topdir}/$module_srcdir --cache-file=./config.cache '--disable-
multilib' '--enable-languages=c,c++,fortran,lto,objc' --program-transform-
name='s,y,y,' --disable-option-checking --build=x86_64-pc-linux-gnu --
host=x86_64-pc-linux-gnu --target=x86_64-pc-linux-gnu --disable-intermodule -
-enable-checking=yes,types --disable-coverage --enable-languages="c,c++,lto"
--disable-build-format-warnings
Makefile:12563: recipe for target 'configure-stage1-libdecnumber' failed
make[2]: *** [configure-stage1-libdecnumber] Error 139
make[2]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6'
Makefile:27079: recipe for target 'stage1-bubble' failed
make[1]: *** [stage1-bubble] Error 2
make[1]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6'
Makefile:941: recipe for target 'all' failed
make: *** [all] Error 2

So, it is time to contact AMD. I placed a ticket in their online support system. Let’s keep our

fingers crossed!

Why am I doing all this? Well, partly it’s a public service, as I’m doing a lot of Linux builds as I

explore OpenBMC for the ASPEED AST2500 for our ScanWorks for Embedded Diagnostics

product line. In particular, I’m interested in applying boundary-scan test technology on Intel-

based servers using the ASPEED BMC. You can read more about the power of in-situ JTAG-

based boundary-scan test in our eBook, Embedded JTAG for Boundary-Scan Test (note: requires

registration).

http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/eresources/embedded-jtag-boundary-scan-test

The MinnowBoard Chronicles

116

Episode 27: Segfault on my AMD Ryzen 7 1700X

October 29, 2017

Last week, I suspected that I might be seeing segmentation fault failures on my new AMD Ryzen

7 1700X computer. I dug into this some more this week and learned a lot!

I’m pretty conservative when it comes to calling suppliers with problems regarding my

electronics at home. I tend to want to dig into the issue and try to figure it out myself, often

spending hours in the process. Some might call this a waste of time, but I often learn a lot in the

process. And as an outcome, I really know what I’m talking about, when it comes time to call

Tech Support. My wife thinks that this inclination is related to my refusal to ask for directions

when I’m driving. Fortunately, in this era of Google Maps and built-in navigation systems, the

latter is no longer an issue.

So, when my new AMD-based PC started throwing segmentation faults during my Yocto Linux

builds (see Episode 26), I figured I should dig into it a little bit first. As I was tinkering around, I

got a notification on my Debian 9.1 home page that a new release was available. I clicked on the

“Updates” button, and soon enough, I now had Debian 9.2 on-board.

Also interestingly, about mid-week last week, I noticed that documentation for Yocto has been

updated for Yocto: http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html

has been updated to version 2.4 (“Rocko”), while before I was using version 2.3 (“Pyro”). So, I

had to do a little work to get onto the new update.

I then jumped in with both feet, and did a build for the Portwell Neptune Alpha, and it

succeeded! And I no longer got the warnings about Debian incompatibility, so between the jump

to Rocko and the update to Debian 9.2, that somehow resolved itself. Very encouraging!

Emboldened, I backed up and then did a build for QEMU (Quick Emulator). But, it crashed with

a segmentation fault!

Finished binary package job, result 0, filename /home/alan/poky/build/tmp/work/i586-poky-linux/gcc-

runtime/7.2.0-r0/deploy-rpms/i586/libssp-dev-6.2.0-r0.i586.rpm

Segmentation fault

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-26-linux-image-build-segmentation-faults-on-amd.html
http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

117

WARNING: exit code 139 from a shell command

DEBUG: Python function do_package_rpm finished

DEBUG: Python function do_package_write_rpm finished

: Function failed: BUILDSPEC (log file is located at /home/ala/poky/build/tmp/work/i586-poky-linux/gcc-

runtime/7.2.0-r0/temp/log.do_package_write_rpm.30372

I then ran several different builds, for QEMU, the MinnowBoard, and the Neptune Alpha; and

sometimes it would fail, and sometimes succeed. But mostly it would fail. So, it was time to get

more rigorous on this. Having read the articles at Ryzen Is Running Solid Under Linux, No

Compiler Segmentation Fault Issue and about the Kill Ryzen script, I began to suspect that

maybe there was something wrong with my CPU, and it was an older model. So I used Git to

download the Kill Ryzen script, and ran it:

Yes, it crashed after five minutes. And this happened repeatedly.

But the screen shot didn’t say why it crashed. I found from the Kill-Ryzen script README.md

that I had to go into the /mnt/ramdisk/workdir/buildloop.d/loop-6/build.log to see the details

behind the failure (note that the “6” comes from the signified “loop-6” failure in the screenshot

above).

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh

The MinnowBoard Chronicles

118

And the failure logged was, indeed, a segmentation fault, as can be seen from the fifth line below

of the last lines in the log:

checking for suffix of executables...
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... /bin/bash: line 22: 2529 Segmentation
fault /bin/bash $s/$module_srcdir/configure --
srcdir=${topdir}/$module_srcdir --cache-file=./config.cache '--disable-
multilib' '--enable-languages=c,c++,fortran,lto,objc' --program-transform-
name='s,y,y,' --disable-option-checking --build=x86_64-pc-linux-gnu --
host=x86_64-pc-linux-gnu --target=x86_64-pc-linux-gnu --disable-intermodule -
-enable-checking=yes,types --disable-coverage --enable-languages="c,c++,lto"
--disable-build-format-warnings
Makefile:12563: recipe for target 'configure-stage1-libdecnumber' failed
make[2]: *** [configure-stage1-libdecnumber] Error 139
make[2]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6'
Makefile:27079: recipe for target 'stage1-bubble' failed
make[1]: *** [stage1-bubble] Error 2
make[1]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6'
Makefile:941: recipe for target 'all' failed
make: *** [all] Error 2

So, it is time to contact AMD. I placed a ticket in their online support system. Let’s keep our

fingers crossed!

Why am I doing all this? Well, partly it’s a public service, as I’m doing a lot of Linux builds as I

explore OpenBMC for the ASPEED AST2500 for our ScanWorks for Embedded Diagnostics

product line. In particular, I’m interested in applying boundary-scan test technology on Intel-

based servers using the ASPEED BMC. You can read more about the power of in-situ JTAG-

based boundary-scan test in our eBook, Embedded JTAG for Boundary-Scan Test (note: requires

registration).

http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/eresources/embedded-jtag-boundary-scan-test

The MinnowBoard Chronicles

119

Episode 28: Returning my AMD Ryzen 7 1700X CPU

November 29, 2017

Yes, I received an older AMD Ryzen 7 1700X CPU from Amazon. It’s RMA time!

In Episode 27, I wrote about intermittently getting segmentation faults on my new AMD-based

PC whenever I did Yocto Linux builds. I found some information online in New Ryzen Is

Running Solid Under Linux, No Compiler Segmentation Fault Issue and AMD Replaces Ryzen

CPUs for Users Affected By Rare Linux Bug.

It seems that earlier production runs of the chip had a problem with cache coherency. So, after I

returned from my vacation, I put in for an RMA number from AMD, and proceeded to remove

and box up the faulty CPU. Whenever I’ve done PC builds, installing the CPU and heatsink are

always the most hair-raising part, and taking this apart was a little nerve-wracking. Nonetheless,

after CPU was removed and the thermal paste wiped off, the markings did in fact tell the tale:

The “UA 1709PGT” on the second line designated that this was a work week 09 production run,

and all CPUs prior to WW25 are expected to have the segfault issue.

So, it’s back to AMD for the bad CPU. So far, their RMA process has been pretty responsive. I

expect the new CPU back next week and will keep you posted.

Once I get my machine back together again, I’ll resume my efforts on the MinnowBoard Turbot,

to install a working implementation of Linux. I expect to do some basic source-level Linux

kernel debug using SourcePoint. Also, I’m planning on further investigations into the Portwell

Neptune Alpha board, which supports the ASPEED AST2500 BMC, our development platform

for the ScanWorks Embedded Diagnostics JTAG-based run-control debug product.

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-27-segfault-on-my-amd-ryzen-7-1700x.html
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.extremetech.com/computing/254750-amd-replaces-ryzen-cpus-users-affected-rare-linux-bug
https://www.extremetech.com/computing/254750-amd-replaces-ryzen-cpus-users-affected-rare-linux-bug
https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

120

Episode 29: My new AMD Ryzen 7 CPU works, kind of

December 25, 2017

Out of the frying pan, and into the fire: I beat the #&@! out of my new CPU from AMD, and the

segmentation faults have gone away. But, now the new system is crashing!

In the MinnowBoard Chronicles Episodes 27 and 28, I wrote about my discovery that I had

acquired an older AMD Ryzen 7 1700X CPU from Amazon. The older production runs of these

chips exhibited problems with cache coherency, that only manifest themselves rarely when

you’re cranking all 16 threads simultaneously. And that was just what I was doing with my

Yocto Linux builds for the MinnowBoard Turbot and Portwell Neptune Alpha boards: the

compilation process maxes out CPU utilization. This past month, I RMA’ed my older CPU (that

had a datestamp of work week 09) to AMD, and very promptly got a replacement in the mail (a

nod to AMD for responding so quickly and efficiently). When I unwrapped it, I was delighted to

see that it was a much more current production run:

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-27-segfault-on-my-amd-ryzen-7-1700x.html
http://blog.asset-intertech.com/test_data_out/2017/11/the-minnowboard-chronicles-episode-28-returning-my-amd-ryzen-7-1700x-cpu.html

The MinnowBoard Chronicles

121

If you look carefully, you’ll see that the datestamp is “1737”, versus the “1709” from my

previous device. From my researches on the web, via for example New Ryzen Is Running Solid

Under Linux, No Compiler Segmentation Fault Issue, we know that any CPU with a datestamp

after work week 25 should be good. So, I carefully re-installed the new CPU into my home-built

PC (which is always a nerve-wracking process, by the way, since this is my money and I don’t

want to mess anything up), and put it to the test by running the Kill Ryzen script again:

It ran for several hours, and it was getting late, so, I let it run overnight. When I got up in the

morning, this is what I saw:

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1

The MinnowBoard Chronicles

122

In the middle of the night, it crashed the system, with a kernel dump! This bears further

investigation. Is it some new flaw in the new chip? Some incompatibility with Ubuntu? Did I re-

install the new CPU correctly, with the right amount of thermal paste? Or maybe a bug in the

Kill Ryzen script? So many interesting avenues to explore, so little time…

It’s easy to get distracted while on a mission, but I decided to put this issue in the parking lot for

now and focus on the main goal: doing a Linux build for the MinnowBoard Turbot. Apparently,

something is still suspect with my system, but at least it appears that it can run for several hours

without the segmentation faults manifesting; which would lead me to believe that I can probably

consistently do a Yocto build without any failures. It was time to put that to the test.

Since it’s been a while since I did a Yocto build, I decided to do a QEMU emulator run from a

fresh environment, following the directions in the Yocto Project Quick Start Guide. QEMU

images were easier to build, I found, with less chance of user error on my part. I used the same

approach as documented in The MinnowBoard Chronicles Episode 22: Project Yocto success!,

and it fired up right away and started running. Normally, it takes about 45 minutes (on my new

PC, using all 16 threads, assuming it didn’t crash due to an AMD segmentation fault on the old

CPU) to build a QEMU image, so I stepped away for a coffee, and let it run:

http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://blog.asset-intertech.com/test_data_out/2017/08/the-minnowboard-chronicles-episode-22-project-yocto-success.html

The MinnowBoard Chronicles

123

Alas, when I returned, the system was sitting in the Ubuntu login screen! Somehow, something

bad was happening during the build, and it would never complete, but rather would reboot and

put me into the login screen. I tried this numerous times, and always got the same result. I looked

into the logs in ~poky/build/tmp/log/cooker/qemux86, and saw that it got to task 4283 of 6148,

but then the log ended, with no failure information. The last lines looked like:

NOTE: Running task 4281 of 6148 (/home/alan/poky/meta/recipes-core/dbus/dbus-
glib_0.108.bb:do_package)
NOTE: recipe libxt-1_1.1.5-r0: task do_package: Started
NOTE: recipe dbus-glib-0.108-r0: task do_package: Started
NOTE: recipe eudev-3.2.2-r0: task do_compile: Succeeded
NOTE: Running task 4282 of 6148 (/home/alan/poky/meta/recipes-
core/udev/eudev_3.2.2.bb:do_install)
NOTE: recipe eudev-3.2.2-r0: task do_install: Started
NOTE: recipe libtirpc-1.0.2-r0: task do_package: Started
NOTE: recipe cairo-1.14.10-r0: task do_configure: Succeeded
NOTE: Running task 4283 of 6148 (/home/alan/poky/meta/recipes-
graphics/cairo/cairo_1.14.10.bb:do_compile)
NOTE: recipe cairo-1.14.10-r0: task do_compile: Started

Somewhat frustrated at this point, I elected to try a different approach, with a completely fresh

environment. I had had some earlier success with Yocto using Virtualbox on my old machine, so

I installed Virtualbox on my new machine and clicked on “New” to begin the new installation.

What I found what that only 32-bit operating were supported! It took a little digging around on

Google, but I finally found out that the default setting on my AMI BIOS did not support

virtualization. I had to boot into UEFI and enable this setting first. It was really hard to find: in

The MinnowBoard Chronicles

124

the AMI UEFI BIOS Utility, it’s buried under the Advanced Menu, and labeled “SVM Mode”.

After this was done, I was finally able to create a new 64-bit virtual machine.

I decided to go ahead and install Ubuntu 16.04.3 LTS desktop, the same as I had on my separate

Linux partition, to see if running it in a VM made any difference. I could always install Debian

or any of the other distributions later.

So, once again following the instructions in the Yocto Project Quick Start 2.4 document, I kicked

off another QEMU bitbake. It only used one thread as a default within the VM, not the 16 that I

have on my AMD CPU, but I decided to let it run anyway to see what happened. And it ran to

completion!

http://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html

The MinnowBoard Chronicles

125

Now, that is a real clue. On my separate Ubuntu partition, it was blasting away with all 16

threads, and never finishing. Cut it back to one thread and run in a VM, and it finished (albeit

taking almost 7 hours, compared to the 45 minutes it was taking when it managed to run to

completion using the older AMD CPU and 16 threads). There is a BB_NUMBER_THREADS

variable that I can set in my project’s local.conf configuration file that might be able to adjust

this? Maybe I should adjust this to a higher number and see when it starts to crash? Stay tuned!

The MinnowBoard Chronicles

126

Episode 30: Using all 16 threads on my Ryzen?

January 14, 2018

In my last blog, I observed that running Yocto Linux builds with all 16 threads of my new AMD

Ryzen 7 1700X machine would always crash. Running under VirtualBox and only using one

thread always worked; but it took seven hours. Could I achieve a compromise?

In Episode 29 of the MinnowBoard Chronicles, I described how I RMA’ed my original 2017

work week 9 Ryzen 7 1700X CPU, and got a new one with a production date stamp of work

week 37. Luckily, this made the segmentation faults entirely go away during my Yocto image

builds. I could play Gears of War 4 for hours without troubles. But, consistently, the new system

would kick me out to the login screen after about 4,000 tasks into the 6,148 tasks executed to do

a Yocto QEMU build on my Linux partition using all 16 threads. So, was I back where I started?

Googling this online and finding nothing, I decided to go back and use VirtualBox like I had

done in earlier episodes of the Chronicles. And this worked like a charm; but by default

VirtualBox used only one thread of my 16-thread AMD CPU. Luckily, it was easy enough to

adjust the number of cores up in VirtualBox’s settings. I decided to respect its recommendations

to leave 8 cores available to Windows and have 8 decided to my Ubuntu VM for the Yocto

builds.

And then, firing up all eight cores for the build:

http://blog.asset-intertech.com/test_data_out/2017/12/the-minnowboard-chronicles-episode-29-my-new-amd-ryzen-7-cpu-works-kind-of.html

The MinnowBoard Chronicles

127

Everything looked good so far, until I stepped away for coffee. When I came back – bang! – it

was back to the logon screen again!

The MinnowBoard Chronicles

128

The good news is, if I go down one core, down to seven cores, the build will complete

successfully 100% of the time.

There seems to be some strange “num_cores – 1” thing going on here: if I max out the core

utilization, it always fails; if I go down by one, it always succeeds. If anyone knows why this

might be, please do feel free to drop me a note – it’s very strange.

Now that I’m up and running again, I can’t wait to finish a MinnowBoard Turbot Yocto image

build, and begin using SourcePoint for some serious debugging.

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

129

Episode 31: First attempts to debug the Linux kernel

March 11, 2018

In Episode 30, I finally succeeded in building a Yocto Linux image for the MinnowBoard. But, it

won’t boot! Is it time to drag out a copy of SourcePoint to help?

In the Chronicles Episode 30, Using all 16 Threads on my Ryzen?, I finally had some success in

building a Yocto Linux image for QEMU. I can’t seem to take advantage of all 16 threads,

because the build crashes consistently when the thread count is maxed out. But, in the grand

scheme of things, I’ve decided not to spend too much time debugging that. The build just takes a

little longer than it normally would running at full tilt: normally it completes in about 45 minutes

or so. I have my eye on the prize of building a real Linux embedded image for the MinnowBoard

and running it successfully.

As a warm-up and a refresher, since a lot of things have changed since I last tried this (RMA on

my AMD CPU, moving from Debian to Ubuntu, new version of YP Core – Rocko 2.4.1, etc.), I

wanted to first install a copy of Ubuntu Linux on the MinnowBoard. It is easy enough to just

follow the instructions at the MinnowBoard.org tutorial page, Installing Ubuntu 16.04.3 LTS.

This worked like a charm, just like it did way back in Episode 24, New MinnowBoard, New PC,

and a nod to Netgate. It’s worth noting that a full install of Ubuntu Desktop runs very slowly on

the MinnowBoard, but for me this is just a proof-of-concept and a learning experience, so that’s

fine.

Feeling confident, it was time to build a fresh image for the MinnowBoard using the Yocto

Project. Things have changed a bit since I last tried this, not the least of which is that we are now

on the “Rocko” release of the YP. I followed the instructions in the Yocto Quick Start Guide,

that describes clearly how to build an image for the MinnowBoard Turbot. And it took multiple

runs before the image would build; but finally it came out.

Having had success in building a Yocto Linux image, it was time to try to install it on my

MinnowBoard. Just as before, this is accomplished by inserting the USB stick with the image

files into the board, and then hitting F2 while powering up to go into the UEFI menu. Selecting

“Boot Manager” followed by “EFI USB Device” starts the boot process:

http://blog.asset-intertech.com/test_data_out/2018/01/the-minnowboard-chronicles-episode-30-using-all-16-threads-on-my-ryzen.html
https://minnowboard.org/tutorials/installing-ubuntu-lts/
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
https://www.yoctoproject.org/docs/2.4.1/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

130

Alas, I got the same issue as I did way back in Episode 25, Yocto builds for the MinnowBoard

and the Portwell Neptune Alpha; the boot process runs up a point and then just hangs:

The boot process stalls right after it seems to be enumerating the USB keyboard and then mouse.

I tried a lot of different things to get past this: get rid of the USB hub that I’m using, ditching the

mouse, swapping ports, pulling the keyboard USB port out and putting it back in again, etc.

So, with all this time going by, I still haven’t managed to get my own Linux image onto the

MinnowBoard. It was time to drag out the “big guns”: a tool that would help me identify root

cause in the code as to why the image would not build. It was time to use our hardware-assisted

debugger, SourcePoint. With its capabilities of viewing the offending code, setting breakpoints,

single-stepping through the code, and finally trace capabilities, I should be able to see what’s

going on.

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

131

The first thing I did was to power up the MinnowBoard, and have it start booting off the USB

stick. Powering up the emulator, I used JTAG to halt the boot process somewhere close to where

the USB mouse enumeration is failing:

If you look carefully at the two outputs, you can see that SourcePoint halted the code flow right

after the message “Write Protect is off”, which is about six lines of output above where the

system hung in the prior screenshot.

The SourcePoint screen shows that only one of the cores is running (the second core is sleeping

from the Viewpoints window); the General Purpose Registers (GPRs) are displayed; and the

Code window shows where we are in the boot code:

The MinnowBoard Chronicles

132

The information in the Code window isn’t particularly edifying to me. I do see a couple of

instructions I haven’t tripped across before in my UEFI travels, such as “LOCK AND” and

“MFENCE”; but without source code, it’s hard to see what’s going on.

Just for reference’s sake, here is what the Intel Software Developer’s Manual, Volume 2B says:

LOCK

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying

instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,

the LOCK# signal ensures that the processor has exclusive use of any shared memory while the

signal is asserted.

In most IA-32 and all Intel 64 processors, locking may occur without the LOCK# signal being

asserted. See the “IA- 32 Architecture Compatibility” section below for more details.

MFENCE

Performs a serializing operation on all load-from-memory and store-to-memory instructions that

were issued prior the MFENCE instruction. This serializing operation guarantees that every

load and store instruction that precedes the MFENCE instruction in program order becomes

https://software.intel.com/en-us/articles/intel-sdm#three-volume

The MinnowBoard Chronicles

133

globally visible before any load or store instruction that follows the MFENCE instruction. The

MFENCE instruction is ordered with respect to all load and store instructions, other

MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions

(such as the CPUID instruction). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance through

such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.

The degree to which a consumer of data recognizes or knows that the data is weakly ordered

varies among applications and may be unknown to the producer of this data. The MFENCE

instruction provides a performance-efficient way of ensuring load and store ordering between

routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that

use the WB, WC, and WT memory types. This speculative fetching can occur at any time and is

not tied to instruction execution. Thus, it is not ordered with respect to executions of the

MFENCE instruction; data can be brought into the caches speculatively just before, during, or

after the execution of an MFENCE instruction.

Rather than continue any investigations into the use of these instructions at this time, I decided to

then let the boot process continue until it hangs, by using the Run button; and then halt it again

and see what I could learn.

Interestingly, nothing further comes out on the screen over the HDMI connection. I realize that I

should have had the serial output capture on my Mac’s CoolTerm application as a backup, but

that’s for later.

But we’re at a different point in the code now:

The MinnowBoard Chronicles

134

Again, we are halted at an instruction “XRELEASE PAUSE” that I am not familiar with. The

SDM reveals XACQUIRE and XRELEASE as “prefix hints”:

The XRELEASE prefix hint can only be used with the following instructions (also referred to as

XRELEASE-enabled when used with the XRELEASE prefix):

• Instructions with an explicit LOCK prefix (F0H) prepended to forms of the instruction

where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS,

CMPXCHG, CMPXCHG8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and

XCHG.

• The XCHG instruction either with or without the presence of the LOCK prefix.

• The “MOV mem, reg” (Opcode 88H/89H) and “MOV mem, imm” (Opcode C6H/C7H)

instructions. In these cases, the XRELEASE is recognized without the presence of the

LOCK prefix.

The lock variables must satisfy the guidelines described in Intel® 64 and IA-32 Architectures

Software Developer’s Manual, Volume 1, Section 16.3.3, for elision to be successful, otherwise

an HLE abort may be signaled.

https://software.intel.com/en-us/articles/intel-sdm#three-volume

The MinnowBoard Chronicles

135

This is a little obscure. I don’t see reference to an “XRELEASE PAUSE” anywhere in the SDM,

or just about anywhere in Google. But looking at the definition of the PAUSE instruction might

be educational:

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” processors

will suffer a severe performance penalty when exiting the loop because it detects a possible

memory order violation. The PAUSE instruction provides a hint to the processor that the code

sequence is a spin-wait loop. The processor uses this hint to avoid the memory order violation in

most situations, which greatly improves processor performance. For this reason, it is

recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a processor

while executing a spin loop. A processor can execute a spin-wait loop extremely quickly, causing

the processor to consume a lot of power while it waits for the resource it is spinning on to

become available. Inserting a pause instruction in a spinwait loop greatly reduces the

processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with all

IA-32 processors. In earlier IA-32 processors, the PAUSE instruction operates like a NOP

instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE instruction as a

delay. The delay is finite and can be zero for some processors. This instruction does not change

the architectural state of the processor (that is, it performs essentially a delaying no-op

operation).

Presuming that the disassembled code is correct, I can only guess that we are in some sort of

critical time loop, maybe a CPU deadloop. Will it ever exit? There’s only one way to find out:

keep stepping through the code and use SourcePoint to provide some insight into the loop.

There are four instructions that are part of the loop:

FFFFFFFF8110707BL F390 XRELEASE PAUSE
FFFFFFFF8110707DL 418B5C2420 MOV EBX, DWORD PTR [R12]+20
FFFFFFFF81107082L 39D3 CMP EBX, EDX
FFFFFFFF81107084L 74F5 JE SHORT PTR FFFFFFFF8110707B

The MinnowBoard Chronicles

136

You can see from the screenshot that both EBX and EDX are set to 1 currently, so the loop will

keep executing until EBX gets changed by the MOV instruction, that sets EBX to the value

contained at the address 20 bytes offset from the contents of R12. We need to see the Intel 64

GPRs in order to determine what address is contained within R12, and then to peek at the address

offset 20 bytes from that:

R12 contains FFFFC900006E3E18, and the x’20’ offset yields FFFFC900006E3E38, and

looking at the memory display windows shows that address containing 0000000100000001

(remember that x86 is little-endian). Taking the DWORD value always yields 1 being put into

EBX. This is a deadloop; unless some other process changes the value at address

FFFFC900006E3E38, it will never exit the loop. And that is just what I found.

I did try to tinker with the contents of the EDX register, and also the value at

FFFFC900006E3E38, and did manage to get the code to temporarily exit the four-instruction

loop. But, it always came back to the deadloop, sooner or later.

There are quite a few different directions I could go at this point, including using some of the

x86 Trace features like Branch Trace & Store (BTS) to follow the code flow leading up to this

problem. But, realistically, admitting that, one way or the other, I’m lost without source code,

that’s become the next step: creating my Yocto Linux build with source and symbols, and

The MinnowBoard Chronicles

137

loading them into SourcePoint so I can see exactly what is happening in this area of the code.

There are no guarantees that seeing the source will help me debug this problem, but it’s a start.

This looks like a big challenge. Even though I’ve read Robert Love’s Linux Kernel Development

from cover to cover, I am by no means a Linux expert (which should be obvious to anyone

following these MinnowBoard Chronicles episodes), let alone understanding the operations of

the kernel well enough to figure out why it won’t boot. There is an entire document at Yocto

Project Linux Kernel Development Manual that should help me, though. We’ll see how it goes!

With source code, I should be able to see what code is accessing FFFFC900006E3E18, and set a

Data Write breakpoint at that point to see what is putting data in there. I’ll also be able to use

SourcePoint’s support for the powerful x86 Trace features (check out the eBook; requires

registration) to see backwards in time and maybe get some insight as to why I’m stuck in the

deadloop. Should be fun!

https://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468
https://www.yoctoproject.org/docs/2.4.1/kernel-dev/kernel-dev.html
https://www.yoctoproject.org/docs/2.4.1/kernel-dev/kernel-dev.html
https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

138

Afterword

Phew! After about 15 months of exploring and writing about the MinnowBoard, I’m ready to

take a break. I learned a huge amount about Intel Architecture, UEFI, Linux, JTAG, and a

plethora of other technical topics during this journey. I’ve always absorbed information better

when I’ve subsequently written about it. I can see myself referring back to this book in the

future, recalling some of the more obscure technology that I’ve dabbled with.

I’m hoping that this book makes for a good, albeit long, story. Maybe others will use it as a

reference for some of the technical topics therein. It’s easy enough to search through the

contents, looking for tips. And perhaps someone has a problem with the design or debug of a

particular piece of hardware, firmware, or software that I ran into and solved, and will learn in

this book how to move forward. I’d be happy about that.

So, I’m ready to move on to write about other topics. So much to write about, so little time.

On the other hand, there are a few nagging MinnowBoard issues that I never did manage to solve

in the last year or so. I’m already starting to feel an itch to take another look at them. Will there

be an update to this book in the future, or perhaps a Volume 2? We’ll see!

	Foreword
	Episode 1: SourcePoint Debugging the MinnowBoard Turbot
	Episode 2: Updating the UEFI Firmware
	Episode 3: Building the UEFI Image
	Episode 4: UEFI Source Code
	Episode 5: PEIM and DXE
	Episode 6: LBR Trace
	Episode 7: Single-Stepping through Code
	Episode 8: The Reset Vector, and Boot Flow
	Episode 9: SourcePoint Command Language and Macros
	Episode 10: The UEFI shell
	Episode 11: Using Instruction Trace
	Episode 12: Writing UEFI Applications
	Episode 13: UEFI Applications using Standard ‘C’
	Episode 14: Poking around SecCore in UEFI
	Episode 15: More UEFI Application Development in ‘C’
	Episode 16: Delving into LBR Trace
	Episode 17: Using LBR Trace without Source Code
	Episode 18: Reverse-Engineering Code Execution
	Episode 19: The Yocto Project
	Episode 20: Building and Installing Linux
	Episode 21: Building and Installing Linux, Part 2
	Episode 22: Project Yocto success!
	Episode 23: Trying Wind River Pulsar Linux, and taking a break
	Episode 24: New MinnowBoard, New PC, and a nod to Netgate
	Episode 25: Yocto builds for the MinnowBoard and the Portwell Neptune Alpha
	Episode 26: Linux image build segmentation faults on AMD?
	Episode 27: Segfault on my AMD Ryzen 7 1700X
	Episode 28: Returning my AMD Ryzen 7 1700X CPU
	Episode 29: My new AMD Ryzen 7 CPU works, kind of
	Episode 30: Using all 16 threads on my Ryzen?
	Episode 31: First attempts to debug the Linux kernel
	Afterword

