THE
MINNOWBOARD

CHRONICLES

A JOURNEY OF DISCOVERY IN X86
ARCHITECTURE, UEFI, DEBUG &
TRACE, YOCTO LINUX AND OTHER

TOPICS

BY ALAN SGUIGNA

ASSET

The MinnowBoard Chronicles

Alan Sguigna - Vice President of Sales & Customer Service

Alan has more than 20 years of experience in senior-level general management,

marketing, engineering, sales, manufacturing, finance and customer service

positions. Before joining ASSET, he worked in the telecom industry. He has had
profit and loss responsibility for a $150 million division of Spirent Communications, a supplier
of test products and services. Prior to his tenure with Spirent, Mr. Sguigna also served in
business development positions with Nortel Networks, overseeing the growth of its voice over

Internet protocol (VoIP) products.

>ourcePoint) ScanWorks'

Platform for Embedded Instruments

The MinnowBoard Chronicles

Table of Contents

FOT@WOTA ...t ettt ettt sttt e at e sb et eat e s bt e be e st e sbeeaeeanens 5
Episode 1: SourcePoint Debugging the MinnowBoard Turbotcccceevieeiiienieniiienieeieeee 6
Episode 2: Updating the UEFI FIrMWATEcccccuiiiiiiieiiieeiieceeecee e 8
Episode 3: Building the UEFT IMage........c.coovuiiiiiiieiie ettt 13
Episode 4: UEFL SOUICE COAECccuiiiuiieiiiiieeiieeie ettt ettt et ettt e seaeesbeesnseeneees 16
Episode 5: PEIM and DXEcoooiiiiiiiiiiccieee ettt ettt et e 19
EpPiSOde 6: LBR TTACE.....cccuiiiiiiieiiieciiee ettt ettt st e st e e s e e e saeeesaaeennaeessnneesnseeenns 25
Episode 7: Single-Stepping through Code..........cccuvieiiiiiiiiieiiece e 28
Episode 8: The Reset Vector, and Boot FIOW.........cccooviiiiiiiiiiiiiiiceeeee e 32
Episode 9: SourcePoint Command Language and Macros...........ccccueeeeeriieniienieenieeeieeieesveeneeen 37
Episode 10: The UEFT Shell.......ccocviiiiiiiiieeee ettt et e 40
Episode 11: Using INStruction TTaCe.........cueeeuiiiiiieiiiie ettt esee e e e saeeesaee e 45
Episode 12: Writing UEFT APPliCAtIONS........cccuieiiieiieiieeiieeie ettt ettt e 49
Episode 13: UEFI Applications using Standard “C’..........c.coooiieviiiiiiiiiieniieiecie et 52
Episode 14: Poking around SecCore in UEFL...........ccccooiiiiiiiiiiiieeecee e 55
Episode 15: More UEFI Application Development in ‘C’ccceeeviiieeiiieeiiieeiee e 59
Episode 16: Delving into LBR TTaCE........ccccuiiiiiiiiieiieiieciieee ettt 70
Episode 17: Using LBR Trace without Source Codecccueeviiiriiiiieniieiieeieeieeeee e 74
Episode 18: Reverse-Engineering Code EXECULIONccccvveeiiiiiiciiiiiiiieciie e 77
Episode 19: The YOCtO PTOJECT ..ccouiiiiiiieciie ettt et e e srae e 82
Episode 20: Building and Installing LinUXccccveiiiiiiiiieeiieceeeciee et 85
Episode 21: Building and Installing Linux, Part 2.........c..cccccoiiriiiiniiniiieececeeeee 92
Episode 22: Project YOCTO SUCCESS!oiiiiiiiieiieiieetieiie ettt ettt et siae ettt ebeesnaeeneaas 95
Episode 23: Trying Wind River Pulsar Linux, and taking a break............cccccceeeviieevieeniiieninns 99

Platform for Software Debug and Trace

ScanWorks’

Platform for Embedded Instruments

&

3

Episode 24:
Episode 25:
Episode 26:
Episode 27:
Episode 28:
Episode 29:
Episode 30:
Episode 31:

Afterword..

The MinnowBoard Chronicles

New MinnowBoard, New PC, and a nod to Netgateccceeeveeeeienveeniienireienne 101
Yocto builds for the MinnowBoard and the Portwell Neptune Alpha.................... 106
Linux image build segmentation faults on AMD?..........ccccevviieiiiniienienieeieeee 111
Segfault on my AMD Ryzen 7 1700X.......cccouiieiiieeiiieeiee et 116
Returning my AMD Ryzen 7 1700X CPUoooiiiiiiiiieeeeeeeeeeee e 119
My new AMD Ryzen 7 CPU works, kind ofcccoeieniiiiiiniiiiicieeee 120
Using all 16 threads on my Ryzen?c.ocoeeiiiiiiiiiiiiniieeeeee e 126
First attempts to debug the Linux kernelccccoveiiiiiiiieniiiieieceeeee e, 129
.. 138

© 2017-2018 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks, and SourcePoint and the ScanWorks logo are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

Platform for Software Debug and Trace

O ScanWorks®

Platform for Embedded Instruments

The MinnowBoard Chronicles

Foreword

In September 2016, while attending the UEFI Forum Plugfest in Bellevue, WA, I got to thinking
about how complex and obscure this successor to the BIOS actually was. It seemed to be the
domain of technical gurus with a penchant for obscurity — or so it seemed to my “UEFI newbie”
mind. Although I had a nodding familiarity with terms like PEIM, DXE, HOBs, and so on, I
really had no direct experience with them. And it seemed difficult, if not impossible, to gain the
direct, hands-on learning that I like when exploring a new technical topic. There were few easy-
to-read books or YouTube videos that I could find. Maybe this was the way it was supposed to
be? Maybe you had to work in the field to actually learn the internals? Was this a “security

through obscurity” tactic?

While cogitating on this, I happened across the Intel test room at the Plugfest and struck up a
conversation with one of the application engineers there. When I expressed my lament, he asked
if I knew about the new MinnowBoard Turbot. “Open source hardware, open source software
and firmware — this is exactly what you want!”. After a short discussion, we parted ways, and I

continued my investigations.

A few weeks later, I was surfing the web and happened across the MinnowBoard website. This
was exactly what I was looking for! And access to the UEFI source, with complete build

instructions, was in an easy-to-read tutorial.

So, I got my MinnowBoard Turbot for Christmas, and so began a journey of exploration and
learning that has lasted over a year. As I explored all facets of the hardware, firmware and

software of the Minnow, I wrote about it in the ASSET InterTech blog site. Typically I wrote

something fresh once a week, sometimes once every two weeks when life got in the way.

If you are a newbie to UEFI, or want to learn all about firmware, Linux, platform debug, trace
features, and the Yocto Project from a set of fresh eyes, this is the place to be. I hope that you

enjoy the story as much as I did writing it.

Alan Sguigna
March 19, 2018

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://www.minnowboard.org/
https://minnowboard.org/tutorials/updating-the-firmware
http://blog.asset-intertech.com/

The MinnowBoard Chronicles

Episode 1: SourcePoint Debugging the MinnowBoard Turbot

January 8, 2017

It may not be everyone’s idea of a good time, but I was delighted to receive a MinnowBoard

Turbot for Christmas. I hooked it up to my copy of SourcePoint, and the results were pretty cool.

Imagine my surprise when I unwrapped one of my gifts to find a MinnowBoard Turbot inside.

This little PCB is an affordable open-source hardware platform for makers and hackers; think of
it as the Intel version of the Raspberry Pi. It sports a dual-core 64-bit Intel® Atom™ E3826
(code name “Bay Trail-I"") system-on-a-chip (SoC) with support for 2GB RAM, USB 2.0, USB
3.0, HDMI, Ethernet, GPIO, SATA2, MicroSD, and a number of other interfaces and built-in
capabilities. The entire hardware design is open source and set it up with a USB keyboard and
HDMI monitor and it boots right up into the EFI shell so you can play with it right away. It’s
easy enough to add support for a higher-level OS, such as Debian Linux, Windows IoT, Yocto,

or others.

But the really cool thing about the MinnowBoard is that it supports a high-speed expansion
(HSE) 60-pin connector on the bottom side of the board. This interface is used to connect to a
variety of breakout board “Lures” for fast prototyping and tinkering. One of these Lures is the
“Debugger Lure” from Tin Can Tools. The Debugger Lure is an expansion board that adds a
JTAG debugging interface for the Intel XDP. It is designed to work with Intel's In-Target Probe
(ITP) XDP JTAG debugger, but

of course it just hooks up to the : ‘
standard JTAG/XDP interface, so
it works with ASSET’s
SourcePoint debugger too. I was
really excited about hooking it up

to my ECM-XDP3 hardware

emulator and debugging UEFI on
the MinnowBoard. Hooked
together, it looks like this:

ECM-XDP3

Required
grcfi*&' ance OnlY

\ IMHHJI]!IJIDIIIH
SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.minnowboard.org/
http://www.tincantools.com/Debugger-Lure.html

The MinnowBoard Chronicles

The emulator plugs into the standard 60-pin XDP header on the Debugger Lure, which in turn
plugs into the HSE header on the bottom of the MinnowBoard. It was very easy to set up.

Once you have the hardware set up, getting SourcePoint configured is simple. I just opened a
New Project, imported the target configuration file for 2-core Bay Trail, powered on the target,
and then powered on the emulator. Everything came up the very first time, and after a couple of
minutes I had the target halted and in debug mode, with full display of the processor status, x86

registers, memory dump, and disassembled code window.

@ SourcePoint - SLM Core - CAUsers\lames\Documents\AriumSaurcePoint-IA\BayTrail2C. i T

File Edit View Processor Options Command Window Help

FEEWHEW @ E| @ 95 OB W BroweldRest W M B 0T | M
@ Breakpoints (& Code > Command [ElLog B Memory IPRegisters @ Symbols ¢ Trace @ Viewpoint Q, Watch - = ?
I Code (P0): (64-bit) Tracking IP: 0000000000000000L - FFFFFFFFFFFFFFFEL = [E][=]) Viewpoint == =]
BZD4DL C INT 3 = Name Description Status
00000000787B2D4EL CC INT 3 @ PO SIM Core Stopped
00000000757E2D4FL CC INT 3
00000000757E2DE0L F4 HLT
=>00000000787B2D51L C3 RETH a = o
00000000787B2D52L C INT 3
00000000787B2DE3L CC INT 3
00000000757E2D54L CC INT 3 IP General Registers (P0*) [o=@]=]
00000000787B2D55L CC INT 3
00000000787B2D56L CC T 3 -Intel 64 + |Name | Value o
00000000767B2DS7L CC INT 3 General RaX 0000000000000000
et = el =
000000007E7E2D5AL CC INT 3 Segment [pry 0000000000000000
sesssne/ermitat Hoo
00000000 anBoDenTE oo Tt i -Debug RSI 0000000077CCOERD |-
00000000767B2DSEL CC INT 3 MMX RDI 000000007557DD00
00000000787B2DEFL CC INT 3 xm-si | | BB 0000000079569948
00000000787E2DE0L 56 PUSH RSL RE 00000000780B5350
00000000767E2D61L 57 PUSH RDL AMM-DI | | pg 00000000780C4E18
00000000787B2DE2L 482EF1 HOV RSI.RCX XMM-Tn | |R10 0000000079564EE0
00000000787E2DEEL 48EEFL HOY EDI.RDX
-MSR R11 0000000079564EBD
000000007E7E2D6BL 435608 HOY RCE,RE
00000000787B2DEEL F3A6 REPE CMPS byte ptr [RDI], byte ptr [RSI] - General R12 FFFFFFFFFFFFEFED
00000000767B2D6DL 400EEG4EER HOVZE BAX byte ptr [RSI]- MTRR R13 0000000000000008
00000000787E2D72L 480FE6STEF HOVZE EDX byte ptr [RDI]- T R14 000000007786D018
00000000787B2D77L 482BC2 SUE RAX RDX Machine | pig 0000000000000000
00000000757E2D7AL 5F FOP EDI L cs 0038
00000000787B2D7EL 5E FOFP RSI ! lmlll & ne Anio 2
00000000787E2D7CL C3 RETH
00000000787B2D7DL CC INT 3
0D00DO007E7E2D7EL (C IHT 3 [>] command =]
00000000787B2D7FL CC IHT 3 Loading Comnand Lenguage Extensions: C:-Users Jenes DocunentsAriun~Soul
00000000787B2DB0L F& CLI P0>
00000000767E2DE1L C3 RETH FD>refresh
00000000787B2D82L CC INT 3 Blsao
00000000787E2DE3L CC INT 3 P0>stop
00000000757E2D84L CC INT 3 IDE]
00000000787B2DB5L CC INT 3 -
000000N07B7B2051L + () Disassembly ~ | GioCursor | [GetBresk | [7]Track P [ViswlP] [Refresh |
Memury(PU’] &)
00 00 00 00 00 00 D0 00 00 00 QO 00 00 00 00 00 =
D000000000000010F 00 00 00 00 00 00 03 32 00 80 90 00 00 07 07 o0
0000000000000020L 00 00 00 00 00 00 D0 30 00 00 00 00 00 00 00 0O
00 00 00 0D 00 00 00 00 00 00 00 00 00 00 0D
D00D00D000000040% 00 05 Db 55 06 00 3: GF 05 0b 05 05 09 08 05 00
0000000000000050L 00 00 00 00 00 0O OO 00 00 OO0 0O OO0 0O 00 00 00
L 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 =
0000000000000000L v () (86t =] [Hexadecimal =] [16byteswide +| [Nosscn +| [Refiesh ‘

FliHelp, F%:Go, Shift+F5:5top, F8:Step Into, F10:Step Over, Shift+F12:Reset PO 18: Stopped 64 Bit Halt Mode

So, what’s next? Well, this is just the beginning. I’'m planning on getting full source code and
symbols display down on my PC so I can single-step through code and use some of the trace
features on the Bay Trail to see how UEFI behaves. Maybe I’ll make some changes to the UEFI
code underneath and break stuff and see what happens. I also plan on adding Debian Linux to the
platform so I’ll be able to tinker with the Linux kernel and use SourcePoint to do some OS-aware

debugging. I’ll write about my adventures (or misadventures) in upcoming blogs.

If you want to know more about SourcePoint, please feel free to visit our website here. There’s
an excellent video of the GUI which shows the ease-of-use and power of the tool on that page.

You can also request a live demo here.

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/registration/sourcepoint-intel-debug-and-trace-demo-intel-atom-core-xeon

The MinnowBoard Chronicles

Episode 2: Updating the UEFI Firmware

January 15, 2017

Last week, I wrote about my out-of-the-box experience with the MinnowBoard Turbot, and how

easy it was to start JTAG-based debugging on it with our SourcePoint tool. This week, I explored
the UEFI shell and updated the board firmware.

When I first powered up the MinnowBoard Turbot last week, it went directly into the UEFI shell.
It’s a natural reaction to type “help” at the Shell> prompt (Tip: type “help —b” so the information

doesn’t scroll off the page), and below is the first screen of what you’ll see:

or directories
Hanages the boot and da it

options that are stored in NURAH.
or chamges the current dirvectory.
ndard output and optionally changes background color.
contents of two Files on a byte for byte b
S d starts the driver.
to another location.

Displays one + blocks from a block device
Displays the list of devices managed by UEFI drivers.
Displays the UEFI Driver Hodel cospliant device tree.
Displays the device handles in the UEFI enw ironment.
Disconmects one or more drivers from the specified devices.
Displays the contents of system or device memory.

- Nanmages all UEFI variables.
Displays the UEFI driver list.
Imwokes the driver configuration.
Invokes the Driver Diagnostics Protocol .
Controls script file comsand echoing or displays a message.
Full screen editor for ASCII or UWCS-2 files.
Compress a file using UEFI Compression flgorithe.

- Decompress a file using UEFI Decompression Algorithe.
Identifies the code executed when “if° is FALSE.

Ends a ‘for® loop.

Ends the block of a script controlled by an *if’ statement.

Exitas the UEFI Shell or the current script.

Starts a loop based on ‘for® symtax.

= Gets the HTC from BootServices and displays it.

= Hoves around the point of execution in a script.
Press ENTER to contimue or ‘0° break:_

It’s a powerful shell, with a full suite of commands and scripting operators (note to self: look for
some good online documentation (with examples) on the UEFI shell, beyond what is available

simply within the help system). Since UEFI is so low-level, you can explore the intrinsics of the

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html

The MinnowBoard Chronicles

BIOS itself, as well as some architectural aspects of the board. For example, the “pci 00 00 00 —

1” command displays the PCI configuration space of Bus 0, Device 0, Function 0:

Vendor 1DI0)Y : BOB6 TR

Comsand (4) ;0007
ooy 1/0 SPCE ACCESS enab lisd
(02) Behave as bus master:
{04 Hen WUrite 8 Towalidate enabled:
(D6) Assert PERRR when parity error:
(08 SERRE driver enabled:

Status (6) : GO0
(04) New Capabilities linked list: @
(87 Fast Back-to-Back Capable: a
Press ENTER to continue or "0Q° break:
(B9) DEVSEL timing: Fast

(12} Received Target Abort: 2]
(14} Signaled System Error: 1]

Revision IDOE) : 11 BIST (BF):
Cache Line 3ize((): 08
Header Type(8E) :

Incapable

Base Address Registers(18) :
(Hone)
Expansion ROM Disabled (39)

Cardbus CIS ptr(28) : RCRC bR
Sub UVendorlD(2C) : Be8b
Capabilities Ptr(34): : ;]
Interrupt Line(3C): 7]
Hin_Gnt (3E) : ;2]
Shell> _

OF00

(01} Henory space access enabled:
(O3 Monitor special cycle enabled:
{05} Palette snooping is e i
(07 Do add sfdata st H

(09) Fast back-to-back transact...:

(059) GhHHz Capable:
(@) Haster Data Parity Error:

(11)Signaled Target Abort:
(13 Received Master Abort:
(15) Detected Parity Error:

Latency Timer (D) : B8
00, Single function. PCI device
Class: Bridge Device - Host/PCI bridge -

Subsystes IDZD :

Interrupt Pim(3D) :
Max_Lat (3F) :

After tinkering with the UEFI environment for a while, I realized that the firmware that shipped

with the board was a little outdated. This is a picture of the UEFI boot manager screen that came

up when I first powered on the unit:

$oumePoWT

Platform for Software Debug and Trace

)

ScanWorks’

Platform for Embedded Instruments

The MinnowBoard Chronicles

This selection will direct
Select Lamguage <Standard English> the system to continue to

* Boot Hanager boot ing process

* Dewlice Ranager

* Boot Faintenance Hanager

Ti=Moue Highl ight {Enterd=Select Entry

The release of this firmware is MNW2MAX1.X64.0090.R01.1601281003, or in short form 0.90.

By going onto the Intel firmware site, https://firmware.intel.com/projects/MinnowBoard-max, I

saw that the most recent version is 0.94. It was time to update the firmware — something that can

be somewhat difficult on Intel designs that you might have at home.

But on the MinnowBoard Turbot, it was easy. Intel’s firmware site provides the EFI shell script
as well as the full 64-bit binary image, which I downloaded onto a USB flash stick. Excellent
instructions on doing the firmware update are here:

https://MinnowBoard.org/tutorials/updating_your_firmware (another note to self: there’s a

Debug version of the firmware available too for later exploration). The beauty of it is that you
don’t need to flash the board with for example a Dediprog programmer; just run the included

UEFI script, and it takes care of the rest.

It took some contortions to get the MinnowBoard to recognize the USB stick file system (yet
another note to self: start with a small flash drive (8GB), and not a big one (128GB), and make
sure that it is FAT32-formatted), but after playing around a little, the update started, and

completed successfully:

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://firmware.intel.com/projects/minnowboard-max
https://minnowboard.org/tutorials/updating_your_firmware

The MinnowBoard Chronicles

O cd HMUZHAK] KB4 0004 . RO1 . 161205
.\ml Kb .00 . RO1 . 1612050 1
FSH umm: Kb . Bﬂ‘H RO1 . 1612054

11: l"L

01:48
3 Filets) 8.424.193 bytes
2 Dir (s}

P30 : AN . K54 0694 . RO1 . 161205%> HinnouBoard . HAK . Firssarelpdatedtd .ol AHUZHAK] . X564 . 0054 . Ra1
5227 . bin

Intel (R} UDKZD14 Firsware Update Utility for the Intel(R) Server Board S1200U3RFS
Ueraion 8.97

Copyr ight {c) Intel Corporation 2006 - 2014

RBeading File MMUZHAX] .64 . 0094 . RO1. 1612652239 . bin
ll'ldl.thn Flrmuare .

FsamaEEEEE

This may take a few minutes.

Update swcoessful
Shutdown systes in 3 seconds ...

g L T g

And, you can see from the UEFI boot manager options screen that the new update (release 0.94)
is now installed:

Select Language

This selection will direct
<Standard Englishy the systes to continue to
» Boot Hanager booting process

¢ Device Hanager

* Boot Haintenance Hanager

Tl=fouse Highl ight

CEnterr=Select Entry

2ourcePoint y scanWorks

Platform for Embedded Instruments

Platform for Software Debug and Trace

The MinnowBoard Chronicles

It then occurred to me to launch SourcePoint and see what the code is doing while waiting for
keyboard input from the boot manager screen, as opposed to the UEFI shell from last week. |

went through the same procedure as last week, and you can see the disassembled code window

here:
it - SLM Core - C " i il2C.prj - =@ =]
File Edit View Processor Options Command Window Help
BEH DY SE G N W W ProveCpkhnet W E B W DS
@ Breshpoints @ Code > Command [El Log B Memory TP Registers Gk Symboks o % Trace €6 Viewpaint O Wakch il EAR T
L e L= Lo L) m]wummm‘ Descrigtion Sunf ==
ﬁdmg Comnand Language Extensions: C leers James'DocumsntsAriuw Sourc: . = PO 51X G Sro 3
PO »
mifu a
>
IP Debug Registers (0°) S
L™ | ¥ Ay Ih32_AFERE 0000004862351BA4
Poir IA32_DEBUGCTL 0000000000000000
; FEERFEFEEER loating Peir | 1432 DS_AREA 0000000000000000
Gl cose it HiE i ETRAE A CEEREED Segment | 1335 FIXED_CTRO 0000000000000000
e T a4 DISKL e L] Control | TA32_FINED_CTR1 000000000000000D
e S Debug 1A32_FIXED_CTR2 A000000000000000
45B171L | MM 1432 FINED CTR CTRL 0000000000000000
4981721 3 R HMSR_LASTERANCH_O0_FROM_IE 0000000000000000
9B 731 CC 3 MSR_LASTERANCH_0_TO_IP 0000000000000000
4981741 CC] KMM-DP | ysg 1 ASTBRANCH_1_FRON_IF 000000DO00000000
4381751 CC 3 XMM-Int | NSE_LASTERANCH_1_T0_1P 40600000800000000
deIsL o] & kel 64 NSE_LASTBRANCH_2_FROM_IP 0000000000000000
L £ ool MSR_LASTERANCH_2_TO_IE 4000000000000000
4SB179L O 3 Poir | NSF_LASTERANCH_J_FRON_IF 0000000000000000
498174 CC 3 osting Peir | o p LASTBRANCH_ 3_TO_IP 4000000000000000
7B49B17BL CC] Segment MSR_LASTHRANCH_4_FRON_IF 0000000000000000
000000007 849B17CL CC] Contral HSR_LASTERANCH_4_TO_IP 0000000000000000
7R49B1 301 C 3 Debug MSR_LASTERANCH_S_FROM_IP 0000000000000000
A EMIEY oF 2 MM MSR_LASTBRANCH_5_TO_IP 9000000000000000
JB4SB1B0T ©f = MM | MSFCLASTERANCH_¢_FROM_IF 0000000000000000
7849B1B1L 57 D MSR_LASTBRANCH_6_TO_IP 0000000000000000
784981821 488HFL FS1 XMM-DP | ysp LASTERANCH_7_FROM_IE 0000000000000000
7849B185L 4885EA KMM-Int | MSE_LASTBRANCH_?_TO_IP 0000000000000000
7849B189L 430ECE - MSR MSH_LASTBRANCH_TOS
49B1BEL F3a5 MSR_LER_FROM LTP
4SB18DL 4B0FEE4GFF General Mo LER TO. LTF
4981921 480FBES7FF MTRR =
45D197T 487600 Moching € | T¥32_HPERE Q000004868F 49323
49B134L 5F 1A32_PEES_ENABLE 0000000000000000
49B19EL GE Debug 1A32_PERF_CAPABILITIES
49B19CL C3 VMX 1A32_PERF_CTL 0000000000000838
I A User 1432 PERF_GLOBAL CTRL 0000000000000000
A O 1432 PERF_GLOBAL OVF_CTRL 0000000000000000
4SB1ACL Fi 1A32_PERF_GLOBAL_STATUS
49BIALL O3 1A32_PERF_STATUS
45B1A3L O 1A32_PERFEVISELD 4000000000000000
45B1A3T O 1A32_PERFEVTSELL 4000000000000000
:gg} & EE IA3Z_FUCO 0000000000000000
Q 3 TA32_PUCL 0000000000000000
000000007843B1A6L CC L1 2 IAIZ_TIME_STAMP_COUNTER 0000007891712821
0000000734381 71L ~ (K [Disassemily | [(GoCumsor | [(SetBueak | @ Tiackip [WiewlP Fiokresh A il
Fl:Help, FS:Go, ShifteFSiStop, FB:Step Into, F0:Step Over, Shifts F12:Reset P 18: Stopped 64 Bit HatMode BIL1

What shows up in the Code window is basically identical to what we saw in last week’s blog,
except for being at a different address. The instruction pointer is sitting at a single RETN

instruction. That is worthwhile investigating!

Of course, it would be much clearer too if we had source code — that’s on my agenda for next

time.

The commercial is saved for the end: if you want to know more about SourcePoint, please feel
free to visit our website here. There’s an excellent video of the GUI which shows the ease-of-use

and power of the tool on that page. You can also request a live demo here.

SourcePoint’ |) ScanWorks®

Platform for Embedded Instruments

http://www.asset-intertech.com/products/sourcepoint-intel
file://corp.asset-intertech.com/Users/alansguigna/Documents/see%20http:/blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/registration/sourcepoint-intel-debug-and-trace-demo-intel-atom-core-xeon

The MinnowBoard Chronicles

Episode 3: Building the UEFI Image

January 23, 2017

As I continue the journey to learn about the internals of UEFI and to debug it with SourcePoint, I

encounter some issues doing the firmware build.

Last week, I played around with the UEFI shell, and then updated the firmware on my
MinnowBoard to the latest release (v0.94). Then, I used SourcePoint to look at disassembled
code when the platform was sitting in the UEFI shell, waiting for keyboard input. From last time,

we can see a number of “INT 3” instructions, with opcode CC.

I wanted to explore this a little more but decided to be more aggressive and go ahead and try for
a full UEFI EDK II firmware build. My hope was to successfully create the symbol files to be

used as input to SourcePoint. With this in place, I can use our tool to do source-level debugging,
set breakpoints within modules such as DxeMain, use the Trace capabilities, and so on. Debug is

so much more powerful when source code and symbols are available.

Luckily, the Release Notes for Release 0.94 of the MinnowBoard UEFI firmware are very clear

when it comes to doing a build. The steps are broken down into the following:

1. Download the complete source from Tianocore using Git.

Get the binaries (the parts that are not available in source code).
Set up the build environment (in this case, Visual Studio 2013).
Install the needed IASL compiler.

Do the build.

A

I could spend hours describing the detail behind each step, but I'll leave that for follow-up blogs.

I’1l simply describe the challenges and issues I ran into here.

#1 was easy. All that was required was to download Git from www.git-scm.com, and follow the

included instructions. Git is a version control repository and Internet hosting service. It was very

easy to use and allowed me to access the needed source files in my Windows PC workspace.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-2.html
https://firmware.intel.com/projects/minnowboard-max
http://www.tianocore.org/
http://www.git-scm.com/

The MinnowBoard Chronicles

The binary files needed were another story. I was later to find that my anti-virus blocked the
downloading of some of these files (silently, of course). Many hours were spent trying to find out
why the build was not completing. For example, the anti-virus program did not like the

SmmControl.efi macro.

Getting my old dual-core Windows PC to install Visual Studio 2013 took about two hours.
Microsoft, of course, initially downloaded the newest Visual Studio 2015 Community — despite
my having accessed the Visual Studio 2013 page — but Visual Studio 2015 did not work. I had to

download and install Visual Studio 2013 explicitly before I could make any progress.

Another tip for those who might follow in this path: you de want to download the OpenSSL

source code. Don’t try to skip this step. I did, and it cost me another hour.

The IASL compiler is obtained from the ACPICA (Advanced Configuration and Power Interface

Component Architecture) website. Note to self: I want to dig into this a little later.

After all this, doing the build was easy. From “C:\MyWorkspace\VIv2TbltDevicePkg” it was a
simple matter of typing into the Windows command window “Build IFWI.bat MNW2 Release”

and waiting about 20 minutes.

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

14

https://acpica.org/

The MinnowBoard Chronicles

The final 8MB firmware binary image MNW2MAX1.X64.0094.R01.17601221828.bin appears
in the directory “C:\MyWorkspace\VIv2TbltDevicePkg\Stitch”.

-

BN Administrator: Developer Command Prompt for V52013
The Guid Tool Definition comes from the build-in default configuration.

Intel(R> Firmuware Configuration Editor. (Intel{R> FCE» Uersion @.29.
BfmLib Version: B.38
Decoding
Etart the Update Mode:
— Update List —

[Results1: @ guestion has bheen updated successfully in total.

ongratulations. The output Fd file ' ..~Build~Ulv2ThltDevicePkg~RELEASE_US2812x8

6~ FUsUluvk6d.fd* has been completed successfully.

Build location: Build~Uluv2ThltDevice PkgnRELEASE_US2812x8h
[BIOS ROM Created: MNUZMAX_X64_R_6A?4_81 . ROM

The EDKII BIOS build has successfully completed.

SEC version: 1.8.3.1164,
IFUYI Prefix: MNW2ZMARL.X64.8094_RB1.1781221828

enerating IFUI... MNWZMAZX1.¥64.8094_RO1.1781221828 _hin
IFWIHeader~IFWI_HEADER.bhin

- -NeNU1lv2MiscBinariesPkgn8ECN1.A.3.1164N\ULU_SEC_REGION.bhin
.o MUlv2MiscBinariesPkgSECN1 . B3 1164 \Vacant. hin

- -N. SMNUZMAX _X64_R_B80A%4_61 . ROM
1 file<s> copied.

—— A1l zpecified ROM files Stitched. —
—— See Stitching.log for more info. —

[Sun B1.-22-2017 18:44:35.37

Build_IFWI is finished.
he f IFWI file is 1

IC=“Myllorkspaces\W1lv2ThltDevicePkg >

This coming week, I’ll be pulling the symbols into SourcePoint, and doing some hardware-

assisted source-level debug!

Platform for Software Debug and Trace

ScanWorks’

Platform for Embedded Instruments

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

Episode 4: UEFI Source Code

January 29", 2017

Success! This week, I managed to compile a debug version of the UEFI, load it into the

MinnowBoard, and see UEFI source code in SourcePoint for the first time.

Last week, in the MinnowBoard Chroncles Episode 3, I did a source build for the release BIOS

of the MinnowBoard Turbot (also known somewhat interchangeably as the MinnowBoard
MAX). With ASSET’s JTAG-based hardware-assisted x86 debugger, SourcePoint, [was able to
see disassembled code for the UEFI shell. This was interesting, but it only whet my appetite for
more investigation. By downloading the UEFI source tree, I had access to the source code, and
wanted to see it within our debugger in a meaningful code execution context. Making the source

code visible to the SourcePoint debugger took some extra steps.

The linker .map files contain information on the absolute (or relative) addresses for the code that
is part of the object build. When loaded into the target, the UEFI firmware on the target contains
strings that hold the paths to the program symbol files on your hard drive. SourcePoint macros
can be executed to read target memory, find these strings, then load the symbol files specified in
these paths. The symbol files must be located in the same path specified in the UEFI

firmware. So, it was a relatively straightforward matter to rebuild a Debug image with the
symbol information, and then run the EFl.mac macro file located in the SourcePoint
Macro\UEFI directory. This creates six custom toolbar buttons and associates each with a

corresponding UEFI procedure:

e The StartPEI icon resets the target, then runs to PeiMain and loads the PEI symbols.

e The PEIMs (Pre-UEFI Initialization Modules) icon loads the symbol files for the PEI
modules found in target memory.

e The DXEs (Driver Execution Environments) icon loads the symbol files for the DXE
modules found in target memory.

e The HOBs (Hand-Off Blocks) icon displays a list of UEFI HOBs found in target
memory.

e The SysConfigTable icon displays the contents of the UEFI system configuration table.

e The DumpMemMap icon displays the UEFI Memory Map.

After clicking on the DXE icon within SourcePoint, I loaded much of the DXE source code and

symbols. It took a few minutes, with clear progress bar indicators along the way:

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-3.html
http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

Flename: “mexe\DE BUGY misbieS mueFlurtied e e

A Progest

Ultimately, I got all the symbols and source code loaded and displayed, and could easily click on

Globals, Locals, a view of the Stack, and all Classes:

The Globals tab displays a hierarchy of loaded programs. Programs can be expanded to show

modules, procedures, and symbols.
The Locals tab shows the variables accessible in the current stack frame.
The Stack tab shows the stack as a list of stack frames.

The Classes tab lists structure and class definitions in a hierarchy similar to that under the

Globals tab.

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

_File Options
EEFIECIEE
PuBOT T D8 EE

Edit View Processor Code Window Help
9 LoadCurrent 8 PEIMs %85 DXEs 3§ GoToNextDriverEntry 8 PowerCycleReset 43 L E

& Breakpoints (& Code > Command Log B Memory IP Registers @ Symbols #< Trace E Viewpoint Q, Watch

Code (P0"):: cAmyworkspace\...\driverentrypoint.c 06 Viewpoint
99 1 R
EFI_STATUS Status: [‘FName |5m o 2 & o
EFI_LOADED_IMAGE_FROTOCOL *LoadedInage: ore topps
103 if (_gUsfiDriverRevision |= 0} {
1 7 Gl code (P07 i ==
v Hskersupeithat thssEFTATEFT spso = (PO : e [P 7
i PedGet32 (PodDebugPrintErrorlevel); IP General Registers (P0%)
107 if (SystemTable—s>Hdr Revision < Flosting F = [N %=
108 e S:;rr:::t TA3% APTC BASE
1 £ global debug print error level mask fpr the entire platform Contral HSR_BEL CR CTL3
IA32_BIOS_SIGN_ID
v Errorlevel Global debug print srror level -Dehug IA32_BIOS_UFDT_TRIG
#7 Call constructor for all libraries MM IA32_CLOCK_MODULATION
p o TRUE The debug print error level mask was sucessfully set MM -S| TA97 COTAR
Tl FALSE The debug print error level mask could not be set oo | SR EBL. Cr_pouERON
IA32_EFER
00000000778B0332L = Source | [GoCursor | [SetBreak | a XMM-Inf | 3 F s TURE CONTROL
MR TA32_FMASK
rintErrorlevel (General MSR_FSE_FREQ
Errorlevel T - MTRR IA32_KERNEL GS_BASE
- : i ﬁg g_ﬁgéRENAELE
D000000077ABD1FCL - [souce ~| (o Cursor | [SetBreak | rack IP View P - Debug TA32 WONITOR FILTER SIZE
Blc = R M IA32_PAT
L2 -omman [= e User ~ | IA32_PLATFORK_ID
[TbMous=Dbae Entry. 000000007771BZECL Base: 000000007771B000L . IA32_STAR
UsEBusDze Entry 082FCL Base 08000T -
KhciDse ntry. 00000000776EE2FCL Base: 00000000776EEDDOL - =
wwwwe No Synbol Information Found =wwee Entry. 00000000776E756CL Base. 00000000776E7000L @ symels - Globels PO (=]
wxxxx No Synbol Information Found =ses= Entry: 00000000776DS0BOL Base: 00000000776D2000L Name Vale
wxxxx No Syubol Information Found *#xxx Entry: 000000007769ES8CL Base: 00000000776800001
SnpDze Entry: 00000000776712FCL Base: 0000000077671000L L]
MnpDze Entry. 000000007765D2FCL Base: 000000007765D000L %] AcpiPitiorn
ArpDas Entry: 00000000776502FCL Base: 0D0D00D077650000L Data
IpiDze Entry: 000000007762D2FCL Base: 000000007762D000T T§ AoF
UdpdDxe Entry: 000000007761B2FCL Base: 000000007761B000L 3 L o
DhepdDxe Entry: 00000000776072FCL Base: 0000000077607000L £ oo
HtftpdDue Entry F52FCL Base FS000T £ OnReadyToBoot
IpiDze Entry C42FCL Base 540001 £ PlatformLipdateTables
DhepéDxe Entry AF2FCL Base AFDOOT § Setingl2CT:
IpSechxs Entry: 00000000774EBZECL Base: 00000000774EBI00L o —
UdpéDee Entry: 00000000774D92FCL Base: 000D0000774D3000L
Mt f tpeDae Entry: 00000000774C62FCL Base: 00000000774CE000L Data
Uet iPzeBoDze Entry: 00000000774A82FCL Base: D0000000774A8000T [£ AcoiPlatfornHooksIsAct
TcpDae Entry: 00000000774872FCL Base: 0000000077487000L £ AppendCpublapTableEn
PlatfornEsrtDae Entry: 00000000774812FCL Base: 0000000077481000L £ PaichDsdiTable
LegacyRegion20nLlegacyRegionThunk Entry: 000000007747F2FCL Base: 000000007747F000L = L
MiscSubclass Entry: 000000007747131CL Base: 0000000077471000T ﬂﬁmﬁg“ﬁw T R] 7
xxxxx No Synbol Information Found *s«xx Entry CE9280L Base CE3000L - obals fLocals fStack } Classes
4 el 3

FL:Help, F5:Go, Shift+F5:Stop, F8:Step Into, FL0:Step Over, Shift+F12:Reset 18: Stopped

Very impressive!

In my next episode of the MinnowBoard Chronicles, I’ll be exploring the PEI, looking at HOBs
and the UEFI System Configuration table, and loading symbols just before the DXE modules run
instead of running to the UEFI shell.

SourcePoint

Platform for Software Debug and Trace

18

ScanWorks’

Platform for Embedded Instruments

The MinnowBoard Chronicles

Episode 5: PEIM and DXE

February 5, 2017
This week, I explore DXE, and do a deeper dive into the PEL

Last week in the MinnowBoard Chronicles, Episode 4, I achieved a significant milestone:

compiling a debug version of the UEFI, loading it into the MinnowBoard, and seeing UEFI

source code within the SourcePoint JTAG debugger for the first time.

But this, of course, has only whet my appetite for further exploration. I'm fortunate enough to
have the MinnowBoard available as an open source hardware and software platform that boots
into the UEFI shell. So, the sky’s the limit in terms of what I can learn about this x86-based
platform and the UEFI software which is at the heart of almost all Intel-based PCs, workstations
and servers. The fact that I also have available SourcePoint, which allows me to see all
architecturally visible aspects of the Intel hardware and firmware, creates a very powerful

learning environment.

Last week, I booted the MinnowBoard into the UEFI Shell, where it simply sits and waits for
keyboard input. Then I Halted the target to put it into debug mode (also known as probe mode);
after which the SourcePoint DXE macro loads the source symbols. After that, it’s a very simple

matter of opening the Symbols window to see the Globals, Locals, the Stack, and Classes.

If you want to poke around, it helps that Symbol Search on SourcePoint is screamingly fast. The
UEFI build is prodigiously large, and for example doing a “Find Symbol” wildcard search on
everything prefaced with “DXE” could in principle take a significant amount of time, given that

the database is so large. With SourcePoint, the search is displayed in real time!

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

19

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-4.html

The MinnowBoard Chronicles

File Edit View Processor Options Code Window Help
PEW B s &5 LoadCurrent 434 PEIMs %85 DXEs 48 GoToNextDriverEntry 8 PowerCycleReset 6L &5 ore 5 HOBs 4 SysConfigTable %DnmpM:mMap f@,numpcﬂnsmk
B MM | W& % 5 @ erekpoints G Code > Command Log B Memory IP Registers @ Symbols #< Trace E Viewpoint Q, Watch

Code (P0°):: cAmyworkspace\...\driverentrypoint.c

96 Viewpoint

99 1 A
] EFI_STATUS Status: [‘FName ‘sm = B & -
EFI_LOADED_IMAGE_PROTOCOL =LoadedInage: ore, toPPe
if (_gUsfiDriverRevision |= 0} {
oz Code (P0%): i ==
v Hskersupeithat thesEFTATEFT spso = (P07 : I e [: 7
PedGet32 (PodDebugPrintErrorlevel); = IP General Registers (P0%)
if (SystemTable—>Hdr Revision < Flosting F = | N %
R IRCONPATIBLE YoRSTOT S:;”:::t TA3% APTC BASE
1 £ global debug print error level mask fpr the entire platforn Contiol HSR_BEL CR_CTL3
IA32_BI0S_SIGN_ID
v Errorlevel Global debug print srror level -Dehug IA32_BIOS_UFDT_TRIG
#7 Call comstructor for all libraries - MMX IA32_CLOCK_WODULATION
o TRUE The debug print error level mask was sucessfully set MM -S| TA97 CSTAR
FALSE The debug print error level mask could not be set oomn | MSR_EBL. Cr_POUERGH
IA32_EFER
0000000077880332L. + () [Seurce | [GoCusor | [SetBieak | £ XM S R CONTRGL
= MSR IA37_FMASK
rintErrorlevel (General MSR_FSE_FREQ
Errorlevel e - MTRR IA32_KERNEL GS_BASE
- : i ﬁg g_ﬁgéRENAELE
O000000O77AED1FCL Saurce v][GoCursor | [SetBreak | [T Track P View IP . 3;:@ N THGIIOR FIIue
—- IA32_PAT
[=[E]= User ' | IA32_PLATFORM_ID
[TbMoussbae Entry. 000000007771BZECL Base: 000000007771B000L . IA32_STAR
UsEBusDze Entry 082FCL Base 08000T -
KhciDse Entry: 00000000776EEZECL Base: 000D0000776EEQ0QL "
mxxxx Ho Symbol Information Found <ewxx Entwy: 00000000776E756CL Base: 0DOODOD077EET000L @ symbols - Globels PO (=]
wxxxx No Synbol Information Found =ses= Entry: 00000000776DS0BOL Base: 00000000776D2000L Name Vale
wxxxx No Syubol Information Found *sxxx Entry: 000000007769ES8CL Base: 00000000776800001
SnpDze Entry: 00000000776712FCL Base: 0000000077671000L 8- Data
MnpDze Entry. 000000007765D2FCL Base: 000000007765D000L -1 [£] AcpiPiatiorm
ArpDas Entry: 00000000776502FCL Base: 0D0D00D077650000L Data
IpiDze Entry: 000000007762D2FCL Base: 000000007762D000T T§ AoF
UdpdDxe Entry: 000000007761B2FCL Base: 000000007761B000L 3 L T
DhepdDxe Entry: 00000000776072FCL Base: 0000000077607000L £ e
HtftpdDze Entry F52FCL Base FS000T £ OnReadyToBoot
IpiDze Entry C42FCL Base 540001 £ PlatformUpdateTables
DhepéDxe Entry AF2FCL Base AFDOOT § Setingl2CT:
IpSechxs Entry: 00000000774EBZECL Base: 00000000774EBI00L THE Arortone
UdpéDee Entry: 00000000774D92FCL Base: 000D0000774D3000L
MtftpeDae Entry: 00000000774C62FCL Base: 00000000774CE000L Data
Uet iPzeBoDze Entry: 00000000774A82FCL Base: D0000000774A8000T [£ AcoiPletfornHooksisAct
TcpDae Entry: 00000000774872FCL Base: 0000000077487000L £ AppendCpublap TableEn
PlatfornEsrtDae Entry: 00000000774812FCL Base: 000D000077481000L § PaichDsdiTable
LegacyRegion20nLlegacyRegionThunk Entry: 000000007747F2FCL Base: 0D0D00D07747F000L =
MiscSubclass Entry: 000000007747131CL Base: 0000000077471000T 1 IS RSl e 7
xxxxx No Synbol Information Found *sxxx Entry CE9280L Base CE3000L - obals fIocals A Stack } Classss
4 el 3

FL:Help, F5:Go, Shift+F5:Stop, F8:Step Into, F10:Step Over, Shift+F12:Reset 18: Stopped

There are also pre-built EFI macros available within SourcePoint to view the HOBs, System
Configuration Table, the System Memory Map, and other interesting structures. The debugger is
“UEFI-aware”

File Edit View Processor Options Command Window Help

- =t U I &5 LoadCurrent @) PEIM: #88 DXEs 4 GoToNedOriverEntry &%) PowerCycleReset 6% LoadS &4 GoT iCore 9 HOBs &% SysConfigTable & DumpMemMap &8 DurnpCaliStack
S H BT Me S F ©bedpoins @ Code > Command [Log Bl Memory IP Registers @k Symbols o7 Trace £ Viewpoint Q| Wateh RENEAELE
(3 command o (@] || & Viewpcint [sl@l=]

u’xmt?n:f e - |_Mame | Dascription | Status.
e - & B0 SIN Core Stopped
Boot % configuration
Hascy n‘;‘:" 789000
ory nan
Fm my bottul C & - L) @-E
End of HOB list ® 132 [Name | Valu S I=
Homory pool (not ¥ at 73BD0S0L i RDI 0000000000000000
Homory pool (not } at IED258L General RSP 000000007886 76ES
Hencry pool (not) at 3BDI0EL s _ |Re 0000000000000000
Hemory pool (mot) at IED&4OL g Poir | gy §857500
ey] e Feteshd Segment |R10 00000DODOD0O000O
Hencry pool (not) at 3EDACOL Contrgl R11 000000000000FFFF
Henory pool (not ted) at 3BDDESL Debug R12 000000000000000C
gg%g at "3%%‘% MK R13 000000007608C018
at R14 0000000000000007
GUID at 3BEOD M-S pyg 0000000000000000
GUID at 3EELG M0 |ce 0038
cuip eSS S conmmss o | e
Mencry pesl (not i d) at 77 3BEICOL 5 MsR ss 0018
Mencry pool (not i d) at 77 3BEIDEL Ut ES 0018
Menory peol {not, i ed) at 0000000077 3BEIESL FS 0018
P §00005077 JEE426L] L
xce ﬂ"‘“‘i“"ﬂr at 0 M RIF 00000000778F3001
Rescurce 0x0 (system nemor: L
aunm:”m Dedces” v — , |#Fracs ooaosnonoavoozos -
Present
nitialized
‘ested
rite-conbinable
Urite-through cacheable
VUrite-back cacheable
Base address
0A0000
[fioB GUID at 73IBE46BL
Rescurcs descriptor at TIBE4CEL
Resocurce type 0x5 (reserved memory)
Attributes 023C07
“resent
nitialized
asted sl
rite-conbinable
rite=through cacheable
rite-back cacheable
Base address
Length 060000
'woca Resource descriptor at 000 73BE4FSL
Fl:Help, F5:Go, Shift+ Into, F10:Step Over, Shift+F12Reset

SourcePoint” : ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

20

The MinnowBoard Chronicles

Edit Niew Processor Options Command Window Help
FPEQ LY S8 & 5 LosdCurrent a{nmﬂm ﬁsorwwmuemyﬂmcy:mﬁ' ds:
-ﬁuml‘l'l.lrllt_l-

e
8 & @ Bespoints (3 Code » Command B Leg @l Memory IP Registers @ Symbols ¥ Trace £ Viewpoint Q Watch

iCore @HOBs B SyiContigTable @] DumpMemidsp & DumpCastack

ECommM [=f@E] || &8 Viewpoint
Description
]!anr.to(i ut 000000007 73EDO1SL i
*0 11 configuration
BeRouy Lo 000740000
¥ tton =
Fsee fnsncwytorn IP General Registers (P0°) =eEl=
RERCTY on <
End ot HOE 13t ® -3 Name [Valve .
Henory pool (not at 73EDOSOL) Intel 64 e 0000000000000000
Hexory pool (not at. 73BD258L el RSP 00000000788575ES
ory pool (not at 73ED30EL RE 0000000000000000
Hexory pool (not at 3BD440L Fleating Poir | pg 000000007 BEETSD0
Mawcry ool [(50F K S ~Segment |R10 0000000000000000 S
Memory pool (not at. 73BDIFOL 1
Heacry poal (net at SEDACOL Centrel R11 000000000000FEEE
Menery peol (nat at Q0 3EDDESL Debug R1Z 0000000D00DD0D0C
: at 773BDECOL MK R13 000000007608C01S
at IBDEFOL R14 0000000000000007
at JEEODOL M- pig 0000000000000000
8t 16 WM-0P | cs 0038 .
s 2AL. MM It | DS 0018
Heacry pool (not i 1) at 3BEICOL SR 5 0018
¥encry peol (not at 773EEIDEL e ES 0018
Hemory pool (not impleme at 773BEIESL FS 0018
GUID extension at BI)DOUIIIIII?? JBE418L GS 0018
Resou: escriptor at TIBE438L RIF 000000007 TEF3001
Resou. 0x0 (system memory)
Attributes 0x3C07
Present
nitialized
esied
rite-combinable
rite-through cacheable
te=back cacheable
Baze addrese
Length 0x00000000000A0000
m ID at 773BE4SL
Rescurcs dascriptor at IBE4CEL
0x5 (resarved menory)
M.l,nhutes 0x3C07
nt
nitialized
ested
Uncacheable
Urite-combinsble
Urite-through cacheable
Urit cac.
Base address 0x00000000000A0000
Length 5 0x0000000000060000
HOB Rescurce descriptor at 00000000773BE4FSL
Ll *

FliHelp, F5:Go, Shift«F5:Stop, FB:Step Into, F10:Step Over, Shifte FL2Reset

- SLM Core - ¢
File Edit View Processor Opticns Window Help
BBDIBEISWlﬂ @ LoadCument) PEM:) DIXEs) GoToNeaDriverntry 4 PowerCyckeReset & Loads
S MM P ME ST ©bekponts GCode > Command Flog B Memory IP Regiters @ Symbols o Trace 8 Viewpoint G Watch

£l ==

iore %“W &9 SysConfigTable ﬂ&mpMenMop 8 DumpCatack
N EAD 1

I Code (P (54-bit) Trocking 1P 0000000000000000L - FFFFFEFFFFFEFFFEL
0000000778F2FFEL CC IN 3 Status. |
7 FFL CC IN 3 - & 4
7 00L F4 HL
78F3001L C3 EETH
78F3002L CC IN
7 0 C IN
7 i 1 e f@=
= o : Value -
Iel 64 ROT 0000000000000000
o i O en |ESP 00000000788676E8
0AL CC i) ; Ra 0000000000000000
0BL CC I 9 R9 8867500
0CL CC IN Segment R10 0000000000000000 -~
0DL CC IN Control R11 000000000000FFFF
0EL,LC o _Debuy |B12 000000000000000C
0FY, Lol 1 Rk R13 000000007608C018
11T &5 BosH ol [R14 0000000000000007
131 488EF1 MOV o1 BCY M - SP 0000000000000000
151 {88BFA MOV RDI . RDX '
=@E]

ing User Defined Macro #7: C:“Users‘James“DocumentshiriumSourcePoint-IAMacros“EFINbutton™EfiBtn7_Cl

sDunpConfigTable
1_SYSTEM_TABLE at 000000007TEC3I01EL
T Table Version
(UNENOWN) at 0773C2358F GUID = A31280AD-481E-41B6-35-E8-12-7F-4C-98-47-79
(UNKNOWN) at 0788A6F20P GUID = 936EC11C-5397-4E73-BS-5F-82-7E-5 EF
HOWUN) at 0787C3000P GUID = 865ASAIB-BA5D-474C-84-55-65-D1-BE E2
(UNKNOVN) at 0773C2418P GUID = -7D31-49AA-93-CA-Ad 43
[UNKNOUH) at 0773CIDISP GUID = Ezizssas-asu 4269 -03-CF
E_SERVICES_TABLE at 078BAE9B0P GUID = m-sm - E-2B-E3
at 07 8P GUID = ??39?2(0— 4 3A 27=3F=C1-4D
MEHORY T\"PE_INFUIU!ATION at 0788A050F GUID = 4C19043F-4137-4DD3-39C-10 -A8-3F-F-FA G ot Savelhes
T_DEEUG_T| HEO_Ti at 0783A731 GUID = 49152E77-1ADA-4764-B7-A2- FE-D9-SE-8B
_FREQUEN i' at D769CSADSP GUID = DBAGAPE3-BBS7-4BE7-8A-F8-DS-78-DB-7E-56-87
TABLE at 078803000P GUID = EBIDZD30-2D88-11D3-9A-1 7-3E-C1-4D
at 07880 P GUID = 8868E871-E4F1-11D3-BC-22 7-3C-88-81
at 077E9 P GUID = EB3D2D31-2088-1103-9A-16 7-3F-C1-4D
at 077ES P GUID = F2FD1S44-9794-4A2C-992E- F-20-E3-94
at 07698 P GUID = B122A263-3661-4F68-99-29-78-F8-B0-Dé-21-80 @
at 077E9 CUTD = D719BICE_3D3A-45 3-BC-DA-DO—_0E—67—65—6F 2] M\}mnﬁ
b Iikclouls:mlei&m AClasses f
Fé: Into, F1 Orver, Shift+F12:Reset
. ™ ®
SourcePoint E ScanWorks

Platform for Software Debug and Trace

21

Platform for Embedded Instruments

The MinnowBoard Chronicles

& ScurcePoint - SLM Cox
File Edt View Proc

TEW R S - 95 LoadCurrert #35 PEM: 9 OXEs 90 GoToNetDriverEntry 85 PowerCyclefieset 655 L & GaT, iCore U HOBs 8 SyCenfigTable ¥ DumpMemMap &5 DumpCaliStack
S HBEPW PE ST ©ekpeints (& Code > Command [Log Bl Memory TP Registers @ Symbols »¥ Trace £ Viewpeint G, Watch L il i~ S
[3] Command o (@[] || 88 Viewpoint o |l[@]fs
favailable 00000000787c4000-00000000787 ettt 000000000000002b 000000000000000E - MName Description Status
ACPI_recl 787t 00! 78803££ ¢ s +
ACFT_ra Taanactt o1 = B0 SIM Core Stepped
ACPI_NVS 75d: 73d76
ES_data 77 79t fel
ES_code £ TILEE
BS_code £ TP General Regusters (P0°) o &=
fEF ¥ 1a-32 HName Value
aTEEEE ~ Intel 64 RDI 0000000000000000
eser adff £ f i RSP 000000007886 76ES
eserved ££f R8 0000000000000000
reserved i ; Fleating Poir | pg 000000007886 75D0
o 4 Segment | R10 0000000000000000
i t Centrel RI1 000000000000FEFE
o H Debug R1Z 000000000000000C
aMapI0 1001 £f s R13 000000007608C018
Q 7 R4 0000000000000007
pI0 g 1 WMM-SP - pg 0000000000000000
HeaMapIO EEEEEL 3£07 MM -DF | Cs 0038
pIO £LEL 12000 . I 001 I
pIO 01001 £f 00 o MSR 55 0018
PIO 1 166§ 1 1 el ES 0018
0] 2 2E£f 1 FS 0018
0 3 3 1 G5 0018
feaMap g 7 4 RIP 000000007 78F 3001
b o . , |FFLAGS 0000000000000206
ontapl0
P10 bet =
ed . - |
p10 o e G symbols - Classes PYY o 2|
o 0ff Hame 2
i = tHH 3 —
]] thif ff &) Aplech =
H FEEEEE & fl AaisiPassThuDe ofi
i fEEEEE w1 il AeBushs e
5] Bealien.h
reserved 524493 Pages (2048 HB) €
LoaderCoads 215 Pages (B97024) = i) BostScrptEcecutorle of
BS_code - 2036 Pages (B8333456)) fi]_BoctScrptSavele of
BS_data 11195 Pages (45854720) ¥ CaomieRurtmelion oh
RT_code 161 Pages (659456 i ConPlatiom e ¢h
RT_data 46 Pages (188416) e B ConScltteDun o
available - 485603 Pages (1989023888) o
ACPI_recl 21 Pages (6016) &] CouloiDue oh
ACPI_NVS - 130 Pages (532480} % i CouloDun i
HeaMapIO 16252928 Pages (63488 MB) ©] DatabkbDon of
;gtol Memory: 3999 MB (-101056512) Bytes ZE‘W“S"W—‘\GICMM e —
» -
F1:Help, F5:Go, Shift~FS:Step, FB:Step Into, FL0:Step Over, ShifteF12:Reset) 18: Stepped 64 Bit HatMode I

I want to come back to DXE again sometime soon, but for this week, the PEI beckoned. I have a
deep interest in exploring the code executing as close to system reset as possible — and maybe

one day, before reset. But, for now, exploring early PEI was on the agenda.

First, I tried to take control of the target by initiating a PowerCycleReset out of SourcePoint, but
that seemed to put the MinnowBoard into a strange state, and the only way to recover was to
manually power cycle the board. I’'m wondering if there’s a rogue watchdog coming from
somewhere, or if there’s something wrong with the emulator’s access to some of the key XDP
pins. I know that HOOKO (PWRGOOD) is hooked up, because SourcePoint detects and displays
that when there is No Power on the board. HOOK6 (RESET IN#) is hooked up, but I’'m not sure
about HOOK7 (RESET OUTH#). This is something I need to check on the MinnowBoard

schematics when I have a little time. There might also be a flaw I guess in the Debugger Lure

design from Tin Can Tools, but unfortunately, the schematics are not available — I get the
dreaded 404 Page Not Found message — hopefully they’ll fix that soon, or steer me in the right

direction!

In the meantime, it’s easy enough to power cycle the target, turn on the emulator, and launch

SourcePoint to halt the target before it gets too far into the boot cycle. Then running the

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

22

http://wiki.minnowboard.org/images/b/bd/Minnowboard_Turbot_X205_Sch.pdf
http://www.tincantools.com/Debugger-Lure.html
http://www.tincantools.com/_newsite2013/userfiles/file/Debugger%20Lure%20Rev-A.pdf

The MinnowBoard Chronicles

LoadPeims macro (just by clicking on the PEIMs button) loads all the program symbols and

points the code view window back to the beginning of the code block where the processor was

stopped:

File Edit

= SLM Core = C:\Wsers\

View Processor Options Code

projectlpe)

Window Help

. =8| B

" PEWH LY SF & 5 LoadCurrent 34 PEDM: €83 DXEs 98 GoToNedDriverEntry 3 PowerCycleReset O L L3 Core U8 HOBs &5 SysConfigTable %% DumpMemMap %85 DumpCaliStack
S HLDEPW Mo & T ©bedpoints G Code > Command [Leg Hll Memory IP Registers @ Symbols »# Trace £ Viewpoint C Wastch EYEAR b4
I Code (P0): (64-bak - FFFFFFFFFFFFFFFEL Sl[@ & || 90 viewpoint ==
G;ﬁre Namg Description Status
EFIAPL & PO SLK Core Stopped
IeReads (
I UINTH Port
)
73 i { | IP General Registers (P0°) s [@]=
00000000743 7ERL 0 WO). RO | | [Name | Value P
00000007A3F7EASL - RAX 300
o @8]
_ReadVriteBarrier (): — -
Value * (UINTE)_ inp Adtributes
000000007A3E7EADL OFB7T542420 HOVZX Init (Emulator)
000000007A3F7EB2L EC
<> 000000007A3F7EBIL 880424 =
_ReadVriteBsrrier (}:
7 return Value:
AIFTEBEL SA0424 HOV
i o e
A 3
AIFTEBEL CC bnove | [Removers | [Enstle | [Disstiesa
AIF7EBFL CC —
% o, Sy BT P =) || 83
UINTE Valor -
IoUrited (
I UINTH Port =
N UINTS Valus
)
103
IoWrites
000000007A3F7ECOL
000000007A3F7ECAL
1hE " s e
OO FTEADL ~ () (Moed~| (Gobaiar) [Setbinsk] [Tk p ([(NowiF) [[Fefesn]
[FO:loadthis
P1SanCore

Entry: 000000007AJE82FCL Base: AJESO00L

Loading User Defined Macao #£1: . Users“James“Documents“Arius~SourcePoint-IA“Hacros“EFI“button Ef iBtnl_Chk.mac
;gﬂ.oedl"ei-s
H

“oihay
F0>

“Build \W1v2ThltDevicePkl

—
<]+]\Global= f{Locals), Stack)\ Classes [

Fl:Help, F5:Go, Shift+FS:Stop, F8:Step Inte, F10:Step Over, Shift+Fld:Reset

P

18: Stopped 6464

HalMede I

You can see from the Instruction Pointer on the left that the code is stopped at address

0x’000000007A3F7EBE”’, different than where we stopped at the UEFI shell before at

0x’000000007849B171°, for example, within Episode 2 of the MinnowBoard Chronicles. We’re

also within PiISmmCore.

Scrolling back a little, we see that we are in the function IoRead8(). It’s also clear on the Stack

tab within the Symbols window:

SourcePoint

Platform for Software Debug and Trace

23

ScanWorks’

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-2.html

& Point - SIM Care - CAU o TR
File Edit View Processor Options Code Window Help

FPEWH DY S S @ LoadCurrent &8 PEM: &8 DXEs 8 GoToNeaDriveEntry 48 PowerCycleReset o

Board projectlps

& GoT

The MinnowBoard Chronicles

SHLIPG Me 5 &

¥ [=ld &

Core O HOBs & SysConfigTable @8 DumpMemMap 4 DumpCaliStack

@ Breskpeints (3 Code > Command [Leg B Memory IP Registers G Symbols s Trace 60 Viewpeint €3 Wateh NG - T
IGH Code (P"): (64-bit) Tracking IP: 0000000000000000L - FFFFFFFFFFFFFFFEL ol|@ s E5) Viewpoint =@ =
189 i return Ya Name Doscription Status.
a AIFPEIIL OFE I = Fo LK Core Stopped
AIFTESEL
AIFTEAIL C3
AIFTEAIL CC
IP General Registers (P0%) =8 chE]
e |
UINTE @ 1a-32 Hama Value
EFIAPI = Intel 64 RAX 0000000000000300
o [@|=]
73 | Adtributes]
IoReadd Init (Emulator)
Q0000000TAIETEALL 08 MOV
00000000 TAIFTEAIL SU L
UINTE Value.
_ReadVriteBazrrier ()
Value = (anp (U
000000007AIFTEADL OFET542420 E A oty tRSE14+20
000000007AIF7EB2L EC AL — -
<> 000000007AIF7EBIL 880424 HOW byte ptr [RSP].AL hove | [Removess | [Ensble | [Disstlesa
_ReadVriteBarriexr ()}
return Value; s G, Syrbols - Stack PO* =@
AIFTEBGL 840424 How [Rsl
StackFrame Vaios
AIFTEBIL 46 18 B loReadt)
AIFTEBDL C: -
AIFTEBEL CC 1 SenalPeaReadRegute)
AIFTEBFL CC 3 SenalPort Wrted)
& DebugPrnti)
wns
UINTE
EFIAPI
Tolrita (
N UINTH Port .
T HTNTE Uslua
00000000TAFTEAL ~ [(e ~) [GoCumsor | [Setbiosk] @ Tiock P [WewiP) ([Rshesh]
[FOrlcedthis
PiSmaCore Entry: 000000007A3E82FCL Base: FAIEBO0OL “c:ay “Build W1w2ThltDevicePkl
[FO >
[Loading Usexr Defined Macro £1: C:\Users'James“Documents‘Ariun“SourceFoint-IA“MacrosEFI‘button“EfiBtnl_Chk. mac
F0:LoadPeins
FO >
& ([>[\Glcbals Locals) Stack fClassas |
FliHelp, FS:Go. Shift+FS:Stop. Fi:Step Into, Fl0:Step Over, ShiftsFl2:Reset) 18: Stopped &4 Bit Halt Mode 1

This routine is called from SerialPortReadRegister() which is called from SerialPortWrite()

which in turn is called from DebugPrint(). So, we’ve caught the code in the middle of a “printf”

statement out to the console. I haven’t hooked a serial out console up to the MinnowBoard yet

(there’s another Lure available for that — a future purchase).

Well, that’s it for now. There’s a lot to digest. If you have any questions about getting started

using SourcePoint on the MinnowBoard to delve into the BIOS, drop me a note.

SourcePoint

Platform for Software Debug and Trace

24

ScanWorks’

Platform for Embedded Instruments

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

Episode 6: LBR Trace

February 12, 2017

This week, I delve into using LBR (Last Branch Record) Trace on the MinnowBoard and

continue my exploration into the UEFI source code.

Last week, in the MinnowBoard Chronicles — Episode 5, we saw how our SourcePoint debugger

could be used to view the UEFI Hand-off Blocks (HOBs), System Configuration Table, System

Memory Map, and other structures. Single-stepping through source code and watching the Call
Stack dynamically update in real-time was also fascinating. This is one of the best ways to gain

hands-on experience with UEFI, in my humble opinion.

This week, I decided to employ one of the most powerful capabilities within the Intel
architecture, the on-die Trace logic. Specifically, of interest are the Last Branch Record (LBR)
and Branch Trace Store (BTS) functions.

LBR trace displays a history of executed instructions. It does this by reading Branch Trace
Messages (BTMs) from the Last Branch Record MSRs in the processors. The advantage of LBR
trace is it is non-intrusive. The processor can run at full speed when using LBR trace. The
disadvantage of LBR trace is the limited number of LBRs available (typically 4 - 16). Each LBR
stores a single BTM. If you assume an average of 5 instructions between branches, then roughly

the last 80 instructions executed are traced.

BTS trace displays a history of executed instructions. It does this by reading Branch Trace
Messages (BTMs) from the Branch Trace Store (BTS), an area of system memory set aside for
trace. The BTS can be much larger and store many more BTMs than LBRs. The disadvantage of
using the BTS is that writing BTMs to memory takes longer than writing BTMs to LBRs. Each
branch results in 12-24 bytes of memory being written. For some applications BTS trace may
result in too high a speed penalty to use. Another disadvantage of BTS trace is the inability to
trace out of reset (if memory is unavailable). Still, getting the much larger buffer can be a good

trade-off.

It is worthwhile noting that LBR trace and BTS trace are not mutually exclusive. They can both

be enabled at the same time.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/02/the-minnowboard-chronicles-episode-5.html

The MinnowBoard Chronicles

To see LBR Trace in action, I used the SourcePoint LBR Trace Configuration tab to start tracing,
powered up the MinnowBoard, and halted it in the middle of an I/O intensive operation:
specifically, in the middle of a DebugPrint(). The displayed screen shows the Trace window in a

meaningful code context with the instruction pointer highlighted in the Code window:

(@& SourcePoint - SLM Cor

File Edit View Processor 0y

ns Trace Window Help
- = A &F LosdCurrent 64 PEDMe 88 DXE: &) GoToNeaDriverEntry 68 PowerCycleRecst 5 1L &3 GoT Core &5 HOB: &2 SyzConfigTable &3 DumpMemblap &5 DumpCaliStack
SHBEPW Me § T ©eedkpeints G Cede) Command [Log Bl Memory IP Registers @ Symbols 37 Trace 9 Viewpeint T}, Watch N E AR T
1B Code (PO (64-bi) Tracking - FRFFFFF L s [@l[® ClEclE
7] ile (HanbezOfbytes 1= 0) { - Description Status.
Q000000072E9BEEIL 48 CHP querd 000000 LM Core Stopped
000000007889BEEFL JE Ce
o
Vait for the serial port to be ready. to make sure both the tramsait FIFD
;/ and shift register eapty IP General Registers (PO%) o @)=
-
vhile (({SsrialPortReadRegister (SerialRegisterBase, R_UART_LSR)L & B IIART ISR TEMT == 0} VT [Mama Malz.
> i ¥ LR Trace (P07) = [@]=
STATE FROM "]
9F344 POP RAX
SES45 MOV S5, X
SES48 POP RAX
SES49 MOV CRO. RAX
SES4C ADD RSP 00000008
, BmE T
Fill then eatire Tx FIFO 5E354 BOE RAX
HOV CR3. RAX
tes I= 0 Indexs POP RAK
000000007 889BF10L SFa53 HOW CR4 RAX
000000007889BF19L SFISC POP RDI
00000000728 9EF1EL ¥] SFISD POP RS
'.!ananr?:[TN 9 EE ADD RSP, 0000000E
0000000078838E €L ~ [[Momd =) [BoCumsor) ([SetBiesk | [Trsckip [oewiP] [Fishesn ETERAATD) R nnonore
- 35363 Bo S
G
3] command 3F3E3 POB Bak
DneCore Entry: 0000000076866300L Base: 0000000078666000L SF9EA POP RE
13 . IFIEC MOV CRE.R8
Loading lser Defined Macro #1: C:\llzexssl, In ~Ariun-SourcePoint-IA%Hacros“EFI but 9F370 FOP. R8
G Symbots - Stack PO = |[@]=] SEare pop Tio
caakFoias e Docunsnt s~ AriunsSourcaPoint-1A\Hacros EF T-but 9F376 POP Ri1
9 FOP R12
3 SedalPod\Wite] t 8300L Base 9F37A POP R13
' | Sy Smmes el
Lt LL T : 42FCL Base 80B4; 9380 Moy FSP, REP
72DCL Base BE? SE983 POF REF
E. Base BOAE 9EIE4 ADD RSF. 00000010
CL Base IS IRETQ
77814 Base BLA 00002 P685BE04
780A62FCL Bass HOVEX AX. AL
77B092FCL Base FB05000L AND EAX. 00000040
: 77B062DCL Base 7BOE000L 0A TEST EAX. EAX
; 77B042FCL Base 77B04000L EFOC JNE SerialPortVrite+sd
: 0000000077AF6ZFCL Base: 0000000077AFE000L EFQE JME SerialPortVrite+cs
© D0DODO0O7B09COICL Base: (00D00007E09E000L =00001 E TEBSBEES
: 0000000077AF12FCL Base: 0000000077AF1000L
A +[\Globals A Tocals h Stack fClasses [00008 [Maed =) ([Confise... | [Dsbsy. | [Refesh |
FliHelp, F5:Go, Shift+FScStop, F8:Step Into, F10:Step Oves, Shift+F12:Reset PO 18: Stopped 64 Bt Halt Mode 1

Let’s look carefully at the screen shot to see exactly what is happening.

You see in the top left in the Code Window that we are viewing the code in “Mixed” mode: that
is, the ‘C’ source code is interleaved with its associated assembly language instructions. The
instruction pointer points to the beginning of the processor instructions associated with the line

of code:

while ((SerialPortReadRegister (SerialRegisterBase, R UART LSB)
& B_UART LSR_TEMT) == 0)

The instruction pointer is at address ‘000000007889BEF5°L. Note that the ‘L’ signifies a
memory linear address, and we are in real (or protected) mode. This is the same as the physical

address if paging is not in effect. We are within the SerialPortWrite() function.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

In the LBR Trace window, we see the instructions that were executed prior to the location of the
instruction pointer. The State field displays the state number (cycle number) of the instruction.
The trigger location is marked as 0. Cycles before the trigger are shown as negative numbers. In
the first cycle, you can see that we are inside the “while” loop; the five assembly language
instructions shown correspond to the last five assembly language instructions shown in the Code
window. This is the bottom of the “while” loop, where the INE SerialPortWrite+e0 and

the JMP SerialPortWrite+c5 instructions handle the conditional logic of the loop.

But then the information in the Trace window gets interesting. Where State shows -000002, we
see a bunch of assembly language instructions ending in an IRETQ instruction. IRETQ is a 64-
bit return from an Interrupt. So, just before the MOVZX AX, AL instruction, we have just gotten
back from an interrupt service routine, wherein there were a bunch of POP statements that

restore the values of the general-purpose registers (GPRs) from the stack.

At least that’s my interpretation as of this moment. I’ll need to dig into this a little more to
confirm my theory. A good place to start might be to look at the SerialPortReadRegister function

1n some more detail.

I’ll continue this exploration of the MinnowBoard using SourcePoint next week.

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

27

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

Episode 7: Single-Stepping through Code

February 20, 2017

This week, I single-step through source code to track the execution of programs, and better

understand how the MinnowBoard BIOS works.

I’'m really curious as to the overall UEFI structure program flow as a platform boots up. A lot is
happening as the platform initializes, and the source code is very large, so it’s hard to see what
the code is doing from just a static viewpoint. I wanted to see what routines call and are called by

other routines. Seeing the code execution flow from close-up is definitely a learning experience.

The best way to do this is to step through the code at my own speed, as opposed to the speed that
the code normally executes at. SourcePoint provides stepping operations that, in conjunction
with the go/stop and breakpoint capabilities, allow me to effectively track through the execution

of programs.
It is worth noting that there are three stepping commands available:

Step Into. This single-steps the next instruction in the program and enters each function call that

is encountered. This is useful for detailed analysis of all execution paths in a program.

Step Over. This single-steps the next instruction in the program and runs through each function
call that is encountered without showing the steps in the function. This is useful for analysis of

the current routine while skipping the details of called routines.

Step Out Of. This single-steps the next instruction in the program and runs through the end of an

existing function context. This is useful for a quick way to get back to the parent routine.

To put these through their paces, I broke within the SerialPortWriteRegister() routine. The
source code and instruction pointer is visible on the left. From the Call Stack on the right, you
can see that SerialPortWriteRegister() is called by SerialPortWrite() which in turn is called from
DebugPrint():

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

® it - SIM Core - C: i int-18_FNENSP release MMW.prj =@
File Edit View Processor Options Code Window Help
BEW P S| @ 98 dCurent) paM: R DiEs Q!GoToNumﬁvuim) PowerCycleReset 085 LoadSy &4 GoT iCore 85 HOBs & SysConfigTable q»..npmmp 5 DumpCaliStack
‘gHBUPU| De s S | @ Beskpeints (G Code > Command [Log M Memory IPRegisters @ Symbols o Trace G8)Viewpoit € wateh T & 1 |2 A 00 0 @
[& Code (P0™): Teacking IP: e\ g ey
-./
Seﬂa].l’oﬂl?e&dﬁegxsler {
UINTN Base
?INTII’ Ofizat
78 {
7% if (PedGatBool (PedSerialllseMmic)) {
gn rTLurn MaioRead8 (Base + Offset = PodGat3? (PedSerialRegisterStride)):
1 else
82 return ToRead$ (Base + Offsst m PedGat3? (PedSarialRegisterStride)):
84 }
sun
VUrite an 8-bit 16550 register. If PcdSerialllseMmio is TRUE. then the value is -rrxtle'n to
MMIO space. If PcdSerialUseMmio is FALSE. then the walue is writtem to I-0 space,
paranster Offset is added to the base address of the 16550 registers that is speclhod
by FedSerialResisterBase.
#paran Basze base address register of UART de\uce
#paran Offset T.lw cffset of the 16550 register to wri
#paran Value The value to vrite to the 16550 maslw spuc:hod by Qffset
#return The value written to the 16550 register
-
UINTS
SerialPortVriteRegister (
5=,
UINTH Offset.
?IHT!! Value
105 {
106 if {PedCatBool (PodSerislUselnic)) {
%g; reLunE MnioWrited (Base + Offset » PedGet3? (PedSerislRegisterStride). Value):
elze
=103 return IoWrited (Bass + Offsat » PedGeri? (FedSerislRegisterStride), Value):
111 3 b -
0000000076358470 ~ (D] [Souco] [(GoCumsen | [[SotBrest] [@Tisckip [[WemwiP] [CReliesh |
Bt
i i : 02/18+2017 17:25:12 433 Images mac:_findf
m:m;muarﬁunuwbxe :;%Ii Bose: §02,1g/2017 12 487 Images mac:_fileE]
lat fornInfoDxe 79142DCL Base :25: 12 503 load
lat foraCpulniclxe '791831CL Base.
"gil’lat[url 79152FCL Base:
L™ ’ ™| 4] *[\Globals j Locals) Stack fClasses [

F3Go. ShiftF3:Stop, Fa:tes Into, FI0:Step Over, ShdteFIZReset

B Halt Mode

I decided to Step Into some number of execution steps, and as expected the
SerialPortWriteRegister() function returns, and I can come into SerialPortWrite() — as can be

seen by the StackFrame display updating in real-time:

@ Sounaint 510 Coe - C ent\AeamSouncepoin 1 TNGHES coewse Mg = e =8
File Edit View Processor Options Code Window Help:
BEW DU S8 & %icedCument @irin @ oiE @ GoToNetDrivertntny 8 PowerCycleteset & Loads 4 GoT iCore @ HOB: 8] SysConfigTable 1 DumpMemMap & DumpCaliStack
GHBPY De s S : T @
e B 5
631 while (HumberOfBytes 1= 0) { - e
P MName | Description 1
#¢ Wait for the ssrial port to be ready, to maks sure both the transmit FIFO 0 SLE Core S
and shift register empty.
s
636 while ((SerialPortReadRegi (SerialR B R_UART_ISR) & B_UART_ISR_TENT) == 0): - e
o G Symbols - Stack P0" =3 o
Fill then entire Tx FIFO Sackirame Vahue
s
841 for (Index = 0: Index ¢ FifcSize &k NumbexOfBytes Is 0: Indexts, HuaberOfBytes--. Buffex++) { ;: Wm“
s - Debug
#+ Wait for the hardvare flov control signal
4 ’e
645 vhile {!SerialPortUritable (SerialRegisterBase));
,
Write byte to the transait buffer.
,
gg? SerialPortVri {Sexi R_UART_TXBUF. #Buffer)
652
653 return Resule:
654 3
snm
Reads data from a serial device into a buffer.
@paran Buffer Pointer to the data buffer to store the data read from the serial device.
@peran lNunberOtBytes Humber of bytes to read from the serial device
dretval 0 -wats;-:es is 0
Bretval 30 The number of bytes read from the serial device
If this value is less than NunberQfBytes. then the resd cperation failed P
s -
EFIAFL
SexialPortRead (
QUT UINTE =Buffer,
{II UINTH RunberOfEytes .
00000TREFIO. + (2] [Somce v [Goure) [SotBdk] [Tiscklp [WawiP_) [Rekwi] |
fonetonielonnterfunt ineDxe Entry. T D2/18-2017 17.25.12. 483 Images mac. findd]
PeRte Entry: 312FC 02/18-2017 1 112,487 I:En.nc:_iilai
laticﬂ--lnfnma Entry: 791A20C. 02-16-2017 17:25:12.503 1
latforaCpulntchxe Entry: 791831C
PeiPlatform Entzy 7915 2EC
>
™| 0 [*[\Globals }Locals) Stack fClasses]

Fl:Help, F5:Go, Shift=F5:Stop, F8:5tep Into, F10:Step Over, Shifte F12:Reset 18: Stepped 64 Bt Halt Mode (111

SourcePoint’ |) ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

It can be seen that within SerialPortWrite() I’'m in the middle of a “for” loop that makes multiple
calls to SerialPortWriteRegister() indexed by the values of Index and NumberOfBytes. It’s easy
enough to hover over the values of these variables in SourcePoint and also look at the Locals tab

in the Symbols window to see how deep the “for” loop is:

® Point - SLM Core - CAUsers\ vope=r PointIA "'“—_ P rebease MHW.prj =TeT =
File Edit View Processor Options Code Window Help
PEEH DE S & 5 LoadCurrent #04 PEDM: 90 D0Es ¥8) GoToNedOrivesEntry T PowerCycleRteset &5 L & GoT, Core 5 HOB: @ SysConfigTable 8 DumpMemiap & DurnpCaliStack
gH LY M & J @ Breskpoints (3 Code > Command [Log Bl Memory IP Registers @ Symbols »f Trace 0 Viewpoint O} watch 0 # %3 k2 A 00 ¢
T .
& Code (o) ngiP: P g\l i i X = e b 3=
609 vhile ({SerialPortREeadRegizter (SerialRegisterBass. R_UART_LSR) & (B_UART_LSR_TEWT | B_UART_LSR_TXRDY)) ! . ER — ==
Mame Description Status
o 0 SLH Core Stopped
Wait for the hardvare flov control signal
i
614 vhile {!SerialPort¥ritable (SerialRegisterBaze)): =
€13 reran 0; G Symbols - Stack PO o[@][=
> SeackFrame Vaiue
47 Compute the maximum size of the Tx FIFO B SemalPodWirte])
s & Buffer 0x000000007886784
621 FifoSize = 1: . HumberCiBytes a7
622 2f {(PcdGet? (PcdSerialFifofomtrol) & B UART_FCE FIFOE) 1= 0} { SeralRagsterBase 1016
623 if ((PcdGet?® (PcdSerialFifofontrol) & B_UART_FCR_FIFOB4) == 0) { Resa 1e8
624 FifoSize = 16: -
625 } else { | oS 16
626 FifoSize = PodGot?l (PodSerialExtendedTxFifcSize): | Index 16
)} ¥ DebugPrnt()
630 Result = NumberOfBytes:
631 vhile (Hunber0fBytes I= 0) {
’7
/¢ Wnit for the serial port to be ready. to make sure both the transmit FIFO
4+ and shift register empty
Wi
636 vhile {{SerialPor i {Seri i R_UART_LSR) & B_UART_LSR_TEMT) == 0).
s
Fill then sntive Tx FIFO
s,
641 for (Index = 0: Index ¢ FifoSize & NunberOfBytes 1= 0: Index++. HumberOfBytes-—. Buffer+s) {
s
Wait for the hardvare {low control signal
s
645 vhile {!SerislPortUritable (SerislRegisterBase)):
-
/¢ Write byte to the trensait buffer
-
::? 3 SerialPortUriteRegister (SerislRegisterBase, R_UART_TXBUF. sBuffer):
652)
653 zeturn Result:
654 ¥
un
Feads data from a serial device into a buffer
Bravan Fuffer Printear ko the data buffer to store the data vesd from the serial dmwics o
f '
ovconorsetra, () soun < GoGu) (Sates) @ ok (Veul) (heioh) || BB EEnD y O G,

FliHelp, FSiio, ShiftFS:Stop, Fé:StepInto, F10:Step Over, Shilt+Fl2Reset) 18: Stopped 6 Bt HatMode [

Oh, this is going to take a while. Index is 8, and FifoSize is 16, but I also have to get
NumberOfBytes down to 0. So, I dutifully start to click Step Over, expecting this to take a while.
But wait! Maybe Step Out Of is a solution to my problem.

And that does turn out to be the case. I get right back into DebugPrint():

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

® int - SUM Core - AW _OewSP relese MW = =@ =]
File Edit lew Pluce‘uor Options Code Window Help
" BEW D S @ S iocdCurent §PEM: §00Es) GoToNetDrivertntry 45 PowerCycleReset & iCore 4 HOB: &9 SysConfigTable & DumpMemiap ﬁaumpcamx
BEg me 2 @ Breskpoints (G Code > Command [Log [l Memory IP Registers @ Symbole o Trsce &0 Viewpoint O waten 0. & "1 p2 A 0] 9
(& Code (p0°): Tracking IP: ek depk Abazedeb ot 4 Sl
H -
L L] SLH Core Stopped
// Convert the DEBUG() message to an ASCII String
g; :A_S‘rag‘;*()lark;zﬂfnna { (Buff Fe Marks
511 int (er. sizeof (er), Format. Marker): .
33 VAEND {Marker): @ Symibols - StackPO*
- SeachFrama Ve
/7 Send the print string to a Serial Port & DebugPrnt()
s
é;g) SerialPortVrite ({UINTS =)Buffer. AsciiStrlen {Butfexr)):
Sun
Prints an assert messsge containing a filename. line number. and description
This may be folloved by a breakpoint or a dead loop
Print a message of the form "ASSERT (Flleﬂono:{chneuulbenl iDescripticn:n”
to the debug cutput device 1f DEBUG. PERTY_ASSERT_BREAKPOINT_ENABLED bit of
PodDebugProperylask is set then Cpul mekwmu) iz called. Qthervise, if
DEBUG_FROFERTY_ASSERT_DEADLOOP_ENABLED bit of PodDebugProperyHask is set then
Cpuleadloop() is called. If neither of thess bits are set. thea this Eunchon
raturns immedistely after the message is printed to the debug output dew
Debughssert() must actively prevent recursion. If Debughssert{) is colled while
ancther Debugh then Debugh () must return immediately
If FileNams is MULL. then a ¢Filelame: string of "(NULL) Filename® is printed
If Description is NULL, then a ¢Descriptiony string of *(NULL) I)escnnnon iz printed
@paran FileNane The pointer to the name of the source file that generated the assert condition
#param LineHumber The line nusber in the source file that gemerated the assert conditiom
@parem Description The pointer to the description of the assert condition
e
woIn
EFIAPI
Debughssert
IN CONST cma -meliau
Hunber,
?ll CONST CHARE 'Descl’lpucm
130 i
CHARS Buffoxr[MAX_DEEUG_MESSAGE_LENGTH]:
s
4+ Gemerate the ASSERT() message in Ascii format
s
136 AsciiSPrint (Buffer. sizeof (Buffer). "ASSERT Xa(kd): ¥a'n®. Filellame. LineNumber. Descriptiomn):
0000000076569645. = (5 [Sowscs =] [(GoCusee | [[SetBiesk | 7 Twock P [[VemiP_] [Redesh) | {[+]\Globals }, Locals) Stack fClasses]

CTT T

Step Into one more time puts me into a whole new section of code. I’'m in

PeCoffLoaderExtraActionCommon() and within the pecoffextraactionlib.c (whereas before I was

in debuglib.c). What is this? More exploration forthcoming!

For those who would like to learn more, there’s an excellent eBook here: UEFI Framework

Debugging (note:

SourcePoint”

Platform for Software Debug and Trace

requires registration).

31

ScanWorks’

Platform for Embedded Instruments

http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint
http://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 8: The Reset Vector, and Boot Flow

February 26, 2017

This is getting pretty intense. It’s time to explore the code that executes at the reset vector, and

see the printf messages coming out of the BIOS as the MinnowBoard boots.

Having gotten past my reset issues on the MinnowBoard, I set a hard breakpoint directly at the
reset vector (which is at physical address FFFFFFFOh on the MinnowBoard). The reset vector is
the default location (address) where the BayTrail CPU finds the first instruction it will execute

after a reset. You can see these first instructions in the SourcePoint debugger Code window:

File Edit View Processor Options Window Hel

BEd | & | &F LoadCurment 8% PEM: 8 DXE: 488 GoToNextDriverEntry) PowerCyclefteset &5 1 T Core 5 HOB: &3 SyzConfigTable 8 DumphMemblap & DumpCaliitack
g
gHbLbOCUY De & 8 © @ EBreskpoints (3 Code » Command [Llog [l Memory IP Registers @ Symbols ¥ Trace EB)Viewpoint CLWatch % @ 1 2 A 00 ¥
I3 Code (PO"): (16-bit) Tracking IP: 000000D0L - FFFFFFFFL o |[@[] [iewpaint SR
[FFEFFFEBL 0000 ~ |Mame Description Status
F‘: FFFEDL 0 SLH Core Stopped
Fl
F]
FFE |
1 G Symibols - Globals PO* Sle=
Name Vi
5) AcoNVanabie HobOn SmramFlesenve Hob Thrk o
FFFEFFEFL FF CapadoPo of
5] Crondeed o
DetugAgant Pei.of
&) Deobplefi
5) FaulTok
- e &] FrmwerePedomancd [P General Registers E
@ Breskpeints o @] =] T % PodPameh o R tP:‘:m s =
|| idontifier | Address | Attribistos | @] PeCurosh [lGewa |EXX 00000000
FFEFFFFOL Execute (Hardvare PO} 5] PeiVarabie of Flosting Poir | EEX 00000000
W tFeiCoroBroak FFF203EFL Execute (Hordvore FO) -) Platform Earyint of . ECX 00000000
tFeiloadInage FFF32EFAL Execute (Hardvare Fi) 5 (5] PlatfemPorm o gment | Epy 00030679
5) SIFesmeifeich Control EEP 00000000
Debug ESI 00000000
M EDI 00000000
it ESP 00000000
Fi
[Ed Add.. Remove | [Removedd Enstie | | Disstle Al KM - D g uggg
AMM-Im |sS 0000
- Inel 64 ES 0000
. MSR FS 0000
i Gs 0000
L EIP _ 0DOOFFF2
= — —— ——— EFLAGS 00000002
FFFFFFFIL v [#% [Dissssomily = | [GoCureee | [SetBresk | [@Tiscki® [ViewlP | L
Command SIEIE
Waiting for terget power off
Done (9 ds)
Delay for capacitor dischsrge (6s)
Vaiting for target pover on
Done (0.6s)
Vaiting for resst to clear
Done (0. 0s)
;veuul. TCO Watchdog Timer Disabled
>

FLiHelp, F5:Go, Shilt+F5:Stop, Fé:Step nto, F10:Step Over, ShiltsF12:Reset [18: Stopped Special HatMode 1l

There are a couple of NOP instructions, followed by a near JMP to address FFFFF6BS.
Everything is in assembly language because the initial code is being executed out of flash

memory. Looking at the code at FFFFF6B8 is informative.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

TP DY S 8 LoadCurrent & PEM: 88 DXEs 8 GoToNedOriverkntry 85 PowerCycleRieset 5L &3 GoT iCore 9 HOBs 9 SysConfigTable &5 DumpMemMap 4 DumpCaliStack
SHLEY D s 3 @ Breskpoints (& Code > Command [Log M Memory IP Registess @ Symbols »7 Trace B Viewpeint Quwimteh T @13 B A 50 %
& Code (P0°): (16-bit) Tracking IP: 000000001

- FFFFFFFFL o |[E][5 o5 Viewpoint =lE]E

Hame Deseription Status
& PO SIM Core Stoppad

&

G Symbols - Globals PO* =@ =
tame Vabse
- [AcoiadableHobOn SmmmPaserve Hob Thunk of

&) Faul TosrantWrtePe ofi
% i) Frmwar Porfermance Pes o
iy PedPem.eh

) PeiCors ef

) SIRemmezPoidh

sasserdly | [(GoCwsor | [SetBresk] [@Tasckip [VoewP | [Roheih |

“ W
<[]\ Globals {Tocals jStack) Classes |

3] Command o @ | &

Vaiting for target power off ...
Done (9.4s).
(6=)

Delay for capacitor discharge
Vaiting for target power on ...
Done (0.6s).

Done (0.0s)
;El.el TCO Vatchdes Timer Disabled
>

Vaiting for resst to clear

‘ 0

Fl:Help, F5:Go, Shift«F5:Stop, F&:5tep Into, F10:Step Over, Shifts F12:Reset L] 18: Stopped Special Halt Mcde]

The first instruction there is FPINIT, which initializes the processor floating point unit (FPU).
Then there is some more assembly language code, which I will have to determine the meaning of
later. It’s a good time to load the PEI modules and try to see some source code somewhere, by
clicking on the PEIMs button at the top of the screen. An excerpt of the output within the

Command window looks like this:

PO>LoadPeims

PlatformEarlyInit Entry: FFF203A0L Base: FFF20140L
"c:\myworkspace\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\IA32\V1v2TbltDevicePk
g\PlatformInitPei\PlatformInitPei\DEBUG\PlatformEarlyInit.efi"

PchSmbusArpDisabled Entry: FFF29C20L Base: FFF299COL FILE NOT
FOUND

"m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\Smbus\Pei\PchSmbusArpDisabled\DEBUG\PchSmbusArpDisabled.
pdb"

VlivInitPeim Entry: FFF2B820L Base: FFF2B5COL FILE NOT
FOUND

"m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\NorthCluster\V1lvInit\Pei\V1lvInitPeim\DEBUG\V1lvInitPeim.pdb"

PchInitPeim Entry: FFF2DAOOL Base: FFF2D7A0L FILE NOT
FOUND

"m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\PchInit\Pei\PchInitPeim\DEBUG\PchInitPeim.pdb"

PchSpiPeim Entry: FFF33280L Base: FFF33020L FILE NOT
FOUND

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

"m:\Build\V1v2TbltDevicePkg\DEBUG VS52008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\Spi\Pei\PchSpiPeim\DEBUG\PchSpiPeim.pdb"

PeiSmmAccess Entry: FFF35880L Base: FFF35620L FILE NOT
FOUND

"m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\CPU\SmmAccess\Pei\SmmAccess\DEBUG\PeiSmmAccess.pdb"

PeiSmmControl Entry: FFF37000L Base: FFF36DA0OL FILE NOT
FOUND

"m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1lv2DeviceRefCodePkg\ValleyV
iew2Soc\SouthCluster\SmmControl\Pei\SmmControl\DEBUG\PeiSmmControl.pdb"

S3Resume2Pei Entry: FFF38280L Base: FFF38020L
"c:\myworkspace\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\IA32\UefiCpuPkg\Unive
rsal\Acpi\S3Resume2Pei\S3Resume2Pei\DEBUG\S3Resume2Pei.efi"

A number of the modules cannot be found. But for those that are, there are handy pointers to the

source build tree and where the .MAP files are. More on this later.

As I prepare to delve even further into the source code involved in the early boot process, the
other indispensable aid is to take advantage of the debug printf statements that come out of the

serial port of the MinnowBoard. I obtained an inexpensive serial-to-USB cable on Amazon, and

hooked it up to my Mac using the CoolTerm application. That is when things got really exciting:
as I booted up the system, [saw some very interesting information come out to the terminal. An

excerpt of the first couple of screens are:
>>>>SecStartup

Mono Status Code PEIM Loaded

Install PPI: 1F4C6F90-B06B-48D8-A201-BAESF1CD7D56
Install PPI: AB294A92-EAF5-4CF3-AB2B-2D4BED4DB63D
Register PPI Notify: F894643D-C449-42D1-8EA8-85BDD8C65BDE
DetermineTurbotBoard () Entry

MmioConf0O [OxFEDOE200], MmioPadval [0OxFEDOE208]
Gpio S5 4 value is 0x3

Gpio S5 17 value is 0x3

GGC: 0x00000210 GMSsize:0x00000002
CheckCfioPnpSettings: CFIO Pnp Settings Disabled
DetermineTurbotBoard () Entry

MmioConf0O [0OxXxFEDOE200], MmioPadval[0OxFEDOE208]
Gpio S5 4 value is 0x3

Gpio S5 17 value is 0x3

Setting BootMode to BOOT WITH FULL CONFIGURATION
Setup MMIO size

Install PPI: E767BF7F-4DB6-5B34-1011-4FBE4CATAFD2
PROGRESS CODE: V3020003 IO
PDB =
m:\Build\V1v2TbltDevicePkg\DEBUG VS2008x86\IA32\V1v2DeviceRefCodePkg\Txe\SeCU
ma\SeCUmaPeim\DEBUG\ SeCUma .pdb

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.amazon.com/Ftdi-TTL-232r-3v3-Serial-Converter-Cable/dp/B00M41OUYA
http://freeware.the-meiers.org/

The MinnowBoard Chronicles

Loading PEIM at OxO000FFFA2E20 EntryPoint=0x000FFFA3080 SeCUma.efi
PROGRESS CODE: V3020002 IO
Install PPI: CBD86677-362F-4C04-9459-A741326E05CF
Info: SeC PPI load sucessfully
PROGRESS CODE: V3020003 IO
PDB =
c:\myworkspace\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\IA32\SourceLevelDebugP
kg\DebugAgentPei\DebugAgentPei\DEBUG\DebugAgentPei.pdb
Loading PEIM at Ox000FFFA49A0 EntryPoint=0x000FFFA4C00 DebugAgentPei.efi
PROGRESS CODE: V3020002 IO
Install PPI: 3CD652B4-6D33-4DCE-89DB-83DF9766FCCA
Debug Timer: FSB Clock = 200000000
Debug Timer: Divisor =2
Debug Timer: Frequency 100000000
Debug Timer: InitialCount = 10000000
Register PPI Notify: F894643D-C449-42D1-8EA8-85BDD8CG65BDE

Set MRC paramaters for MinnowBoard Max.
MmioConf0O [0OxXFEDOE220], MmioPadval [0OxFEDOE228]
Gpio S5 5 value is 0x3

Determine the memory size is [2GB]

DRAM Speed is 1066MHz!

DRAM Speed is type 1, EccEnabled = 0

tCL = 7
tRP_tRCD = 7
tWR = 8

tWIR = 5
tRRD = 6
tRTP = 4
tFAW = 28

PROGRESS CODE: V51001 I0

POSTCODE=<0024>

fastboot

MRC getting memory size from SeC

SeC Device ID: F18

SeC UMA Size Requested: 16384 KB

MRC SeCUmaSize memory size from SeC ... 10

MRC getting fTPM memory size from SeC

MRC SeCfTPMUmaSize memory size from SeC ... O
PROGRESS CODE: V51002 IO

POSTCODE=<0025>

PROGRESS CODE: V51003 IO

POSTCODE=<0027>

Configuring Memory...

CheckMicrocodeRevision = 00000906, CpuId = 00030679
####: ConfigureMemory () Entry

Current function is MMRC Init

Current function 1is McEnableHPET

Current function 1is ClearSelfRefresh
Current function 1is OemTrackInitComplete
Current function 1is ProgSFRVolSel

Current function 1is ProgDdrTimingControl
Current function 1is ProgBunit

Current function 1is ProgMpllSetup

Current function 1s ProgStaticDdrSetup
Current function 1is ProgStaticInitPerf
Current function 1is ProgStaticPwrClkGating

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Current function 1is DUnitBlMode

Current function 1s ControlDDR3Reset

Current function 1is EnableVreg

Current function 1is ProgHmc

Current function 1s ProgReadWriteFifoPtr
Current function 1is ProgComp

Current function 1is SetIOBUFACT

Current function 1s ProgDdecodeBeforededec
Current function 1is PerformDDR3Reset

Current function 1is PreJedecInit

Current function 1is PerformJedecInit

Current function 1s SetDDRInitializationComplete
Current function 1is DisableRank2RankSwitching
Current function is MMRC RcvnRestore

Current function is MMRC WrLvlRestore

Current function is MMRC RdTrainRestore
Current function is MMRC PerformanceSetting
Current function is MMRC PowerGatingSetting
Current function is MMRC_ SearchRmt

START RMT:

RxDgLeft RxDgRight RxVLow RxVHigh TxDgLeft TxDgRight

CmdLeft CmdRight

Channel 0 Rank 0 . -20 18 -23 17 -26 23 0
0

STOP RMT':
CMD module is per channel only and without Rank differentiation
Current function 1is ProgDraDrb

Current function 1s ProgMemoryMappingRegisters

Current function 1s ProgDdrControl

Current function 1is SetScrambler

Current function 1is ChangeSelfRefreshSetting

Current function 1s SetInitDone

Current function 1is McDisableHPET

Current function 1is FillOutputStructure

MRC INIT DONE

There is a treasure trove of information here, relating the stages of the boot process, the PEIMs
being loaded, and the functions being performed. I’'m at the point now where I can start relating
all of this activity back to the original source code within the debug build I created with Visual
Studio. Then use the SourcePoint debugger to single-step through the code and see its flow. It’s

going to get even more exciting from here on in.

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Episode 9: SourcePoint Command Language and Macros

March 19, 2017

Today, I learn more about Intel Architecture and UEFI on the MinnowBoard, by using the built-

in commands and macros within SourcePoint.

SourcePoint has a very powerful built-in programming language that is very similar to ‘C’. This
language gives access to a plethora of commands for JTAG-based run-control, target access,
dumping of registers/memory/I1O, etc. These allow for command-line control of the debugging
environment, as well as creation of scripts for automation of often-repeated tasks. The command
language complements source-level debugging, and is particularly useful for hardware
qualification and validation. The command language primitives in fact form the foundation of a

lot of the SourcePoint functionality, such as the Intel CScripts.

The command language syntax, data type support, use of expressions, control variables, and
other aspects are defined within the SourcePoint User Guide. I found the use of the command
language to be very easy. You can use the command language directly from the Command

window; below are some examples:

File Edit Wiew Process Options € " W Ip
BEW DH S0 & 9 Llodlument PiMs o DXE:) 5L & ore @ HOBs &% SyConfigTable @ DumpMemMap 885 DumpCaliStack &5 PowerCycleReset
LPg| De 22 @ Breskpoints (3 Code > Comman d Elieg @ Memory IP Registers @ Symbols ¥ Trace B Viewpoint © Watch e pEpagle

& Code (P07): (64-bit) Tracking IP: - FFFFFFFFFFFFFFFEL = =oE -

£ Viewpaint o |[&=] ']

000000007 7TEEZEFIL CC - .
Name Description Status.
00000000778F2FFAL C
000000007 78F 2FFBL @ PO SLH Coze Stopped
00000000778F2FFCL i
000000007 78F2FFDL CC
000000007 78F2FFEL CC
000000007 78F2FFFL CC

P Debug Registers (P07) = o 53
= la-32 Name | Value
QU@UDUDUD?T8F?UDIL C3 i
0000000077 Genersl | |DRO 00000500

= DRI 00000000
UWBUUUU??KF}UU]L . IN 3 Floating Poir
000000007 78F3004L C INT 3 A DR2 00000000

00000000778F2000L F4

0000
[Command = @) 2| FroFFa
FUpranti{Fello Vorldraa) — hooson
Hel 10 Vnrld

PO >

DDDODQDCB“O'OEESM

POsE =10: i++) printf(“Hello Vorld!'mn"}
Hel la 'Iiorldl bols - Stack PO (=0 | o =

iello Vorld Frma Vas
lello Vorld! 0000007 7EF 3001L

i=llo Verld!
jello Vorld!

BOoclock()
051961CSH
Plocpuid_eax
000306794 .
[P0 devicelist

DID DP TF 5C Alias Type Step Idcode BusType O-C ~T Esabled

0 0 1 0 UNK_UCO UNK_UC 0ASIADLZ JTAG -t = Ve

1 00 0 P URK OASSEDL3 JTAG 00 40 Yes

2 00 0 Pl URK 0A68E013 JTAG 071 /0 Yes

P0iport 88

00H ci

PO

[\ Globals), Locals j Stack f[Classes |

Fl:Help, F5:Go, ShiftFS:Stop, Fi:Step Into, F10:5tep Oves, Shift=FILZReset [18: Stopped 648it HatMode [

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

The first command issued was invoked by simply typing in:

printf (“Hello World!\n”)

'9’

Anyone familiar with ‘C” will recognize this statement. As expected, it prints out “Hello World

to the console.

The following command, msr(17), prints out the contents of the mode-specific register at address

17H. Those familiar with Intel Architecture may recognize this as the MSR_PLATFORM ID.

You can see from the “for” loop that it is possible to create complex statements in a single line.
It’s also possible to chain together multiple statements on a single line, and even wrap them onto

several lines.

The clock() macro returns the elapsed time (in ms) since SourcePoint started. The value is

‘051961 C5°H; which is 85549.509 seconds, or about 24 hours.

The next command, cpuid_eax, executes the assembly language CPUID instruction and returns

the result in EAX (and to the screen). You can see that the result is ‘30679’ H.

“devicelist” displays the attributes of the devices in the chain known to SourcePoint. The uncore

and the two device cores are visible.

Of course, it is possible to create command macro text files which contain multiple commands.
Creating command files helps to automate oft-repeated operations. Command files are also
referred to as macro files, script files or include files. There are several ways to execute a

command file:

Use the include command in the Command window.

Drag and drop a command file from Windows Explorer to the Command window.

Select File | Macro | Load Macro from the main menu.

Select File | Macro | Configure Macros to attach a command file to a user-defined

toolbar button, and then press the button.

e Select File | Macro | Configure Macros to attach a command file to an event. Examples
of events include: go, stop, project load, power cycle, etc. When the event occurs, the
macro will automatically execute.

e Define a breakpoint and specify a command file to execute when the breakpoint hits.

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

38

The MinnowBoard Chronicles

An example of a macro file which reads the Bay Trail-I MSRs up to ‘6E0’H consists of only

seven lines:

define ord8 i=0

define ord8 msrvalue = 0

while (1 < 6EO0) {
msrvalue = msr (i)
printf (“$x %$x \n”, 1, msrvalue)
i +=1

}

The results can be compared against the MSR definitions for the Silvermont architecture, which

are also contained in the Intel Software Developers Manuals. Pretty cool, huh?

To have a look at the SourcePoint GUI, go here.
More information on SourcePoint Command macros can be found here.

Use of the SourcePoint command environment to invoke the Intel CScripts is found in our eBook

here (note: requires registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://software.intel.com/en-us/articles/intel-sdm
https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/products/sourcepoint-macros
https://www.asset-intertech.com/eresources/intel-debug-using-python-cscripts-memory-crash-dump-caterr

The MinnowBoard Chronicles

Episode 10: The UEFI shell

March 26, 2017

Today, I created my first UEFI shell script. And, by a happy coincidence, I noticed a new book

in Amazon, Harnessing the UEFI Shell, by Michael Rothman, Vince Zimmer, and Tim Lewis.

In last week’s Episode 9 of the MinnowBoard Chronicles, I used the macro command language
within SourcePoint to print “Hello World”, read Intel MSRs, and display devices on the
MinnowBoard’s JTAG chain, among other things. I really liked the power of the command
environment: its ability to execute command line functions, chain multiple commands on a single
line, wrap multiple commands over multiple lines, and of course, execute scripts. The
SourcePoint command language has rich support for conditional logic, looping, branching, and
the other capabilities you might expect out of a scripting language. And since it comprehends the
‘C’ programming language and is identical to the legacy Intel ITP I programming language, my

learning curve was extremely short.

Since my interest is in UEF]I, this week I decided to explore its shell, and see what capabilities
lay therein. It’s worthwhile to note that UEFI has support for both scripts and applications.
Scripts end with an “.nsh” suffix, whereas applications end with “.efi”. Creating UEFI
applications is a little more complicated, so I’ll leave that for another day. Instead, let’s see what
goes into creating a simple looping “Hello World” script, like I did last week with SourcePoint in

Episode 9.

The convenient thing about the MinnowBoard is that it boots out of the box into the UEFTI shell.

Typing “Help” at the Shell prompt displays the following list of commands:

alias - Displays, creates, or deletes UEFI Shell aliases.

attrib - Displays or modifies the attributes of files or directories.
bcfg - Manages the boot and driver options that are stored in NVRAM.
cd - Displays or changes the current directory.

cls - Clears standard output and optionally changes background color.
comp - Compares the contents of two files on a byte-for-byte basis.
connect - Binds a driver to a specific device and starts the driver.

cp - Copies one or more files or directories to another location.
date - Displays and sets the current date for the system.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.amazon.com/Harnessing-UEFI-Shell-Moving-Platform/dp/1934053147
http://blog.asset-intertech.com/test_data_out/2017/03/the-minnowboard-chronicles-episode-9.html
https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

dblk Displays one or more blocks from a block device.

devices Displays the list of devices managed by UEFI drivers.

devtree Displays the UEFI Driver Model compliant device tree.

dh Displays the device handles in the UEFI environment.

disconnect Disconnects one or more drivers from the specified devices.

dmem Displays the contents of system or device memory.

dmpstore Manages all UEFI variables.

drivers Displays the UEFI driver list.

drvcfg Invokes the driver configuration.

drvdiag Invokes the Driver Diagnostics Protocol.

echo Controls script file command echoing or displays a message.

edit Provides a full screen text editor for ASCII or UCS-2 files.

eficompress Compresses a file using UEFI Compression Algorithm.

efidecompress Decompresses a file using UEFI Decompression Algorithm.

else Identifies the code executed when 'if' is FALSE.

endfor Ends a 'for' loop.

endif Ends the block of a script controlled by an 'if' statement.

exit Exits the UEFI Shell or the current script.

for Starts a loop based on 'for' syntax.

getmtc Gets the MTC from BootServices and displays it.

goto Moves around the point of execution in a script.

help Displays the UEFI Shell command list or verbose command help.
Provides a full screen hex editor for files, block devices, or

hexedit memory.

if Executes commands in specified conditions.

ifconfig Modifies the default IP address of the UEFI IPv4 Network Stack.

load Loads a UEFI driver into memory.

loadpcirom Loads a PCI Option ROM.

1s Lists the contents of a directory or file information.

map Displays or defines file system mappings.

memmap Displays the memory map maintained by the UEFI environment.

mkdir Creates one or more new directories.

mm Displays or modifies MEM/MMIO/IO/PCI/PCIE address space.

mode Displays or changes the console output device mode.
Moves one or more files to a destination within or between file

mv systems.

openinfo Displays the protocols and agents associated with a handle.

parse Retrieves a value from a standard format output file.

pause Pauses a script and waits for an operator to press a key.
Displays a PCI device list or PCI function configuration space

pci of a device.

ping Pings the target host with an IPv4 or IPv6 stack.

ScanWorks’

Platform for Embedded Instruments

41

reconnect
reset

rm
sermode
set
setsize
setvar
shift
smbiosview
stall
time

timezone

touch
type
unload
ver

vol

The MinnowBoard Chronicles

Reconnects drivers to the specific device.

Resets the system.

Deletes one or more files or directories.

Sets serial port attributes.

Displays or modifies UEFI Shell environment variables.
Adjusts the size of a file.

Displays or modifies a UEFI variable.

Shifts in-script parameter positions.

Displays SMBIOS information.

Stalls the operation for a specified number of microseconds.
Displays or sets the current time for the system.

Displays or sets time zone information.
Updates the filename timestamp with the current system date and
time.

Sends the contents of a file to the standard output device.
Unloads a driver image that was already loaded.
Displays UEFI Firmware version information.

Displays or modifies information about a disk volume.

For example, typing “ver” yields the following:

Shell> ver

UEFI Interactive Shell v2.1

EDK IT
UEFI v2.50

(EDK II, 0x00010000)

It is possible to print “Hello World” to the terminal with the “echo” command:

Shell> echo Hello World

Hello World

Shell>

Interestingly, it doesn’t seem possible to use the looping/branching commands on the command

line, as you can do with the shells in SourcePoint, Python, and other platforms. During my first

attempt to echo “Hello World” to the screen ten times, I got the below error message:

Shell> for

The command

i<10; i++) echo Hello World!

is incorrect outside of a script

Command Error Status: Aborted

At this point, I decided it was time to look at the documentation. The UEFI Forum Specifications

page seemed like a good place to start, where I found the UEFI Shell Specification Version 2.2

(dated January 26, 2016) being the most current. This manual was fairly difficult to plumb

SourcePoint

Platform for Software Debug and Trace

Y ScanWorks'

Platform for Embedded Instruments

http://www.uefi.org/specifications
http://www.uefi.org/sites/default/files/resources/UEFI_Shell_2_2.pdf

The MinnowBoard Chronicles

through, but I finally managed to figure out that the equivalent UEFI shell script to print “Hello

World” ten times looks like this:

echo -off

for %$i run (0 10 1)
echo Hello World!
endfor

There’s a fairly easy-to-use editor built into the UEFI Shell, appropriately named “edit”. I
decided to create a shell script named “junk.nsh” with the above program, and save it to the USB
stick plugged into my MinnowBoard; then it’s just a simple matter of typing it at the command

line to get my program running:

FS0:\> junk.nsh
FS0:\> echo -off
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
FSO:\>

And now for the amazing coincidence; after the above experiments, I happened to be browsing
on my LinkedIn account, and noticed that one of my connections had “Liked” a new book on the

UEFI Shell. Clicking on the link took me to Amazon, where I found Harnessing the UEFI Shell:

Moving the Platform Beyond DOS, written by Michael Rothman, Vince Zimmer, and Tim

Lewis. It’s recently published (March 6, 2017) and an update to a book that was originally
released in 2010, so I purchased it (warning, it’s not cheap!). An excerpt of the book’s preview in

Amazon is below:

Focusing on the use of the UEFI Shell and its recently released formal specification, this book

unlocks a wide range of usage models which can help people best utilize the shell solutions. This
text also expands on the obvious intended utilization of the shell and explains how it can be used
in various areas such as security, networking, configuration, and other anticipated uses such as

manufacturing, diagnostics, etc. Among other topics, Harnessing the UEFI Shell demonstrates

how to write Shell scripts, how to write a Shell application, how to use provisioning options and

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

43

https://www.amazon.com/Harnessing-Uefi-Shell-Moving-Platform/dp/1501514806
https://www.amazon.com/Harnessing-Uefi-Shell-Moving-Platform/dp/1501514806

The MinnowBoard Chronicles

more. Since the Shell is also a UEFI component, the book will make clear how the two things
interoperate and how both Shell developers as well as UEFI developers can dip into the other's
field to further expand the power of their solutions.

Harnessing the UEFI Shell is authored by the three chairs of the UEFI working sub-teams,
Michael Rothman (Intel, chair of the UEFI Configuration and UEFI Shell sub-teams), Vincent

Zimmer (Intel, chair of the UEFI networking sub-team and security sub-team), and Tim Lewis
(Insyde Software, chair of the UEFI security sub-team). This book is perfect for any OEMs that
ship UEFI-based solutions (which is all of the MNCs such as IBM, Dell, HP, Apple, etc.),
software developers who are focused on delivering solutions targeted to manufacturing,

diagnostics, hobbyists, or stand-alone kiosk environments.

I’ll review the book in an upcoming episode of The MinnowBoard Chronicles. I'm hoping the
book will give me some tips on creating an actual .efi UEFI application, after which I’ll debug it

using SourcePoint.

For a preview of how I’ll be using SourcePoint to debug my app, have a look at our eBook,

UEFI Framework Debugging (note: requires registration).

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 11: Using Instruction Trace

April 2, 2017
I discover an incredible Trace capability that’s built into the Intel Atom Bay Trail chip!

My MinnowBoard Turbot has a dual core 64-bit Intel® Atom™ “Bay Trail-I” E3826 System on
a Chip (SoC) on-board. Like most Intel CPUs, it supports the standard Last Branch Record
(LBR) and Branch Trace Store (BTS) trace capabilities.

LBR stores a very limited amount of trace information (typically 4 — 16 branch locations) inside

model-specific registers (MSRs). It has virtually no overhead.

BTS uses cache-as-RAM (CAR) or system DRAM to store many more instructions and events,
limited only by the amount of memory on the target system. Unlike LBR, BTS overhead impact
is anywhere from 20% to 100%.

So, LBR and BTS provide limited trace capabilities, limited by trace depth and performance
overhead, respectively. These constraints are one of the things that can make debugging Intel
platforms very challenging. Many different approaches to debug have emerged to work around

these constraints.

In my early days of tinkering with the MinnowBoard, I used LBR to demonstrate Trace on

ASSET’s JTAG-based debugger, SourcePoint. In Episode 6, there’s a good screenshot of the

instruction trace within a call to DebugPrint(). But the trace depth was very shallow; I wanted to

go back much further in time.

As it turns out, the Bay Trail platform supports a much more powerful trace capability, known as
Instruction Trace. One of the most important features of Instruction Trace in Intel’s newer ICs is
that it is nearly full speed: it has no significant impact on the execution speed of the program
being executed. In contrast, when using Branch Trace Messages (BTMs) with BTS (storage to
memory), there is a minimum of a 60% slow down. For some code this could be much greater.
Instruction Trace uses highly compressed packets and has no measurable impact on code
execution. This change in execution speed can often impact whether a bug does or does not

occur.

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

https://www.asset-intertech.com/products/sourcepoint-intel
http://blog.asset-intertech.com/test_data_out/2017/02/the-minnowboard-chronicles-episode-6.html

The MinnowBoard Chronicles

Instruction Trace is easily configured within SourcePoint by going into the Trace Configuration

dialog boxes for this capability. It’s a few mouse clicks to enable the feature and designate the

memory location and buffer size for the trace data to be stored:

File Edit Vi

Processor

-EHDlBBI S| & 8 LoadCument IPEM: B DXE B GoToNedDrivestntry 4 PowerCycleReset 81

Options Trace Window Help

& GoT

iCore U HOB: 8 SysConfigTable &8 DumpMemMap & DumpCaliitack

[€900 M top @ Splito O StepOver UF StepOutOf | MV Reset Target M A & Disconnect g or
.B:eelpmm (3 Code > Command [Log [Memory IP Registers @ Symbols ;"Tn:e) Viewpaint Qwat:h
16 Code oy 3 :
BOODCOUOTRIETOSCL (2or Hoy BRI RO S L = T
OSFL 4 HOV A - St
qg:;i ESEDEDEFEE iﬂé" ggo%gsgéigyuu st Trace | et Trace Memory. : opped
&
:’,gﬂ%c o RETH Precesson to trace . =
1488442418 HOV byte ptr [RSP)+18.REB - General Registers =EEI=E)
7AIFSOBIL 4889542410 MOV qzo—dppt-—[iP‘S’]]+‘D R 9 fioes L)
AJFS0BSL 488F4C2408 MOV quord ptr [RSP]+08, RCX Y] 5432 = |Name | Value -
7 F UgE‘L 4883EC28 sSuB RSP, 00000028 o I’ EAX 00000300 |
20 OFES0S723A0000 MOVEX te ptzr [000000007a N . [.o il | EBX 78868300
7AIFEOCEL £5C0 EST Fakati © Let: [Ecamgie: PO, PE87 FloatingF | |25 000003FD
TASESOCEL Segment)| f | Eot 000003FD
Share e / UMD 381NGS Cantral EBP 7001F90C
3 |-Debug || | ESI 79D5097C
7 AIFE @ Apoly settings 10 3l processons 788E7FED =
) & hesh i [7 7B8676A0
g
0]
: [Enter symbel or st end
: | Enter ymbel or statend @

(o =

s
uTC 5
[3] command i
SecureBootConf 1gDxe muy 000000007791C2FCL Base: 0([Cycle accurnte. -
[CapsuleRunt inaDre Entry: 40ZFCL Base:
HonotonscCounterRuntineDus gm.. JAZECT Base: 8 0 S
e txy: 3 e
LatforalnfoDus Entsy 142DCL Base: 8be v | [Hensdecmal ~ uw...,. <] [Hosscn_ = []
Lat faraCpuIntabxe Entry 1831CT Basa: ok) o) (o) L ”][][] —l
PeiPlatfora Entry 152FCL Base: E-
velenor: tig Entry z 20CL Base: 00 7 e T Toaponcat
i:ti$:° 531:5? g:;; 77908350 Base: 7383382% x 04-02-2017 Inmages mac:IoedSinglelnag found PE32 RSIS
:,.ppg gg" 779002FCL ;“ ;gg‘g—ssgk EILE N 2:;3;23;; ;-wges :: 1?::3;_’3131'05 FIIEI-\JIE @ 0B00900077n
: ~ nages =
E:&.S;. En::; 77 né?&‘i Bae: 7REAO00L "o \:;: g:jg;;ggﬁ i:gﬂ-iw_ﬁleﬁww E'lﬂ"‘s’riﬁ,'f;ﬁ,g
? - 04,02-2017 OnlodDisplayChange Can"t display Mixed a
Configure Trace Hardware) 18: Stopped 6B Halt Mcde

Fale

BEE UW G B Wiodure B PM BDE W GoToNetDrverbrtry G PonerCycleReset L

€dit View Processor Options Trace Window Help

iCore 5 HOB: 68 SysConfigTable 88 DumpMemMap &5 DumpCaliStack

St Go M top @ Stepinto [P StepOver (F Step Out Of | MVResetTorget W feconnect @ Duconnect o Soapshot
: @ Breakpoints (5 Code > Command [El Log M Memory IP Registers Qk Symbols ¥ Trace @) Viewpaint (4 Watch
I Code (PO"): (54-bi#) Tracking IP: 0000000000000 - FFFFFFFFFFFFFFFEL =5
000000007, "‘sggc& qgg%é :18‘\: m\x ch
A
0AZL ESFLEDEFFF CALL ooaoeoumnfr“u_ [LER [BTS [et Trce |
OA7L. ADD FEP, 00000028 .
FOOACE (18842018 ior by [RSP)+18. RSB et
448844241 i yte py +1
FS0BIL 4030000410 ¥ov avord pte (58] 410, RIY B NevpiosemicE palae
48834C2408 HOov querd ptr [RSPI+
:Itggﬂ'_ “83ﬂ:2§ 000! v T 000! R FEREBI00
OFBG05723A0000 MOVZX EAX.byte ptr [000000007a
FROCEL B5C0 EST En_zzx Btz | Bone addees: | DEFFFON0P 000003FD
qgg:% 2 = pr 000003FD
A s 1 = Lanefy 7001F90C
i | == e
7AIFBODAL 4 " i -
7A3FBODCT. 4 - rsce o e 78867640
FROEIL 4 0038
FBOEAL 4
FBOETL €|
FBOEBL 4
FBOEEL
&

tarsttd

] commana

SecureBootContiglxe
CapsuleRuntineDxe
;gnmumo':oun terRuntinelxe

hemmeoAmoom .

poEmmo e

b
fornInfcDue
foraCpulnfolxe
atforn
[SavelenoryConiig
orsCpuPolicy
ormGOPPolicy

Component -

mages . nac: LoadSinglelnag (ound :FI232 gna

mages . nac: LoadSinglelnag FII.EJMJIE e 00000000??
nac:_findFile Fath =

Flldlnesumg LI

Losding EE1(FE) foraa]

Can't display Mixed a -

il

ScanWorks®

Platform for Embedded Instruments

Date T
040272017 1
04-02-2017
04-02/2017
04-02-2017
04-02-2017
04-02-2017

0 i

-Zmﬁodbxaplaychm\ge

-

Configure Trace Hardware 48 Holt Mode

SourcePoint

Platform for Software Debug and Trace

46

https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

Once that was all configured, I reset the target and collected trace data while the target was
running a UEFTI shell script to output the configuration space of a PCI device. With SourcePoint,
it’s possible to see the code instruction trace in several views, all of which provide great power to
the designer. Here is a view of the Call Tree and the timing statistics associated with the

invocation of the stacked functions:

s Window Help

ETEW Bﬂ W - F LoadCurrent 63 PEIM: @88 DXEs 988 GoToNeaDrivertntry @pumcy:rm & L3 Core @5 HOB: &8 SysConfigTable 488 DumpMemMap #88 DumpCaiStack
SepGe M op B4 Steplato (P StepOver UF Step Ot OF | MVReset Target M Reconnect 8 nect ol Snapihot
: @ Breskpoints (5 Code > Command [E] Log [l Memory IP Registers Q4 Symbols »¥ Trace € Viewpoint 3, Watch LM ELLD REBSOraemsS0 ¢
ode PO 9 (S 155]| 52 instruction Trace (0, time aignet £53 Viewpoint EElEE]
.) 2 r Name Description Status
,.p lnslrumonTuafeSemn 355 calls 'S & 5o SIN Core Stopped
| Code | Cai Tree | Call Chast
[Fedee] [bee | [(BomdM | [(Colpse] Upporiot: 0 (3 Lowsrbnt 53 3] [¥]Show itsmets T 1
Cycle Address | #] +] Function Timestamp incl_Time Excl_Time 7 e E:g-ggg o
58 CorehllocatePool 825.372 ns 19.068 ns - TE32 950 ws (46 810 na}
8 CorelnternalillocatePool 806.304 ns 12.939 ns L —695.930 us (+6.210 ns)
78 CoredllocatePooll 316.665 ns 68.100 ns 855920 us E-uig:g;;n) :
s 8 RenoveEntryList 226.092 ns 222 006 ns =£95.701 us ne]
v @ IsListEnpty 4.086 m= 4.086 ns SR R e e
10 Internal Basel nlist 0 _n: 0 _n IRCP &l BOY.
-13543 79874507 ¢ DebugClearfenoryEnabled R T —rETrE
-13538 7887A532 8 DebuaPrintEnabled TR PRTE telrerres]
-13533 78874543 8 DebugPrint LevelEnabled =61 | Function Proflng |
-13828 78574587 § B DabugFrint -6)
-13528 TEEEI4AR 9 DebughssertEnsbled -6 Frsyre o [Flinchodeintempts Totaitims: 700677 us Calls- 35
-13520 P98894E0 9 GetDebugPrintErrorlevel e Funciion Tl e T el % el Trme Evel % =
-13504 78879E16 7 B CoreReleasstenorylock -6 || HiiSeringTeInage 1 700.677 us 100.00% 61.290 ns
~13504 78874BAB & B CoreReleaselock =61 || GarGlyphBut Eer : 700487 us 99.97x 2.234 us
-13504 78886129 9 DebughssertEnabled =6 || AllocataZarcPosl 4 694.638 us 99.14% 12.288 ns
=13497 T78B8615B 9 DebughssertEnabled =& Internalidl locateZaroPoal 4 694 626 us 99 14% 6.129 n=
=13432 7888614F 9 B CoreRestoreTpl =6] || InternalallocatePool 4 €94.395 us 99.10% 2.043 ns
-13492 7887DACE 10 DebughssartEnsbled =61 || Coreal lccatePool 4 694.393 us 99.10% 179.103 ns E
~13482 78570881 100 CoreSatInterruptState =6 | | CoreTutarnalil locateFool 4 213 i
—13481 78870908 11 SmnBase2InSaran -¢! | e 7
—13467 78870928 118 FPHELIA -6 |[1sLastEnpty 7
-13461 778E19AD 128 7TEELBAC ~6] || InteynalBasaliblshedalnList 7 aao 610 us
=13450 = o | | RemovaEntryList 4 617 667 n=
3453 CopyMen 30 3.312 us 3.312 us
SN G CoreRelesselock 3 1466 us 122 560 ns
CoreRel ylock 3 1.466 us 0 ns
CoreRestoreTpl 3 1.344 us 362.973 ns
If ListHead i= NULL, then ASSERT() CoreSetInterruptState 3 980,640 nz 58.566 ns
Brovas TiatHasd 3 maintar b0 tha head nods nf a new dohliood in] || 77351944 3 896.877 ns 39.498 ns
“lad 778E18AC 3 857379 ns 185.232 ns
= = > ——| || SanBasaInSan 3 672147 n= 666 018 n=
O00000NTEEBTO0AL ~ (3 [Souce][(GoCuson | [SetBak) [Tisck P [ViewiP] [(Rsieh || 7oy opan 6 $27.775 ns §27.775 ns
L GetPoolindexFroaSize & 251 970 ns 251 970 ns
atforal t try 481 N -
i OnL jonThunk Entry: 000000007747F2FCL Basa: 0000([1<% i [P———— T — ¥
HiscSubclass Entry: 000000007747131CL Base: 0000
mmanw Ho Symbol Information Found sewws Entyy: 0000000077CES250L Base: 0000 =
BO> (M | [Contipme... | [O | [Fier Caituale Fisfresh
Fi:Help, F5:Go,_Shift-F5-Stop, FE-Steplnto, FIO-Step Over, Shit+F12Reset 7 13: Stopped 64 Bt Halt Mode I

It’s possible to use these very effectively to do a code walk-through and see where the firmware
is spending its time. But, even more powerfully, the Call Chart tab in the Instruction Trace

Search window provides a visual display of code execution:

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

File Edit Vi 5 Window Help

LoadCurrent 3 PEIM: & DXEs 488 GoToNextOriverEnt PowerCycleReset T Core 5 HOBs onfigTable 4 Dumphembis DumnpCaliStack
=33 == Yy vk 3 g i]
6o M i Steplnto (P StepOver U0 Step Ot Of | MReset Torget B L o2
@ Breakpoints (3 Code > Commend [E] Log [Memory IP Registers G Symbols ¥ Trace @) Viewpaint O} Watch LM EBEAR E % B8 a[jlb a0 %
¥ Tostruction Trace Search - 35 alls
53 1 S & truction r).((rarch <calls S ==
CONST LIST_ENTRY Cade |c'”"‘- o i 1 Status
e Crom) [B) [EES v] G136 Toime 06T o Moossdime 4523 08ns =
7+ Test the validi| |y Function < 2737 us > Incl. Time Excl Time
0 HaiStringTolnage 700.677 us 61.290 ns
1=
2? :%gg Ejl:::t-}}'q}:g 1 Getolvphsufer 1,043 us 7.491 ns 5 (+6.810 ns)
62 ASSERT (La 2 907.773 ns 4.096 nz 5 (ﬁ-gig ns)
63 ASSERT (Moo 1= WU ||5 TaternelAlloceeZercPool 903.687 ns 2.043 ns e U B
s (+6.810 ns)
65 Count = 0; 4 InternalAllocatePool 826.053 ns 681 ps s (+6.810 nz)
H Ptr = List) 5 CorehllocatePool 825.372 ns 19.068 ns s (4219282 ns)
6 CorelnternalillecstePesl 806 304 ne 12 933 ns 5 (+219.282 ns)
68 if (FeaturePedGet |||7 CoreReleasesnorylock] | 476.700 ne 0 ne
E: " % CoreReleaseloch [| 1 7. 700 ns 38.136 ns
i esety 5| || CoroRestoreTel || I 438.564 ns 121,218 ns R = 3
.—/ 10 CoreSetInterruptState | Il 317.346 ns 19.068 ns
do { 11 778E19A4 289.425 ns 13.620 ns
74 Ptr = Ptr—)Fori
75 if (PedGet32 (
76 Caunti; Excl %
. ASSE 0.01%
ASSERT
i H 0. 32%
a0 ASSERT (Coun 0. 00
i 0. 00
0. 00
;: Return if 0,03 £
a5 if (Count »= 001k
8 return (BO(
¥ 2 0.01%
98.56%
23 hile ((Ptr 1=| |[F T \P ‘ F
3 while ((Ptr G || 0.09x
9 if (Ptr 1= Node)'x v T us L T FITrus 0.47%
92 return FALSE: Lock 3 1466 us 0.21% 122 880 n= 0. 02%
37 hemcryLoch 3 1466 ws 0.21% 0 ns 0.00%
Fel 3 1.344 us 0.19% 362.973 ns 0.05%
9% if (PedGer3z (PedMexinualinkedListlength) > 0) ruptState 3 980.640 nz 0.14% $8.566 ns 0.01%
¥ ‘ciinit (55 ovaL iabes GE Heded it Link 3 L 324K 0 0015
L - —— _— 3 857.379 ns 0.12% 185.232 n= 0.03%
7/ Exit early if the nuaber of nodes in List >+ Pediaxiauslinkedlistlengt 5 RT3 e RT3
do { 3 §27.775 ns 0.08% §27.775 ns 0,08%
b102 Ptr = Ptr—sForwardLink: . KkFromSize 3 251.970 ns 0.04% 251.970 ns 0,04%
103 Counts+ - 2 | 138 I0G e 0_AFY 138 FNG e O AP o
« "
0000000078357077L (5} [Seusce =) [[Go Curicr | [[SetBiosk | (7] Track P [ViewlP_| . = == - —
| Mised x| |-Configas.... | | .Displgt....| . Fefresh |
FliHelp, F5:Go, ShiltsFSiStop, Fi:Step Into, F10:Step Over, Shifts F12:Reset n 18: Stopped 64 Bia HatMode 1

The Call Graph display allows the SourcePoint user to look at large portions (or even all of) the
trace buffer, and view it in a graph showing call depth. Each line in this graph represents a
different function at a different point in time. Changes in color represent changes in a function.
Each line moving downwards represents another level of call depth. A moveable cursor points to
specific points on the timeline (the x-axis of graph). The left-hand column displays the names of
the functions, at each level, at the point indicated by the cursor. And the controls above the graph

allow the user to expand the graph (zoom in) at the point indicated by the cursor.

This was pretty amazing to see. I was under the impression that the older Bay Trail devices were
limited to LBR and BTS trace capabilities. But with Instruction Trace, much greater debugging
functionality is available. Tinkering around with this has really helped me understand the overall

flow of execution of the UEFI code base.

Incidentally, an excellent treatise on Instruction Trace is available in the eBook Intel Adds High-

Speed Instruction Trace (note: requires registration).

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint
https://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint

The MinnowBoard Chronicles

Episode 12: Writing UEFI Applications

April 9, 2017

In Episode 10 of the MinnowBoard Chronicles, I created my first UEFI Shell script. Today, I “up

the game” by writing an actual application in ‘C’.

In Episode 10, I created a simple “Hello World” program that ran as a UEFI shell script. This is
akin to writing a Basic program for beginning programmers. It was simple enough to create a
short text file (with suffix .nsh) within the built-in UEFI shell editor, and then just run it from the
command line. It’s analogous to Basic because the program just executes in an “interpreted”
form, with no previous steps of compiling, linking, etc. So, it was very simple to get up and

running.

With such simplicity, however, comes compromises. The UEFI shell scripting language is
somewhat constrained; although it does have support for looping, conditional logic, and such, the
language is unfamiliar, and creating a large application within it would be difficult. This is as
intended: the Shell is simple and useful and lightweight, and the list of commands available to

scripts using it is fairly limited.

Writing a full-fledged application or driver that executes directly within the UEFI environment is
a much larger challenge, but even more rewarding. These can be written in ‘C’, so the power of
that language is at your fingertips. And they can access services provided both by the UEFI and

the shell, so they can do so much more.

I decided to start with the familiar “Hello World” program, written in ‘C’, as below:

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefilLib.h>
EFI_STATUS
EFIAPT
UefiMain (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)
{
Print (L"Hello World \n");
return EFI_ SUCCESS;
}

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/03/the-minnowboard-chronicles-episode-10.html

The MinnowBoard Chronicles

I will describe the process in more detail in an upcoming blog, but here’s an outline of the steps

needed to create this simple Hello World application:

1. Have the EDK II source build tree and tools available on your PC.

2. Run the edksetup script.

3. Create a new directory in your workspace and put the ‘C’ source file and its
corresponding .inf file there.

4. Update an existing .dsc file and add in support for your MyHelloWorld .inf file.
Specifically, right at the end of the [Components] section and right before the
[BuildOptions] section, add in this line:

MyHelloWorld/MyHelloWorld.inf

For reference, the .inf file looks like the below:

Qfile

Brief Description of UEFI MyHelloWorld

#

##
[Defines]
INF VERSION = 0x00010005
BASE NAME = MyHelloWorld
FILE GUID = 6467c5d1-d0f0-4b47-a6a4-0545624972ef
MODULE TYPE = UEFI_ APPLICATION
VERSION_ STRING =1.0
ENTRY POINT = UefiMain

#

The following information is for reference only and not required by the
build.
#
VALID ARCHITECTURES = X64
#

[Sources]
MyHelloWorld.c

[Packages]
MdePkg/MdePkg.dec

[LibraryClasses]
UefiApplicationEntryPoint
Uefilib

[Guids]
[Ppis]

[Protocols]

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

[FeaturePcd]

[Pcd]

Put these three files in the same directory, launch the Developer Command Prompt for VS2013,
and type in:

Build -p MyHelloWorld/DuetPkgX64.dsc

It runs for a minute, but I got a lot of joy out of seeing (after numerous failures due to my own

ineptitude) a successful compile:

B Administrator: Developer Command Prompt for V52013 =B 2
UG, Kb He 1

HyHelloborld> =

After that, it was a simple matter of copying the MyHelloWorld.efi file over to a USB stick,
launching the UEFI shell, and typing in MyHelloWorld at the UEFI shell prompt. I always get a

kick out of seeing “Hello World!” show up on a screen.

Next week, I’ll see what I can do to develop a more sophisticated application and explore what
debugging tools are available for UEFI applications. In the meantime, to pay the bills, I’ll direct

you to more fascinating UEFI material, in particular our eBook on UEFI Framework Debugging

(note: requires registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 13: UEFI Applications using Standard ‘C’

April 17, 2017

This week, I updated the firmware on the MinnowBoard Turbot to the latest release, and

struggled with creating a UEFI application using standard ‘C’ functions.

I subscribe to the @MinnowBoard Twitter feed, and received a notice from @Intel Brian that a

new version of the firmware was available for download, and that it came highly recommended.
So, as I last did in Episode 4, I downloaded the full source tree and built the v0.95 image via the

detailed instructions available with the release.

This time, I decided to build a Release version of the firmware, rather than the Debug version.
The Debug version was quite interesting to work with, because it streamed out the BIOS printf
messages to the CoolTerm application on my Mac via the MinnowBoard serial port. It was
enlightening to look at some of these messages and trace them back to the source code, and see
what it was doing at various stages of the boot process. But, the Debug image takes a lot longer
to boot (55 seconds, as opposed to a few seconds for the Release version), so in the interest of

saving time, since I was rebooting the platform a lot, I tried the Release version.

Alas, I found out that the default build options of the Build IFWI bat command running under
the Developer Command Prompt for VS2013 yielded a build without the necessary symbols and
source links. So, when I fired up SourcePoint to continue my explorations, all I could see was
assembly code. This wouldn’t allow me to continue my learnings about the UEFI internals, so I

fell back again to building a Debug version and reflashing the MinnowBoard with this release.

In Episode 11, I built and ran a simple UEFI “Hello World” shell script. And in Episode 12, |
undertook the more complicated development of a real UEFI application. The latter is a
precursor for building more sophisticated tools like drivers. But it involves a more complicated
build process and requires a deeper understanding of the source tree file structure. Nonetheless, I
succeeded in creating a simple “Hello World” application using the built-in UEFI “print”

function, which is like “printf” in that it outputs the string to the standard console device.

The Harnessing the UEFI Shell book that I purchased refers to writing UEFI applications using

standard ‘C’ member functions. It seemed to be a simple matter of doing for example a #include

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

file://corp.asset-intertech.com/datastore/wkgroup/Marketing/Marketing/Marketing%20in%20Work/WhitePapers/eBooks/B033/@Minnowboard
file://corp.asset-intertech.com/datastore/wkgroup/Marketing/Marketing/Marketing%20in%20Work/WhitePapers/eBooks/B033/@Intel_Brian
http://blog.asset-intertech.com/test_data_out/2017/01/the-minnowboard-chronicles-episode-4.html
https://firmware.intel.com/sites/default/files/MinnowBoard_MAX-Rel_0_95-ReleaseNotes.txt
https://www.asset-intertech.com/products/#sourcepoint
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-11.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html

The MinnowBoard Chronicles

<stdio.h> at the front end of the code, and then feeling free to use the standard ‘C’ functions that
I’'m familiar with. Now, that seemed like a good prospect for learning something new: I could
develop a few more sophisticated applications using the built-in ‘C’ functions I’'m comfortable
with, and then graduate later to a deeper understanding of the UEFI-specific functions. My new
MyHelloWorld2.c application using this approach looked like this:

#include <stdio.h>

int

main (int arg, char **argv)

{
printf (“Hello World!\n”);

}

Looks familiar, right?

And the setup file for this application, MyHelloWorld2.inf, looks like:

Qfile

.inf file for MyHelloWorld2

##
[Defines]
INF VERSION = 0x00010005
BASE NAME = MyHelloWorld?2
FILE GUID = 721£92fb-43£f7-49%9b4-9a2a-142eac0d49%ac
MODULE TYPE = UEFI APPLICATION
VERSION STRING =1.0
ENTRY POINT = UefiMain

#

The following information is for reference only and not required by the
build.
#
VALID ARCHITECTURES = X64
#

[Sources]
MyHelloWorld2.c

[Packages]
StdLib/StdLib.dec
MdePkg/MdePkg.dec

[LibraryClasses]
LibC

[Guids]

[Ppis]

[Protocols]

SourcePoint L) ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

[FeaturePcd]

[Pcd]

Alas (and I realize this is the second “alas” within this article), after numerous attempts, I never

could get this to successfully compile, always getting errors of the type:
Error 4000: Instance of library class [LibCType] is not found:

I suspect that I’'m missing something out of the .dsc file that’s part of the build, but I’m not sure
at the moment. I’ll return to this in a future exploration. Any ideas on how to proceed would be

appreciated!

B Adrminisiraton l:lﬂclup-cr Command 9:0r.r._;-t for V52013 = | @ B

]"h!_i Hod.dse
£

4B38d: Inztance of lihe

£1 I]
“H 1loWorld2. inf]

Phg¥ed.dsc
df

4080 : Instance of libe

nf 1 641
“HyHelloWorld2 . inf]

And now, a word from our sponsor: do you want to learn more about debugging UEFI

applications? Check out this whitepaper here: UEFI Framework Debugging (note: requires

registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 14: Poking around SecCore in UEFI
May 6, 2017

This week, I poke around the code from the reset vector, in the heart of the CPU initialization

firmware, and try to reverse-engineer what is going on.

Using our JTAG hardware-assisted SourcePoint debugger, it is easy to power-cycle the
MinnowBoard target and have the system stop right at the reset vector, which is at the well-

known address X ’FFFFFFFO’L. A screen shot of the Code view is as below:

Options Command Window Help

BEW DW S & lcedCument §roM G 0E G GoToNetDrivertnty 5 PowerCycleReset & Loads 6 GoT, iCore 5 HOBs %% SysConfigTable 19 DumpMemMap &5 DumpCaliStack
eHLPT|De &2 © @ Breakpoints G Code > Command [Alog M Memory IPRegisters @ Symboks p¥ Trace G0 Viewpoint Gy watch B @23 B2 A L) @
Qcodgmjcue-mhmngmm-srmsm : £ e elels)
FFEFEEBL 0000 ADD byte ptr [BA+51].AL
FFFFFEDL 0000 ADD byte ptr [BX+SI).AL | _|_Name | I Status
FFEFFEFL (0 DE [} & PO SLH Core Stopped
<>EFFEFEFOL 90 HOP
EFEFEFL 10 HoP -
FFEFFF2L ESCIFE J¥P nesrlé ptr £fEf{6bBL
FFEFEFSL 0000 ADD byte ptr [BX+5I).AL IP Genesal Registers (P07) =a=]
FFEFEF7L (0FE ADD DH_EH —
FFEFEFSL 0000 ADD byte ptr [BX+SI).AL ~ | Mame | Value
FEFFEFBEL 0000 ADD byte ptr [BN+SI].AL EAX 00000000
FFFEFEFDL 00F% ADD CL.EX EBX 00000000
FYFFEFEL FF i3 £f ECK 00000000
EDX 00030673
EBP 00000000
ESI 00000000
EDI 00000000
ESP 00000000
[FO00
G Symbols - StackPO* El==] *M"':‘, S 0000
Frame prey HMM - In B | 55 0000
%2 ol 64 ES 0000
| Fs 0000
Senen i lles 0000
Flosting | | £p DODOFFED
Segment| | | EFTAGS 00000002
Contral
Debug
MK
IMM-S‘_
XM - DI
XMM - I
. 5
4] *[\Globals) Locals) Stack fClasses | sl *
FFFFFFFFL [P [Mieea ~|[(GoCusar | [Setbresk | @Wimackip [ViewlP | [Rehesh | _.hulpo‘mls [EfE]=s]
=]
3] cememand (all@s 1
Una Entry: FEFAS1B0L Base: FEFAZFZ0L FILE NOT FOUND m:-Build-VIvZThltDevicePhs-DEBUG_V52008x06~1A32 V1viDeviceRef
ughgent Pai Entry: FEFALDOOL Base: FFFALAMOL ‘c:“ayvorksspaceZ\Build-V1v2TbltDevicePhe DEEUG_VS2012x8¢-IA32Saurcalaval Dat
ulaPai Entry: FFFABABOL Base: L e ayverksspace2\Build\V1v2ThltDevieaPkg DEBUG_VS2012%86 1432 Ndelodu LaPlhe L
uleXfd Entry: FEFAEES{L Base: FEFAEG20L 'e:\.?uorkseﬁaaez\aulld\ﬂvz?blt.Deui:aPl \DEBUG_VS2012%86K6 4 Hdabodu laPlgle
hEarlyInitPein Entry: FEFCICBOL Base: FFFCLAZ0L FILE HOT FOUND “a:“Build“V1w2ThltDevicePkg DERUG_VS Th32Wiv2DeviceRet
emoryInit Entry: FFFCS780L Base: 'CS! L FILE KOT FOUND “=m:“Build“V1w2Tbl kg“DEBUG_VS. IA32 \Viv2DevicaRat
Entry: FEFEFSBSL Base: FFFFES9SL FILE NOT FOUND “a’“Build V1wZTbl kg ~DEBUG_VS TA32 IA32FanilyCpy
- | Ensble || Disableal
FLiHelp, Fi:Go, ShiftF3:5top, FaStep Into, FL0:Step Over, Shifte FIZReset) 18: Stopped

The processor executes two NOP instructions, followed by a JMP to address FFFFF6BS. This is

where some interesting code shows up:

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

File Edit View Processor O Help

 BEW BOE B @ % icodCurent §5PEM: 5 DKEs 8 GoToNedDriverEntry 85 PowerCycleRieset &L & GoT iCore O35 HOBs @) SysConfigTable ¥ DumpMemMap 4 DurnpCaliStack
‘gHbLCU De s S | @ EBreakpoints (& Code > Command [Lleg [l Memory IP Registers @ Symbols »% Trace EDViewpoint Q Wateh = T @ %1 |3 A 5 ¢
e
(G Code PO 06- m'rmmgmmmt FRFFFFFFL sl@ i Se=E)
EFEEGED tr [BXeSI]. AL = —
EFEFOEL Description Status
FFEFGES & PO S1¥ Core Stopped
EFEFOEA
rnr_;]n'ncs: IP General Registers (P0%) =i =0 =1
FEFFE c’i R %] = [Name | Value
recr General | | [EAX 00000000
EFEFSCT, - EBX 00000000
EFEFECAL © FlostingH § | pey 00000000
EFECC e ptr ES:[0000££€0] Segment | § | Eny 00030679
=" Contral | | | EBR 00000000
& ptr (EEEEGmEL
L -4 Debug ESI 00000000
FFEFEDA MM EDI 00000000
FFEFSDC M = 00000000
FFEFSDE. r (EEEET2IL €5 FO0O
FEFEeES 0061 £10 G Symbols - Stack PO* =iic XMM- D | pe 0000
XMM - In/
EFEFEES StackFrame Vahse 5 0000
EFFESEA el 64 E5 0000
FFEFOED. General FS oo
EFEEGES Flosting# || S5 0000
EFEFSES EIP 0000FSES
FFEFGEC Segment| | | EFTaGS 00000002
EFEEGEE Control
FFEF 708 Debug
FFEFTOB MM
EEFEE70E XBAM - 54
Lo 5
EFEE714 XMM - In
EFEF716; . T
G e [S13I\Globals Locals) Stack (Clanana] i
FFFF7221. @ Breakpoints [=E=)
FRFFFEREL [GoCusar | [Setbredh | [iTiackip [MewlP] [Rebesh | | | [Tidentter Address [Attnbates
Command ks
0 Entry: FEFASIGOL Base: ZFZ0L FTIE WOT FOUND ~a ~Bar18-71u2Tbl tDevicePks DEBTG_Te2006xd6 1432 VIvdDes iceRat .
BughgentPei Entry: FEFASDOOL Base: FEFAG, “Build\V1v2Tblt DevicaPkg DEBUG_V52012x86~1h32 Sourcalavel Det
alefei Entry: FEFABASOL Base: L c \-yuarksspuce?\ﬁluld\ULvZTbltstlcaPkg\hEBlJG ¥52012x86~ 1A 32 HdeHodulePkgnl
uleXéd Entry: FEFAEESAL Base: EEFAE620L “ayvorksspace2 Build\WlvaThlt DevicePka DEBUG ¥S2012x86 64 NdeHodulaPks U
REarlyInitPein Entsy. FEFCICHOL Baca: EFFCIAZOL FILE JOT FOUND oa- “Build\V1w2Th1tDevicaPkg DERUE_VS TA3zvlviDeuiceRat
encrylnit Entry: FEFCSIS0L Base: EEFCSS20L EILE HOT FOUND “n-“BuildwWiv2ThltDe DEBUC_VS TA32WlviDeuicaRat
Entry: FEFFFEBSL Base: FFFFE@9SL FILE NOT FOUND “a- \amm\\rlumuaevmerkg\nm Vs TA3STA32Fani LyCon, || T Enable Dissbie Al
Fl:Help, F5:Go, Shift=FS:Stop, FB:Step Into, F10:Step Over, Shift-FL2Reset) 18: Stopped

At the bottom of the screen, in the Command window, some of the last few lines are displayed
where I’ve loaded the symbols into SourcePoint for the PEI modules. Note that the SecCore
module has the entry address of FFFFF6BS8, which is exactly where we are in the Code window.
Note also that even though the Code window is in “Mixed” mode where we should see both
source and object code, there are no symbols visible; you can see the “FILE NOT FOUND” in
the Command window, which means the .pdb file is not available. This makes a lot of sense,
since SEC (the UEFI Security phase) is the root of trust. So, this is part of a “binary blob”, and
all we have is the assembly language code to look at; but we can still peek and poke around and

use SourcePoint to get some useful insights into what the platform is doing right out of reset.

The Stack Frame window is empty; this is because we are executing hand-crafted assembly code

within the SPI flash, and there is no memory available for a stack yet.
The first instruction initializes the floating point unit (FPU).

The next couple of handful of instructions are the following, with my comments:

MOVD MMO, EAX // Stores the value of EAX into MMO register
CLT // Clear the interrupt flag in the EFLAGS register
XOR EAX, EAX // Ensures there are all ‘0’ stored in EAX

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

MOV AX, CS // Puts the contents of the code segment register
(F0O00) in AX

MOV DS, AX // Puts FO000 in data segment register

MOV AX, F000 // Puts X’'F000’ in EAX (note it was already
there)

MOV ES, AX // Puts X'F000’ into “extra segment” register
MOV AL, byte ptr ES: [0000fff0] // Moves X’'90’ into the first byte of EAX
CMP AL, EA // Compares X'EA’ to the first 8 bits of EAX
(X"90")

JNE short ptr FFFFF6E6L // If not equal (they are not), jumps to
FFFEFFOEG

MOV CX, 001B // Loads CX w/ X'"1B’; address of

IA32 APIC BASE

RDMSR // Reads contents of MSR into EDX:EAX

TEST AH, 01 // Compares EAX second byte (BSP FLAG) to ‘1’
JE short ptr FFFFF722L // If equal, jump to FFFFF722

By single-stepping through the code, I can see the contents of the general-purpose registers
(GPRs) changing and confirming what I think is happening. On every single step, the registers

whose values are changing appear in green:

File Edit View P Options ~ Code Window Help

BEW DE S| @ 9 omcurent §PEM: 5 0XEs] GoToNeDrivertntry 4 PowerCycleReset & & iCore 5 HOBs &%) SysConfigTable @ DumpMemMap & DumpCalStack
SELEY De 23 © @ Breskpeinte (& Code > Commund [Log Hll Memory IP Registers G Symbols o Trace G0 Viewpoint QL wsteh T, @ %3 |2 A 00 ¢
5 : ; ——
gc»:;:o;;ue bit) Tracking IP: DOOGOG00L nfmn. = |[®]fE] 20V " e
EFEFGBA 3 ¥ . 5 Name Description Status
FFEFGED) = PO SLH Core Stopped
EFEFEE]
FFEFECL
FFEFRCE — i
FFEFGC§ X Registers (P0%) o [@] 8] | IP Genenl Registers (P0°) e lE@[®
:ggzgn 32 Nama | Value RS Name | Value
FFEF6OC General MO 0000000000000000 General EAX DODOFOSD
EFEFSD3] R 777 0000000000000000 i 00000000
<> Floating Pair | ygs 0000000000000000 Floating Poir | gy 00000000
FTEFR07] Segment |3 0000000000000000 Segment | ppy 00030679
FEFrA Centeol M4 0000000000000000 Control EBP 00000000
EFEDE Debug HES 0000000000000000 Debug ESI 00000000
EFEFSE] MMK HiEE 0000000000000000 MK EDI 00000000
FFEFSES] XM HE? 0000000000000000 M ESP 00000000
FFFFGED] HETAGS 0000 s Fa0D
EEEFCEAL XMM - DP AMM-DP | pe Fo00
L XMM - Int XMM-Int |55 0000
ErErerar] 5 Intel 64 ES Fo0o
FF6FCL e General FS 0000
FFGFFL 4 Flosting Pair | S5 0000
FFFF702L EIP 0000F5D5
FEEE 7 Segment | FFIAGS 00000037
EF Control
FF7
FEEF71 Debug
FFEE7L MMX
EFFEF714 AMM - 5P
2 AMM - DR
: F7 XMM - Int
b] & MSR
FFFF7, 5 ptr fEEEET22L User
._Nnnn ANN i ntr [RY+ST1 AT i
FrFTFEORL - [[ved <) (GoCuse] [SetBiesk] @inioskie [ViewPP) [Rekeir] |
Iﬂ&mmnﬂ
Una Entry: FFFASIG0L Base: FF20L FILE HOT FOU
bughgent Pei Entry: A4DO0L Base: FEFALAMOL ‘e
ulePei Entry: ABABOL Base: 820l “e:
ulelid Entry: FEFAEES4L Esse: FFFAEGZOL ‘“e: 8
hEarlyInitPeim Entry: FFFCICB0L Base: FFFCLAZOL FILE HOT FOU
encryInit Entry: FFFCS5780L Base: FFFCSS20L FILE NOT FOU
Entry FEFFFGBOL Base: FFFFEG9SL FILE NOT FOU
] i, 0 L) ¥ I
FLiHelp, F5:Go, Shift~FScStop, FB/Step Into, F10:Step Over, Shift-FI2Reset Ll 18: Stopped Special HatMode [JEE

As expected, the code immediately after the JNE is not executed; instead, the CPU jumps ahead
to address FFFFFOEG6, and a lot more code executes.

SourcePoint’ | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Further single-stepping through the code and reverse-engineering it is a task for another day; for
now, I decided to jump ahead and use the SourcePoint built in “step n” command, which allows

me to step through “n” instructions.

After about X’80’ steps through the code, I came across something rather interesting: a write to
the MSR at address X’79°, the IA32 BIOS UPDT_ TRIG MSR. According to the Intel Software

Developer Manual, this causes a microcode update to be loaded into the processor.

But, as I tried to single-step through the MSR write instruction (WRMSR), the MinnowBoard
went into never-never land; I tried repeatedly but could never successfully single-step through
that WRMSR, without the platform hanging. The only way to recover the target was to power-

cycle it.

o
 TEW YUY S & 9 lcdCurent BEPEM: G DNEs) GoToNedDriverntry 55 PowerCycleReset G5L o GoT: iCore B HOB: 85 SysConfigTable &3 DumpMemMap & DumpCaliStack
‘gHbEd De § 32 © @ Breakpoints (F Code > Command [Leg M Memory IPRegisters @iSymbols of Tace EDViewpoint (i watch T @ %I B A 0 © @
———
E:no:ewmaz-wrmmgmmmmm-oom.mrsm , =] R elal=s)
10 FFEFI 5 i | Description | Status
10° EFEFE « PO S1H Core Stopped
10° EFEES
10°EFEE:
10° EFEEE
i :g;p TP General Registers (P07) = [@][=]
10:EFFEF, =1 EBR ~ [Hame [Value
10:FFFE] 00000079 Genersl [;;; z:g:gg:g
10: EFEE st 5
0 EreeE 50000030 ;‘;’:’zl' ECX 00000079
: T3
<0010 EFFEFADS OF20 ot | || 28 FrPPFoL
10:FFEFFADE EEC8 Tt ptr £EEffaaS s et EECOBDED
10: FFFEFADD B208F0080 20001808 ug
10:FFFFFAEZ 66BAFS0C] MMX EDL FFC40000
10: FFEFFAES EF aaM B 9303000
10: FFFFFAE7 £683C204
% ;Eg:ue EC k Symbals - Stack PO* = (& HAM-DI || e 0018
: M -ln | S5 0018
: EPFET RackFrame ™
e Simeisd 5| |ES 0018
10: EFFFI General FS o028
10: FFFEE Flosting § G5 0018
10:FFFFE EIF FEFFFADY
10° FFEEFE Segment| | | EFTAGS 00000046
10° EFEFEEO Contral
10 Errer Debag
10: EFEES MM
10 EFFEFI MM - S5
AL 0N - DI
10: FFFFEB2 XM - In
10:Frres HOY | MR
10: EFFF] URMSR — |[*]\Globals } Locals) Sta Py User -
in: 14 FFES NP EEP il @ reskpoints « ["
OMOFFFFFADS ~ [[Mieea | [(GoCusa | [Setbresk | @Wimiskip [ViewlP | [Reiesh | AAkress Allibutes
[5] comemand =)@=

0:step
0:etep
sstap

0 rstap
Irstep
0rstep
0rstep 70
0>

™

FLiHelp, F:Go, ShiftFStop, F&:Step Into, F10:Step Over, Shift=FL2Reset) 18: Stopped

I did find that I could “game the system” by changing the target of the WRMSR to a different
MSR address, but that is a topic for a future episode.

This is pretty cool, isn’t it? Please feel free to make my employer happy by downloading a free

eBook, such as Hardware Assisted Debug and Trace within the Silicon (note: requires (free)

registration).

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

Episode 15: More UEFI Application Development in ‘C’

May 14, 2017

In Episode 12, I wrote a simple “Hello World!” application in ‘C’ using the built-in UEFI shell
functions. In Episode 13, I failed in an attempt to re-write that application using standard ‘C’

library functions, such as printf(). I’ve learned a lot since then — here’s how to write more

sophisticated programs.

From Episode 12 Writing UEFI Applications, I took a simple ‘C’ program and adapted it to print

“Hello World” to the screen.

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefilLib.h>
EFI_STATUS
EFIAPT
UefiMain (
IN EFI HANDLE ImageHandle,
IN EFI SYSTEM TABLE *SystemTable
)

Print (L"Hello World \n");
return EFI_SUCCESS;

}

Note that this program differs from other simple ‘C’ programs in that the entry point is not the
familiar main(INT argc, CHARI6 **argv) that | wanted to use to pass in a command line string.

Also, it uses the UEFT shell “print” command rather than the “printf” that I am used to.

I decided to start with a program that echoes the command line to the screen, similar to the

“echo” shell command.

So, one step at a time. I first wanted to learn how to modify my program to accept command line
parameters and manipulate them. I found out that I needed to change the module entry point
from “UefiMain” to “Shell AppMain” to pass parameters in on the command line. And, to do
that, the HelloWorld.inf file must be updated to have ENTRY POINT set to ShellCEntryLib,
Packages must include ShellPkg/ShellPkg.dec, and LibraryClasses must include ShellCEntryLib.
And finally, the DuetPkgX64.dsc file must have the path to Shell CEntryLib explicitly added:

Shell CEntryLib|ShellPkg/Library/UefiShell CEntryLib/UefiShell CEntryLib.inf

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

59

http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-13-uefi-applications-using-standard-c.html
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-12-writing-uefi-applications.html

The MinnowBoard Chronicles

So here is a “new and improved” version of MyHelloWorld.c that takes the user input from the

command line and echoes it back on the screen:

/**
My Hello World!
**/

#include <Uefi.h>
#include <Library/UefiApplicationEntryPoint.h>
#include <Library/UefilLib.h>

INTN

EFIAPI

ShellAppMain (
IN UINTN Argc,
IN CHAR16 **Argv][]
)

int 1i;
for (1 = 1; 1 < Argc; i++)
Print (L"%s ", Argv[i]);

Print (L"\n");
return EFI_ SUCCESS;

The MyHelloWorld.inf file that is used within the build is as follows:

Q@file

#

#

##

[Defines]
INF _VERSION = 0x00010006
BASE_NAME = MyHelloWorld
FILE GUID = 6467c5d1-d0f0-4b47-a6a4-0545624972ef
MODULE_TYPE = UEFI_APPLICATION
VERSION_STRING = 1.0
ENTRY_POINT = ShellCEntryLib

#

The following information is for reference only and not required by the
build.
#
VALID ARCHITECTURES = X64
#

[Sources]
MyHelloWorld.c

[Packages]
MdePkg/MdePkg.dec
ShellPkg/ShellPkg.dec

[LibraryClasses]
UefiApplicationEntryPoint

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Uefilib
ShellCEntryLib

[Guids]
[Ppis]
[Protocols]
[FeaturePcd]

[Pcd]

And finally, the DuetPkgX64.dsc file which is the driver for the build (that is, it uses the defined

source code, packages and library classes to build the application) is as follows:

@file
An EFI/Framework Emulation Platform with UEFI HII interface supported.

Developer's UEFI Emulation. DUET provides an EFI/UEFI IA32/X64 environment
n legacy BIOS,
to help developing and debugging native EFI/UEFI drivers.

Copyright (c) 2010 - 2013, Intel Corporation. All rights reserved.

This program and the accompanying materials

are licensed and made available under the terms and conditions of the BSD
License

which accompanies this distribution. The full text of the license may be
found at

http://opensource.org/licenses/bsd-license.php

#

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,

WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED.

#

#4#

S o W 3 S %= O #E

FHA A R R
#H4

#

Defines Section - statements that will be processed to create a Makefile.

#

FHA A R R R
#H4

[Defines]
PLATFORM NAME = DuetPkg
PLATFORM GUID = 199E24E0-0989-42aa-87F2-611A8C397E72
PLATFORM VERSION = 0.4
DSC SPECIFICATION = 0x00010005
OUTPUT DIRECTORY = Build/DuetPkgX64
SUPPORTED ARCHITECTURES = Xo64
BUILD TARGETS = DEBUG
SKUID IDENTIFIER = DEFAULT
FLASH DEFINITION = DuetPkg/DuetPkg. fdf

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

FHE A R A R R R R R
###
#
Library Class section - list of all Library Classes needed by this
Platform.
#
FHEF AR R R R R R R R R
###
[LibraryClasses]
#
Entry point
#
PeimEntryPoint |MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf
DxeCoreEntryPoint |[MdePkg/Library/DxeCoreEntryPoint/DxeCoreEntryPoint.inf

UefiDriverEntryPoint |[MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint
.inf

UefiApplicationEntryPoint |MdePkg/Library/UefiApplicationEntryPoint/UefiApplic
ationEntryPoint.inf

#

Basic

#

BaselLib|MdePkg/Library/BaselLib/BaselLib.inf

SynchronizationLib|MdePkg/Library/BaseSynchronizationLib/BaseSynchronizationL

ib.inf
BaseMemoryLib |MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
CpuLib|MdePkg/Library/BaseCpulib/BaseCpulib.inf
IoLib|MdePkg/Library/BaselolLibIntrinsic/BaseloLibIntrinsic.inf
PciLib|MdePkg/Library/BasePcilLibCf8/BasePciLibCf8.inf
PciCf8Lib|MdePkg/Library/BasePciCf8Lib/BasePciCf8Lib.inf
PciExpressLib|MdePkg/Library/BasePciExpressLib/BasePciExpressLib.inf

CacheMaintenanceLib|MdePkg/Library/BaseCacheMaintenancelLib/BaseCacheMaintenan
ceLib.inf
PeCoffLib|MdePkg/Library/BasePeCofflLib/BasePeCoffLib.inf

PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGe
tEntryPointLib.inf

#

UEFI & PI

#

UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServ
icesTablelib.inf

UefiRuntimeServicesTablelLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRu
ntimeServicesTablelLib.inf
UefiRuntimeLib |MdePkg/Library/UefiRuntimelLib/UefiRuntimelib.inf
Uefilib|MdePkg/Library/Uefilib/Uefilib.inf

UefiHiiServicesLib|MdeModulePkg/Library/UefiHiiServicesLib/UefiHiiServicesLib
.inf

HiiLib|MdeModulePkg/Library/UefiHiilLib/UefiHiiLib.inf

DevicePathLib |MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

UefiDecompressLib|MdePkg/Library/BaseUefiDecompressLib/BaseUefiDecompressLib.
inf
DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf

DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLib.in
f
UefiCpulLib|UefiCpuPkg/Library/BaseUefiCpulLib/BaseUefiCpulLib.inf
ShellCEntryLib|ShellPkg/Library/UefiShellCEntryLib/UefiShellCEntryLib.inf

#

Generic Modules

#

UefiUsbLib|MdePkg/Library/UefiUsbLib/UefiUsbLib.inf
UefiScsilLib|MdePkg/Library/UefiScsiLib/UefiScsilib.inf

OemHookStatusCodeLib |MdeModulePkg/Library/OemHookStatusCodeLibNull/OemHookSta
tusCodeLibNull.inf

GenericBdsLib|IntelFrameworkModulePkg/Library/GenericBdsLib/GenericBdsLib.inf

SecurityManagementLib |MdeModulePkg/Library/DxeSecurityManagementLib/DxeSecuri
tyManagementLib.inf
CapsulelLib|MdeModulePkg/Library/DxeCapsuleLibNull/DxeCapsuleLibNull.inf

PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffEx
traActionLibNull.inf

CustomizedDisplayLib|MdeModulePkg/Library/CustomizedDisplayLib/CustomizedDisp
layLib.inf

#

Platform

#

PlatformBdsLib |DuetPkg/Library/DuetBdsLib/PlatformBds.inf

TimerLib|DuetPkg/Library/DuetTimerLib/DuetTimerLib.inf

#

Misc

#

Performancelib|MdePkg/Library/BasePerformancelLibNull/BasePerformanceLibNull.i
nf
DebugAgentLib |MdeModulePkg/Library/DebugAgentLibNull/DebugAgentLibNull.inf
PcdLib |MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf

MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocati
onLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf

ExtractGuidedSectionLib|MdePkg/Library/DxeExtractGuidedSectionLib/DxeExtractG
uidedSectionLib.inf

PlatformHookLib |MdeModulePkg/Library/BasePlatformHookLibNull/BasePlatformHook
LibNull.inf

SerialPortLib|MdeModulePkg/Library/BaseSerialPortLibl6550/BaseSerialPortLibl6
550.1inf
MtrrLib|UefiCpuPkg/Library/MtrrLib/MtrrLib.inf

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

LockBoxLib|MdeModulePkg/Library/LockBoxNullLib/LockBoxNullLib.inf

CpuExceptionHandlerLib|UefiCpuPkg/Library/CpuExceptionHandlerLib/DxeCpuExcept
ionHandlerLib.inf
LocalApicLib|UefiCpuPkg/Library/BaseXApicLib/BaseXApicLib.inf

#

To save size, use NULL library for DebugLib and ReportStatusCodelib.

If need status code output, do library instance overriden as below
DxeMain.inf does

#

DebugLib |MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevellLib/BaseDebugP
rintErrorLevellLib.inf

ReportStatusCodelLib |MdePkg/Library/BaseReportStatusCodeLibNull/BaseReportStat
usCodeLibNull.inf

[LibraryClasses.common.DXE CORE]
HobLib|MdePkg/Library/DxeCoreHobLib/DxeCoreHobLib.inf

MemoryAllocationLib|MdeModulePkg/Library/DxeCoreMemoryAllocationLib/DxeCoreMe
moryAllocationLib.inf

S i i i

##4

#

Pcd Section - list of all EDK II PCD Entries defined by this Platform

#

S i i i

###

[PcdsFixedAtBuild]
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask| 0x0
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask| 0x0
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel | 0x0
gEfiMdeModulePkgTokenSpaceGuid.PcdResetOnMemoryTypeInformationChange | FALSE

[PcdsFeatureFlag]
gEfiMdeModulePkgTokenSpaceGuid.PcdTurnOffUsbLegacySupport | TRUE

FH A R R R A R R
FHEFHFHE R A A RS

#

Components Section - list of the modules and components that will be
processed by compilation

tools and the EDK II tools to generate PE32/PE32+/Coff
image files.

#

Note: The EDK II DSC file is not used to specify how compiled binary images
get placed

into firmware volume images. This section is just a list of modules
to compile from

source into UEFI-compliant binaries.

It is the FDF file that contains information on combining binary

files into firmware

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

volume images, whose concept is beyond UEFI and is described in PI
specification.

Binary modules do not need to be listed in this section, as they
should be

specified in the FDF file. For example: Shell binary

(Shell Full.efi), FAT binary (Fat.efi),

Logo (Logo.bmp), and etc.

There may also be modules listed in this section that are not
required in the FDF file,

When a module listed here is excluded from FDF file, then UEFI-
compliant binary will be

generated for it, but the binary will not be put into any firmware
volume.

#

FH A A R S A
HHAHHE S
[Components]
DuetPkg/Dxelpl/DxeIpl.inf ({
<LibraryClasses>

#

If no following overriden for ReportStatusCodelLib library class,

All other module can *not* output debug information even they are use
not NULL library

instance for DebugLib and ReportStatusCodelib

#

ReportStatusCodelLib |MdeModulePkg/Library/DxeReportStatusCodelLib/DxeReportStat
usCodelLib.inf
}

MdeModulePkg/Core/Dxe/DxeMain.inf {
#
Enable debug output for DxeCore module, this is a sample for how to
enable debug output
for a module. If need turn on debug output for other module, please
copy following overriden
PCD and library instance to other module's override section.
#
<PcdsFixedAtBuild>
gEfiMdePkgTokenSpaceGuid.PcdReportStatusCodePropertyMask|0x07
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask| O0x2F
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel | 0x80000042
<LibraryClasses>

DebugLib|IntelFrameworkModulePkg/Library/PeiDxeDebugLibReportStatusCode/PeiDx
eDebugLibReportStatusCode.inf

ReportStatusCodelLib|DuetPkg/Library/DxeCoreReportStatusCodeLibFromHob/DxeCore
ReportStatusCodeLibFromHob.inf

}

MdeModulePkg/Universal/PCD/Dxe/Pcd.inf
MdeModulePkg/Universal/WatchdogTimerDxe/WatchdogTimer.inf
MdeModulePkg/Core/RuntimeDxe/RuntimeDxe.inf

MdeModulePkg/Universal/MonotonicCounterRuntimeDxe/MonotonicCounterRuntimeDxe.
inf

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

DuetPkg/FSVariable/FSVariable.inf
MdeModulePkg/Universal/CapsuleRuntimeDxe/CapsuleRuntimeDxe.inf
MdeModulePkg/Universal/MemoryTest/NullMemoryTestDxe/NullMemoryTestDxe.inf
MdeModulePkg/Universal/SecurityStubDxe/SecurityStubDxe.inf
MdeModulePkg/Universal/Console/ConPlatformDxe/ConPlatformDxe.inf
MdeModulePkg/Universal/Console/ConSplitterDxe/ConSplitterDxe.inf {

<LibraryClasses>

PcdLib |MdePkg/Library/DxePcdLib/DxePcdLib.inf

}
MdeModulePkg/Universal/HiiDatabaseDxe/HiiDatabaseDxe.inf
MdeModulePkg/Universal/SetupBrowserDxe/SetupBrowserDxe.inf
MdeModulePkg/Universal/DisplayEngineDxe/DisplayEngineDxe.inf

MdeModulePkg/Universal/Console/GraphicsConsoleDxe/GraphicsConsoleDxe.inf
MdeModulePkg/Universal/Console/TerminalDxe/TerminalDxe.inf
MdeModulePkg/Universal/DevicePathDxe/DevicePathDxe.inf
MdeModulePkg/Universal/SmbiosDxe/SmbiosDxe.inf

DuetPkg/SmbiosGenDxe/SmbiosGen.inf
#DuetPkg/FvbRuntimeService/DUETFwh.inf
DuetPkg/EfiLdr/EfilLdr.inf {
<LibraryClasses>
DebugLib |MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf

NULL| IntelFrameworkModulePkg/Library/LzmaCustomDecompressLib/LzmaCustomDecomp
ressLib.inf
}
IntelFrameworkModulePkg/Universal/BdsDxe/BdsDxe.inf {
<LibraryClasses>
PcdLib|MdePkg/Library/DxePcdLib/DxePcdLib.inf
}
MdeModulePkg/Universal/EbcDxe/EbcDxe.inf
UefiCpuPkg/Cpulo2Dxe/Cpulo2Dxe.inf
UefiCpuPkg/CpuDxe/Cpubxe.inf
PcAtChipsetPkg/8259InterruptControllerDxe/8259.1inf
DuetPkg/AcpiResetDxe/Reset.inf
DuetPkg/LegacyMetronome/Metronome.inf

PcAtChipsetPkg/PcatRealTimeClockRuntimeDxe/PcatRealTimeClockRuntimeDxe.inf
PcAtChipsetPkg/8254TimerDxe/8254Timer.inf
DuetPkg/PciRootBridgeNoEnumerationDxe/PciRootBridgeNoEnumeration.inf
DuetPkg/PciBusNoEnumerationDxe/PciBusNoEnumeration.inf
IntelFrameworkModulePkg/Bus/Pci/VgaMiniPortDxe/VgaMiniPortDxe.inf
IntelFrameworkModulePkg/Universal/Console/VgaClassDxe/VgaClassDxe.inf

IDE/AHCI Support
DuetPkg/SataControllerDxe/SataControllerDxe.inf
MdeModulePkg/Bus/Ata/AtaAtapiPassThru/AtaAtapiPassThru.inf
MdeModulePkg/Bus/Ata/AtaBusDxe/AtaBusDxe.inf
MdeModulePkg/Bus/Scsi/ScsiBusDxe/ScsiBusDxe.inf
MdeModulePkg/Bus/Scsi/ScsiDiskDxe/ScsiDiskDxe.inf

Usb Support
MdeModulePkg/Bus/Pci/UhciDxe/UhciDxe.inf
MdeModulePkg/Bus/Pci/EhciDxe/EhciDxe.inf

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

MdeModulePkg/Bus/Usb/UsbBusDxe/UsbBusDxe.inf
MdeModulePkg/Bus/Usb/UsbKbDxe/UsbKbDxe.inf
MdeModulePkg/Bus/Usb/UsbMassStorageDxe/UsbMassStorageDxe.inf

ISA Support

PcAtChipsetPkg/IsaAcpibDxe/IsaAcpi.inf
IntelFrameworkModulePkg/Bus/Isa/IsaBusDxe/IsaBusDxe.inf
IntelFrameworkModulePkg/Bus/Isa/IsaSerialDxe/IsaSerialDxe.inf
IntelFrameworkModulePkg/Bus/Isa/Ps2KeyboardDxe/Ps2keyboardDxe.inf
IntelFrameworkModulePkg/Bus/Isa/IsaFloppyDxe/IsaFloppyDxe.inf

MdeModulePkg/Universal/Disk/DiskIoDxe/DiskIoDxe.inf
MdeModulePkg/Universal/Disk/UnicodeCollation/EnglishDxe/EnglishDxe.inf
MdeModulePkg/Universal/Disk/PartitionDxe/PartitionDxe.inf

Bios Thunk
DuetPkg/BiosVideoThunkDxe/BiosVideo.inf

#

Sample Application

#

MdeModulePkg/Application/HelloWorld/HelloWorld.inf

MyHelloWorld/MyHelloWorld.inf

FHAEH S A A R
HHAEH A

#

BuildOptions Section - Define the module specific tool chain flags that
should be used as

the default flags for a module. These flags are
appended to any

standard flags that are defined by the build
process. They can be

applied for any modules or only those modules with
the specific

module style (EDK or EDKII) specified in
[Components] section.

#

FHAHH A H A A S S
HHhhH AT hH A A A AR
[BuildOptions]

MSFT:* * * CC FLAGS = /FAsc /FR$(@R).SBR

Now I’ll go through a detailed step-by-step process description for the build.

I put the ‘C’ source code, MyHelloWorld.inf file and the modified DuetPkgX64.dsc file into a
folder entitled MyHelloWorld within the MyWorkSpace folder.

Firstly, launch “Developer Command Prompt for VS2013”.

Navigate (using the “cd” change directory command) to the MyWorkSpace directory that

contains all the build files.

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Type in “edksetup”.
Type in “build -p MyHelloWorld/DuetPkgX64.dsc”.

The application builds perfectly and echoes the command line arguments out to the screen. For

example, if you type:
MyHelloWorld.efi This is a test!

You see the “This is a test!” echoed back on the following line. Pretty cool.
A couple of interesting notes:

On the HDMI monitor I’ve hooked the MinnowBoard to, I simply see the text “This is a test!”
echoed to the screen. But on the CoolTerm application I’ve got hooked into the serial port, I see
the following:
FSO0:\> MyHelloWorld.efi This is a test!
InstallProtocolInterface: 5B1B31A1-9562-11D2-8E3F-00A0C969723B 762CBCO00

PDB =
c:\myworksspace2\Build\DuetPkgX64\DEBUG VS2012x86\X64\MyHelloWorld5\MyHelloWo
r1d\DEBUG\MyHelloWorld.pdb
Loading driver at 0x00077CD1000 EntryPoint=0x00077CD12C0O0 MyHelloWorld.efi
InstallProtocolInterface: BC62157E-3E33-4FEC-9920-2D3B36D750DF 762BAC58

InstallProtocolInterface: 752F3136-4E16-4FDC-A22A-E5F46812F4CA 78851848
This is a test!

Also, I’ve noted that the compiler rejects the following:
for (inti=1;i> Argc; i++)
But, rather, it wants the variable declaration to be in a distinct statement:

int i;
for (i = 1; i > Argc; i++)
I don’t know why that is. Maybe I am using an older version of Visual Studio (VS2013)? That’s

something to figure out for another day.

To summarize, in this episode I’ve graduated from creating a simple ‘C’ program that printed
“Hello World” to the screen, to actually taking shell command parameters and echoing those out

to the terminal. It may seem like a small step, but it really helped me understand how the ‘C’

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

source and build files interact with each other. This should enable me to write more sophisticated
code going forward, and to understand how more complex programs, like drivers, are put

together.

For others who might also like to take such a self-taught journey, a good debugger is
indispensable. SourcePoint is probably the best UEFI hardware-assisted tool available; read more

at the product website page SourcePoint for Intel Platforms.

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

69

https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

Episode 16: Delving into LBR Trace

May 21, 2017

This week, I decided to do a thorough analysis of how Last Branch Record (LBR) trace works, to

see how useful it is in tracing back what might be the root cause of system failures.

LBR trace within SourcePoint displays a history of executed instructions. The last branch
recording mechanism tracks not only branch instructions (like JMP, Jcc, LOOP and CALL
instructions), but also other operations that cause a change in the instruction pointer (like

external interrupts, traps and faults).

The advantage of LBR trace is it is non-intrusive. The processor can run at full speed when using
LBR trace. The disadvantage of LBR trace is the limited number of LBRs available (on the
MinnowBoard BayTrail-I CPU, which is based on the Intel Silvermont core architecture, there

are eight). A branch record consists of a branch-from and a branch-to instruction address.

If you assume an average of 5 instructions between branches, then roughly the last 40

instructions executed are traced.

I learned all I know about how LBR works from the Intel Software Developer Manual. Volume 3

deals with how to configure the platform to use LBR. In particular, there are certain registers,
such as MSRs IA32 DEBUGCTL[0] and IA32 PERF_CAPABILITIES[5:0], that must be used
to activate LBR and define the format of the addresses defined within the LBR stack. And the
source and destination instruction addresses of recent branches are contained within MSRs. For
example:

MSR_LASTBRANCH 0 FROM IP stores a source address.

MSR_LASTBRANCH 0 TO IP stores a destination address.

MSR LASTBRANCH TOS contains a pointer to the MSR in the LBR stack that
contains the most recent branch, interrupt, or exception recorded.

Let’s see how this works within SourcePoint. I booted up the MinnowBoard to the UEFI shell
and then launched SourcePoint, turned on LBR, and then hit Run. Just as a starting effort, I typed
in “pci 00 00 00 —1” into the shell, which provides a verbose display of the PCI config
information for bus 0, device 0, function 0, and then halted the processor. I then used the “msr”

command to examine some of the content of the LBR MSRs. Here’s what [saw:

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

https://www.asset-intertech.com/products/#sourcepoint
https://software.intel.com/en-us/articles/intel-sdm

File

Edt Wiew Processor Opm Help

The MinnowBoard Chronicles

TEY Y S & & LosdCurrent 8 PEM: @8 DXEs 8 GoToNeaDrivertntry 43 PowerCycleReset 4 GoT Core %5 HOBs &3 Sy:ConfigTable 4 DumpMembap & DumpCaliStack
LG Me &2 =] ints (% Code > Command [Leg M Memery IP Registers @ Symbols »f Trace B0 Viewpoint (L wateh @ S ¢ 23 k2 A 00 ¢
& code (PO*): (B4-bit) Tracki 27 LER Trace (P0°) [J— =
0000000078871 0DIL o
0000000078671DD6L SIATE bR Dot L1 R T 7
7 count the vod 00003 EO 00000D0078871DDA 48BE442428 MOV RAX. (RS 28
o IEEE I ke B0 00000000783710DF 483B00 MOV
i ks L EQ 00000000788710E2 QGS’NZ(ZB HOV. [RSE —
~myvorksspace 2 adepkgl : lib\liakedl.ist (- cl‘mewmlhu}.iblsb?odeiunst)
102 s
L £ 10E7 de3Bas2ez0 MOV BAX. (RSP}430
govasoceeE Lcort 2 i | L
9 oerkeacar sk ey D hEle LiBE 1o 1as0) &4 (Count ¢ PedGersz (PedWoxinunLinkedListLenath))):
1le T ist t < t aximunlinl ist, t)
"“““”"“"1;:;1%5& FD F1DE4 csaa«zcsu mv RAX. (Rﬁ’] 50
@6 T1DEFT FQ 7 m 1839“24 CHP msel
" EQ 40D JE tesas |BAAL1 bl sHiodeInL1s 4201
78BTLDEAL EQ 7iE06 4B0cE HOY m [000000007888%cm8]
788 71DFSL] TAEDE 4833ddze30 CHP [nse]m{ GRax e
EaseLibIsiiode
L i P Sepke) thrarysbanal 1B 1aRea Sat 5! (TbtashalBesst b aTote InL nt)
ot Ftr = Ptr->ForvardLink:
O -00002 EO nnnannnn:sa?lm 4BBBA4242E MOV RAX. tm]-ma
E0 00000000788710DF How
35 F0 00000000788710E2 4889442428 (RSP)+28, RAX
e AT c: depkg\llhng;bmhb\hnkad ml ¢ (InternalBassLiblsNodeInList)
{106 = OTESTIEDDP = Cmywork: \mdepkg\library\b ist.c line 105 ARt 4
B Comuratd = 7LDE7 4B3E462430 MOV RAL [RSP)+30
[P0 nar(40) Fd 000800007887 10EF 1035442430 HOW (RSE)+30, RAX
78971E0BH o: myvorksspaceZ adepkg librarybaselibnlinkedlist o (InternslBaseLiblsNodeInList) : —
>msr(42) while {(Ptr I= List) L& (Count ¢ PcdGet32 (PedNaximunlinkedListLength)}):
T B 106 (6350513 i (Foelaa eix =
FRET +28 . -
7887 1E0BH Pl 1DEE 740D JE intmlmium!nﬁuﬂﬂl
ymsr(47) Pl 1EQ0 BBOSE27E0100 W W OWWOUONBB%BE]
8871E0EH EQ 1E06 48 30, RAX
yRSE(60 50 1EQE 72CD JC ernalBaseLiblsiodelnlistilce
e 1DDAH ;lvmksspmez\nm\h basoé:b\léalwdu;tnf (InternalBaseliblsHodeInList)
nsx -
£871DDAH =00001 EO 1004 48EE442428 MOV RSP)+28
msr{1cd) EQ 1] 1
Fo 1DE2 4889442428 MOV (RSP]+28. RAK.
satep ¢;nyvorksspaces adepkgslibrary baseliblinkedlist ' (InternalBaseliblstiode nList)
sy lc! o
4] 00000000788 710ET 488B442430 MOV RAX.[RSP1+30
rstep r =
ymsr(1e9) D00 | Dissssenriy =] [Conbipae.. Rediosh
ymsr(1d9} N
smsr(345}
32C1H
>
‘ v
FliHelp, FS:Go, Shift+FS:Stop, Fi:Steplnto. F10:Step Over, Shift-F12Reset M 18: Stopped 648

The result is fascinating and a real learning experience to delve into.

Firstly, the Code window shows that the instruction pointer is at 78871 DEC which is within a

“do” loop that is incrementing the value of the “Count” variable.

The LBR Trace window shows the backtrace of what’s happening. You can see the exact ‘C’

program and the function therein that’s being executed at the time the platform was halted. The

actual file is at:

C:\myworksspac2\mdepkg\library\baselib\linkedlist.c

and the function we’re in is:

InternalBaseLibIsNodelnList

There’s a lot of detail displayed in the Trace window, including the line number within the

source code file, and the source/symbols with associated disassembly. It’s pretty cool that I can

go back to the source within the build on my PC and see what the purpose of this function is.

Here’s an excerpt:

SourcePoint

Platform for Software Debug and Trace

y

71

ScanWorks’

Platform for Embedded Instruments

The MinnowBoard Chronicles

=

{2 CAMyWorksSpace2\MdePkg\Library\Baselib\LinkedList.c - Notepad=+ [Administrator] - » - = | B 2B
lFuIc Edit Search View Encoding Language Settings Tools Macre Run Plugins Window ? X
BB RLHelsdmR| e |h @ BRI (ERBENz®| & ENBB

[

8 gretval
@retval
Bretval

Gretval

46 BCOLERN

47 EFIAPI

48 InternalBaseliblsNodelInLlist

a9 IN CONST LISI‘_ENTRY *Lisc,

IN CONST LIST_ENIRY *Node,

51 IN BOOLEARN VerifyNodeInList

.Csource file length : 17,774 lines: 551 Ln:1 Cel:1 Sel:0]0 Windows (CRLF) UTF-8 INS

|
|
|
|
|
i 45 Luwwmy
|
|
|
|

[%

Having access to the comments within the source code really adds to my understanding of what

the software is doing.

It’s also fascinating to correlate what is on the SourcePoint screen with the contents of the LBR-
related MSRs. As you can see, I ran the SourcePoint “msr()” command on many of the source
and destination address MSRs. They are at 78871E0B and 78871 DDA respectively. This makes
sense; looking at the Trace window, at address 78871EO0B is the JC
InternalBaseLiblsNodelnList+1ce back to the top of the “do/while” loop, and 78871DDA is the
MOV RAX, [RSP]+28 that is the beginning of the first instruction (related to the ‘C’ line Ptr =
Ptr->ForwardLink; that is the branch at the top of the “do/while” loop.

This particular LBR traceback isn’t particularly interesting, because we’re just stuck in a loop
outputting information to the screen. That’s why all the source and destination addresses don’t
change; they just repeat as far back as the limited number of LBR MSRs will allow. In my next
blog, I’'ll break somewhere more interesting, so we’ll have a more dynamic traceback. I’ll also
weave together what we see in SourcePoint with what we see in the source build tree to get the

big picture on the value of trace.

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

And a final word from our sponsor: the beautiful thing about SourcePoint is that it shows the
traced instructions in a meaningful context with the code that is currently executing. But, we do
know that interrupts, exceptions, and other logic elements running in parallel with the mainline
code can contribute to system bugs and failures. For a good eBook on how Trace can be used to
track down bugs from parallel and preemptive multitasking execution on Intel-based designs, see

our eBook, Hardware Assisted Debug and Trace within the Silicon (note: it’s free, but requires

registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

Episode 17: Using LBR Trace without Source Code

May 26, 2017

My curiosity got the better of me this week. I decided to play detective and see what I can learn

from LBR trace data if I pretend I don’t have access to the source code.

In Episode 16, I learned about how Last Branch Record (LBR) trace can be used to look at the
true flow of program execution, which may or may not be easily gleaned from just looking at the
static view within the SourcePoint Code window. Having access to the source code where the
system “breaks” makes it very easy to understand what is going on. But there are situations
where the source code and symbols are unavailable: it is obfuscated within some confidential
parts of UEFI, comes from a third-party driver, etc. Or alternatively, there are situations where
the symbols are available but not the source code. Becoming a top-notch debugger sometimes

means we need to roll up our sleeves and make do with what we have.

To simulate this kind of debugging experience, I decided to run a simulation with SourcePoint. I
would break at a random point within DXE, with LBR Trace active. Then I would backtrace
code execution by looking at the LBR MSR source and destination addresses and see what I

might be able to glean.

There were a couple of preparation steps I needed to take beforehand. Firstly, I wanted to write a
short SourcePoint macro that dumped all the LBR addresses, so I wouldn’t have to do that by
hand tediously. This macro simply looks like this:

define ord8 i=40

define ord8 msrvalue from address = 0
define ord8 msrvalue to address = 0
for (I = 40; I <= 47; i++) {
msrvalue from address = msr (1)
msrvalue to address = msr (i + 20)
printf (“$x %x %$x \n”, i, msrvalue from address, msrvalue to address)
i+=1

}

Secondly, although the DXE modules are relocatable, I’ve found that from boot to boot, the entry
point addresses of the DXE modules do not change. In fact, when I run the DXE macro within

SourcePoint, I always get the same output, an excerpt of which is below.

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-16-delving-into-lbr-trace.html
https://www.asset-intertech.com/products/#sourcepoint

The MinnowBoard Chronicles

DxeCore Entry: 0000000078852300L Base:
0000000078852000L

"c:\myworksspace2\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\X64\MdeModulePkg\Co
re\Dxe\DxeMain\DEBUG\DxeCore.efi"

PcdDxe Entry: 0000000077BA62FCL Base:
0000000077BA6000OL

"c:\myworksspace2\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\X64\MdeModulePkg\Un
iversal\PCD\Dxe\Pcd\DEBUG\PcdDxe.efi"

ReportStatusCodeRouterRuntimeDxe Entry: 00000000780A62FCL Base:
00000000780A6000L

"c:\myworksspace2\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\X64\MdeModulePkg\Un
iversal\ReportStatusCodeRouter\RuntimeDxe\ReportStatusCodeRouterRuntimeDxe\DE
BUG\ReportStatusCodeRouterRuntimeDxe.efi"

StatusCodeHandlerRuntimeDxe Entry: 000000007809E2FCL Base:
000000007809E000L

"c:\myworksspace2\Build\V1v2TbltDevicePkg\DEBUG VS2012x86\X64\MdeModulePkg\Un
iversal\StatusCodeHandler\RuntimeDxe\StatusCodeHandlerRuntimeDxe\DEBUG\Status
CodeHandlerRuntimeDxe.efi"

So, I want to put the addresses of the DXE module entry points in a table, so I can easily map the

addresses I get out of LBR trace to a piece of software. An excerpt of this is below:

Module Entry Base
PchReset 7807B03C 7807A000
SmmControl 7808603C 78085000
RuntimeDxe 780902FC 78090000
CpuloDxe 780982FC 78098000
StatusCodeHandlerRuntimeDxe 7809E2FC 78090000
ReportStatusCodeRouterRuntimeDxe 7T80A62FC 780A6000
DxeCore 78852300 78852000

So, here we go. I boot the MinnowBoard and then halt it while in the DXE phase, as it waits to

get to the shell. Here’s the output of my macro:

40
41
42
43
44
45
46
47

78098e3f
780986d5
780986£7
7809872f
78098743
78098al0
78098ab5a
78098aa’

780986d0
780986e3
78098704
7809873d
78098a05
78098alc
78098a93
78099180

Also, typing in msr(1C9) gives x’7’, and given that the lowest significant 3 bits of the TOS
Pointer MSR (MSR_LASTBRANCH _TOS, address 1C9H) contains a pointer to the MSR in the

ScanWorks’

Platform for Embedded Instruments

Source

) N
)\ \
Platform for Software Debug and Trace

75

The MinnowBoard Chronicles

LBR stack that contains the most recent branch, interrupt, or exception recorded, the last

“from_address” is x’78098aa7’ and the last “to_address” is x’78099180°.

Pretty cool, huh? Even without source code, based upon the addresses, you can see that the

software is likely somewhere within CpuloDxe.

And, if you want to cheat a little, taking the last branch “to_address”, x’78098190°, is an offset
X’e84’ (or decimal 3,716) from the entry point of CpuloDxe, address x’780982fc’. You can look
at the CpuloDxe.map file in the source build to estimate what function within CpuloDxe we

might be in. As it turns out, it’s somewhere within MmioWrite64():

Address Public by Value
0001:00000bb8 InternalMathDivRemU64x32
0001:00000c10 MmioRead8
0001:00000c38 MmioWrite8
0001:00000co64 MmioReadl6
0001:00000cc8 MmioWritel6
0001:00000d30 MmioRead32
0001:00000d90 MmioWrite32
0001:00000df4 MmioRead64
0001:00000e58 MmioWrite64
0001:00000ecO IoRead8

For a great video on what the SourcePoint GUI looks like, take a peek at our webpage here:

SourcePoint for Intel.

A good eBook on trace features is at Intel Trace Hub (note: it’s free, but requires registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/eresources/intel-trace-hub-faster-software-debug-finding-root-cause

The MinnowBoard Chronicles

Episode 18: Reverse-Engineering Code Execution

June 11, 2017

In my last article, [used Last Branch Record (LBR) Trace to manually capture UEFI program
flow source and destination addresses. This week, I look at the associated instruction opcodes

and mnemonics and try to figure out what is going on.

In last week’s MinnowBoard Chronicles, Episode 17: Using LBR Trace without Source Code,

we stopped somewhere in DXE and dumped all of the branch-from and branch-to instruction

address pairs, up to a maximum of 8 within the Intel Silvermont architecture.

Why is this interesting? Well, there may be an event you want to debug on an Intel platform
where the only “breadcrumbs” are the last branch addresses of code execution immediately prior.
As we learned in Episode 16, these are captured within some model-specific registers (MSRs)
dedicated to this purpose. On the MinnowBoard, based upon an Intel BayTrail-I processor (that
has Silvermont cores), these source/destination pairs are MSR addresses x’40’ through x’47’ and

x’60’ through x’67°.

Recall that the LBR recording mechanism tracks not only branch instructions (like JMP, Jcc,
LOOP and CALL instructions), but also other operations that cause a change in the instruction
pointer (like external interrupts, traps and faults). It has the advantage of being active soon after
reset if needed; whereas other tracing mechanisms, such as Branch Trace Store (BTS) and Intel
Processor Trace, require system memory to be initialized. LBR is the most “low-level” of tracing

features on Intel silicon, so to speak.

To follow up on Episode 17, this week I again halted the system and put it into probe mode
within DXE. Then [ran my LBR MSR dump macro to see the branch-from and branch-to
address pairs. The address traceback looked like this:

From: To:
7785b0ed4 7785b0c4
7785b0d1l 77855c10
77855¢c29 7785b0d6
7785b0ed4 7785b0c4
7785b0d1l 77855c10
7785b0ed 7785b0c4
7785b0d1l 77855c10

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-17-using-lbr-trace-without-source-code.html
http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-16-delving-into-lbr-trace.html
http://blog.asset-intertech.com/test_data_out/2017/05/the-minnowboard-chronicles-episode-17-using-lbr-trace-without-source-code.html

77855c29 7785b0d6

The MinnowBoard Chronicles

We also know from the Intel Architectures Software Developers Manuals that the TOS Pointer

MSR (MSR_LASTBRANCH _TOS, address x’1C9’) contains a pointer to the MSR in the LBR

stack that contains the most recent branch, interrupt, or exception recorded. In this case, using

the SourcePoint msr(1C9) command, I found that it equaled x’04’, so the last “from address” is

x’7785b0d1’ and the last “to_address” is x’77855c10’ from above. Also, I could see from the

SourcePoint Code window that the instruction pointer is at x’77855c1f”. And then the branch

traceback goes backwards from there.

Going into the SourcePoint Code window, with its built-in disassembler, we can easily see the

assembly language code flow as we go backwards in time. There’s a lot of code here. Let’s look

at the individual “chunks” of code sorted by the above “from” and “to” addresses:

MSR_LASTBRANCH 0 FROM IP
000000007785BOE4L 74DE
MSR_LASTBRANCH 0 TO IP
000000007785B0OC4L OFB7057D320000
[000000007785e348]
000000007785BOCBL 83C005
000000007785BOCEL 4863C8
000000007785B0D1L E83AABFFFF

MSR LASTBRANCH 1 FROM IP:
000000007785B0D1L E83AABFFFF
MSR LASTBRANCH 1 TO IP:
0000000077855C10L 48894C2408
0000000077855C15L 4883EC18
0000000077855C19L 0FB7542420
0000000077855C1EL EC
0000000077855C1FL 880424
0000000077855C22L 8A0424
0000000077855C25L 4883C418
0000000077855C29L C3

MSR LASTBRANCH 2 FROM IP:
0000000077855C29L C3
MSR_LASTBRANCH 2 TO IP
000000007785BOD6L 88442428
000000007785BODAL 0FB6442428
000000007785BODFL 83E020
000000007785BOE2L 85C0
000000007785BOE4L 74DE

MSR_LASTBRANCH 3 FROM IP
000000007785BOE4L 74DE
MSR_LASTBRANCH 3 TO IP
000000007785B0C4L 0FB7057D320000
[000000007785e348]

SourcePoint

Platform for Software Debug and Trace

JE
MOVZX

ADD
MOVSXD
CALL

CALL

MOV
SUB
MOVZX
IN
MOV
MOV
ADD
RETN

RET
MOV
MOVZX
AND
TEST
JE

JE

MOVZX

Cy

78

short ptr 000000007785b0c4L
EAX,word ptr

EAX, 00000005
RCX, EAX
0000000077855¢c10L

0000000077855c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL
AL,byte ptr [RSP]

RSP, 00000018

byte ptr [RSP]+28,AL
EAX,byte ptr [RSP]+28

EAX, 00000020

EAX, EAX

short ptr 000000007785b0c4L

short ptr 000000007785b0c4L

EAX,word ptr

ScanWorks’

Platform for Embedded Instruments

https://software.intel.com/en-us/articles/intel-sdm

000000007785BOCBL 83C005
000000007785BOCEL 4863C8
000000007785B0OD1L E83AABFFFF

MSR LASTBRANCH 4 FROM IP
000000007785B0OD1L E83AABFFFF
MSR_LASTBRANCH 4 TO IP
0000000077855C10L 48894C2408
0000000077855C15L 4883EC18
0000000077855C19L 0FB7542420
0000000077855C1EL EC
0000000077855C1FL 880424
Instruction pointer!
0000000077855C22L 8A0424
0000000077855C25L 4883C418
0000000077855C29L C3

MSR_LASTBRANCH 5 FROM IP
000000007785BOE4L 74DE

MSR LASTBRANCH 5 TO IP
000000007785B0C4L OFB7057D320000
[000000007785e348]
000000007785BOCBL 83C005
000000007785BOCEL 4863C8
000000007785BOD1L E83AABFFFF

MSR_LASTBRANCH 6 FROM IP
000000007785BOD1L E83AABFFFF
MSR_LASTBRANCH 6 TO IP
0000000077855C10L 48894C2408
0000000077855C15L 4883EC18
0000000077855C19L 0FB7542420
0000000077855C1EL EC
0000000077855C1FL 880424
0000000077855C22L 8A0424
0000000077855C25L 4883C418
0000000077855C29L C3

MSR _LASTBRANCH 7 FROM IP
0000000077855C29L C3

MSR LASTBRANCH 7 TO IP
000000007785B0D6L 88442428
000000007785BODAL 0FB6442428
000000007785BODFL 83E020
000000007785BOE2L 85C0
000000007785B0EAL 74DE

ADD
MOVSXD
CALL

CALL

MOV
SUB
MOVZX
IN
MOV

MOV
ADD
RETN

JE

MOVZX

ADD
MOVSXD
CALL

CALL

MOV
SUB
MOVZX
IN
MOV
MOV
ADD
RETN

RETN

MOV
MOVZX
AND
TEST
JE

The MinnowBoard Chronicles

EAX, 00000005
RCX, EAX
0000000077855c10L

0000000077855c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL //

AL,byte ptr [RSP]
RSP, 00000018

short ptr 000000007785b0c4L
EAX,word ptr

EAX, 00000005
RCX, EAX
0000000077855c10L

0000000077855c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL
AL,byte ptr [RSP]

RSP, 00000018

byte ptr [RSP]+28,AL
EAX,byte ptr [RSP]+28

EAX, 00000020

EAX, EAX

short ptr 000000007785b0c4L

Seeing the actual flow of the code without any source code or automated tools is challenging, but

it is do-able. I wanted to be able to simulate a debugging scenario whereby you might have

access to extracting MSR data (as with a ScanWorks Embedded Diagnostics (SED) On-Target

Diagnostic (OTD)), as opposed to a benchtop debugger (such as SourcePoint). Knowing where

the instruction pointer is, and working backwards, the actual code flow is reconstructed below:

SourcePoint

Platform for Software Debug and Trace

)

79

ScanWorks’

Platform for Embedded Instruments

https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/products/#sourcepoint

000000007785BOE4L

000000007785B0C4L

[000000007785e348]

000000007785BOCBL
000000007785BOCEL
000000007785BOD1L

0000000077855C10L
0000000077855C15L
0000000077855C19L
0000000077855C1EL
0000000077855C1FL
0000000077855C22L
0000000077855C25L
0000000077855C29L

000000007785B0OD6L
000000007785BODAL
000000007785BODFL
000000007785BOE2L
000000007785BOE4L

000000007785B0C4L

[000000007785e348]

000000007785BOCBL
000000007785BOCEL
000000007785BOD1L

0000000077855C10L
0000000077855C15L
0000000077855C19L
0000000077855C1EL
0000000077855C1FL
0000000077855C22L
0000000077855C25L
0000000077855C29L

000000007785B0OD6L
000000007785BODAL
000000007785BODFL
000000007785BOE2L
000000007785BOE4L

000000007785B0C4L

[000000007785e348]

000000007785BOCBL
000000007785BOCEL
000000007785BOD1L

0000000077855C10L
0000000077855C15L
0000000077855C19L
0000000077855C1EL
0000000077855C1FL

SourcePoint

Platform for Software Debug and Trace

74DE

0FB7057D320000

83C005
4863C8
E83AABFFFF

48894C2408
4883EC18
0FB7542420
EC

880424
8A0424
4883C418
C3

88442428
0FB6442428
83E020
85C0

74DE

0FB7057D320000

83C005
4863C8
E83AABFFFF

48894C2408
4883EC18
0FB7542420
EC

880424
8A0424
4883C418
C3

88442428
0FB6442428
83E020
85C0

74DE

0FB7057D320000

83C005
4863C8
E83AABFFFF

48894C2408
4883EC18
0FB7542420
EC

880424

JE
MOVZX

ADD
MOVSXD
CALL

MOV
SUB
MOVZX
IN
MOV
MOV
ADD
RETN

MOV
MOVZX
AND
TEST
JE

MOVZX

ADD
MOVSXD
CALL

MOV
SUB
MOVZX
IN
MOV
MOV
ADD
RETN

MOV
MOVZX
AND
TEST
JE

MOVZX

ADD
MOVSXD
CALL

MOV
SUB
MOVZX
IN
MOV

)

80

The MinnowBoard Chronicles

short ptr 000000007785b0c4L
EAX,word ptr

EAX, 00000005
RCX, EAX
0000000077855¢c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL
AL,byte ptr [RSP]

RSP, 00000018

byte ptr [RSP]+28,AL
EAX,byte ptr [RSP]+28

EAX, 00000020

EAX, EAX

short ptr 000000007785b0c4L

EAX,word ptr

EAX, 00000005
RCX, EAX
0000000077855c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL
AL,byte ptr [RSP]

RSP, 00000018

byte ptr [RSP]+28,AL
EAX,byte ptr [RSP]+28

EAX, 00000020

EAX, EAX

short ptr 000000007785b0c4L

EAX,word ptr

EAX, 00000005
RCX, EAX
0000000077855c10L

gword ptr [RSP]+08,RCX
RSP, 00000018

EDX,word ptr [RSP]+20
AL, DX

byte ptr [RSP],AL

ScanWorks’

Platform for Embedded Instruments

The MinnowBoard Chronicles

This is a little better. The location of the instruction pointer is at the bottom and highlighted. I’ve
put spaces between the “cycles” associated with branches to make the code more readable. You
can see how powerful Trace is, because it goes backwards in time — as opposed to purely run-
control, which stops at an event and allows you to single-step forward in time. The dynamic flow
of the code is visible, and the direction taken by the conditional branches gives you a sense of the
program logic; for example, the two instructions:

TEST EAX, EAX
JE short ptr 000000007785b0c4L

Yield a jump to address x’7785b0c4’ if the outcome of the TEST instruction yields a zero flag of
one (ZF = 1) within the EFLAGS register. The only way that the zero flag will be set by TEST
EAX, EAX is if the contents of the EAX register is zero. So, you can see that the jump actually
happens, without explicitly having knowledge of or access to the contents of the EAX register.
This is often the case if you are using SED for backtracing program flow prior to a catastrophic

event, such as perhaps a CATERR or IERR.

By going back to the source build for the MinnowBoard, I note that the code I'm in is within
PchinitDxe. And I don’t have the source code for that; it’s part of one of the binary blobs within
the build. All I have are associated files with suffixes .efi, .depex, .inf and .pdb. What should I do
next? Maybe acquire a copy of IDA Pro to help me decompile the code? So much to learn, so

little time...

Of course, I wouldn’t even have gotten this far without easy access to SourcePoint. Register for

our UEFI Framework Debugging eBook to learn more about JTAG-assisted debug and trace.

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

https://www.hex-rays.com/
https://www.asset-intertech.com/products/#sourcepoint
https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 19: The Yocto Project

July 16, 2017

After working with UEFT over the last 18 episodes of the MinnowBoard Chronicles, I’ve decided

to install Linux on my MinnowBoard. It is turning out to be harder than I thought.

Installing Ubuntu 16.04.1 LTS on the MinnowBoard Turbot is actually pretty easy. There is a

tutorial available online at https://MinnowBoard.org/tutorials/installing-ubuntu-16.04-on-

MinnowBoardmax, and it is fairly clear and easy to understand and follow. But, never one to be

satisfied with doing the obvious, I decided to do my own Linux build for the MinnowBoard
using the Yocto Project. I’'m using this as a “training exercise” for doing a complete OpenBMC
build on the new Portwell Neptune Alpha board I’ve got:

I intend to document my OpenBMC work within a forthcoming series of The Neptune Alpha
Chronicles, but, first, I wanted to get comfortable with the Yocto Project first.

What is the Yocto Project? It’s described on its website as:

The Yocto Project is an open source collaboration project that provides templates, tools and
methods to help you create custom Linux-based systems for embedded products regardless of the

hardware architecture. It was founded in 2010 as a collaboration among many hardware

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax
https://www.yoctoproject.org/
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

manufacturers, open-source operating systems vendors, and electronics companies to bring

some order to the chaos of embedded Linux development.

Why use the Yocto Project? It's a complete embedded Linux development environment with tools,
metadata, and documentation - everything you need. The free tools are easy to get started with,
powerful to work with (including emulation environments, debuggers, an Application Toolkit
Generator, etc.) and they allow projects to be carried forward over time without causing you to
lose optimizations and investments made during the project’s prototype phase. The Yocto Project
fosters community adoption of this open source technology allowing its users to focus on their

specific product features and development.

In other words, Yocto will allow me to build a complete open source Linux image for the

MinnowBoard, and then ultimately for the Neptune Alpha. That sounds like fun!

A good place to start for this little effort of mine is at the Yocto Quick Start Guide. In fact, the

Quick Start Guide has an example specifically targeted for the MinnowBoard, which is ideal.
I quickly realized that I had some work to do to get the build host minimum configuration set up:

A build host with a minimum of 50 Gbytes of free disk space that is running a supported Linux
distribution (i.e. recent releases of Fedora, openSUSE, CentOS, Debian, or Ubuntu,).

Not having a Linux box at home (remember, [’'m not really an engineer; just a salesperson with a
keen interest in technology, so I lack high-powered hardware!), it was time to set up a Linux VM
on the pokey dual-core Windows desktop I have at home. Spending many hours on this (that
may be a subject of a future blog by itself), I finally got it working thanks to directions from
Linux Fundamentals by Paul Cobbaut, and the VirtualBox User Manual from Oracle.

Following the Yocto Quick Start Guide, I first need to install lots of new packages, and then
clone the poky repository and check out the latest Yocto Project Release (as of the time of this

writing, 2.3):

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib
\

build-essential chrpath socat cpio python python3 python3-pip python3-pexpect
\

xz-utils debianutils iputils-ping libsdll.2-dev xterm

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://www.yoctoproject.org/docs/2.3/yocto-project-qs/yocto-project-qs.html
http://linux-training.be/linuxfun.pdf
https://www.virtualbox.org/manual/

The MinnowBoard Chronicles

$ git clone git://git.yoctoproject.org/poky

Cloning into 'poky'...

remote: Counting objects: 361782, done.

remote: Compressing objects: 100% (87100/87100), done.

remote: Total 361782 (delta 268619), reused 361439 (delta 268277)
Receiving objects: 100% (361782/361782), 131.94 MiB | 6.88 MiB/s, done.
Resolving deltas: 100% (268619/268619), done.

Checking connectivity... done.

$ git checkout pyro

Activities | = Terminal = Sun 16:16

alan@debian: ~/poky X kK

Index of freleasesfyacto... ¥ | + | File Edit View Search Terminal Help
5 ‘alan@debian:~% s

€) ® | downloads yoctoproject.org/re (_@) (. $ s "
ext-2.3 target.manitest |alan@debian:~¢ cd poky
poky-glibc-xB6_64-core-image-ratan@dsbian:~/poky$ 1s :)
ext-2.3 target. manifest. mdssun . o g y s
poky-glibc-xB6_64-core-mage-fy, cumentation meta-pok
ext-2.3 testdata.json L ICENSE wita ¥ "
poky-dlibc-x86_64-core-image-ralan@debian:~/poky$ ‘
ext-2.3 testdata.json.md5sum
poky-glibc-x86_64-core-image-1
ext-2.3.host.manifest
palky-glbc-x86_64-core-image-r ‘

README
README . hardware

ext-2.3.host.manifest.mdSsum

poky-glibc-x86_64-core-image-1

ext-2.3.sh |
poky-dlibc-x86_64-core-imade-1

ext-2.3.sh.md5sum ‘
poky-dlibc-x86_64-core-image-1

ext-2.3 target. manifest |
polky-glibc-x86_64-core-image-r |
ext-2.3 target. manifest. md5sun

poky-glibc-x86_64-core-image-miAMaFcore2=64-toolCHalr= Hd' P ——
ext-2.3 testdata.json

poky-glibc-x86_64-core-image-minimal-core2-64-toolchain- ZOlmeta BRANGICY NEEE, TaC RRORk NSt E WRRR/EanT
ext-2.3 testdata json.md5sum
poky-glibc-x86_64-core-image-minimal-cortexa8hf-neon-toolchain- 55
ext-2.3.host.manifest
poky-glibc-x86_64-core-image-minimal-cortexa8hf-neon-toolchain- 205
ext-2.3.host.manifest.mdSsum
poky-glibc-x86_64-core-image-minimal-cortexa8hf-neon-toolchain- 103
ext-2.3.sh
A poky-glibc-x86_64-core-image-minimal-cortexaBhf-neon-toolchain- 194

ext-2.3.sh.md5sum

That’s as far as I got this week. Next week, I’ll do the image build, maybe try it out on the

QEMU emulator, and then install it into my MinnowBoard.

And now, a word from my sponsor: I eventually plan to debug this with ASSET’s SourcePoint
JTAG hardware-assisted debugger. And, my interest in OpenBMC stems from our ScanWorks
Embedded Diagnostics remote JTAG run-control solution for hyperscale platforms. For more

information, read our technical overview (note: requires registration).

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/products
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

Episode 20: Building and Installing Linux

July 25, 2017

I have a little secret to share: even though I may make it look easy, getting Linux onto my

MinnowBoard is hard, hard work.

In Episode 19 of the MinnowBoard Chronicles, I mentioned that doing a Yocto image build from
scratch for the MinnowBoard was at the top of my to-do list. As a matter of fact, after spending a
few hours unsuccessfully at this task, I decided to return to the basics: follow the tutorial at

https://MinnowBoard.org/tutorials/installing-ubuntu-16.04-on-MinnowBoardmax first to install

Ubuntu, then return to the more complex task.

Unfortunately, somewhere in the middle of all this, my HP USB keyboard stopped working on
the MinnowBoard. At first it worked intermittently; then it stopped working entirely. I used
CoolTerm on my Mac to do some rudimentary command line entries over the serial connection,
but as soon as I exited the UEFI shell and went into the Boot Options screen, I became stuck (the

arrow keys did not work).

I tried a lot of different things, including looking at the serial output of the debug log with
CoolTerm (to try to trace back to the UEFI code that was failing to initialize with the keyboard),
but eventually, I gave up and bought a new keyboard. Eureka! That did the trick. I got to the
Boot Manager screen, and selected the EFI USB Device:

r

Boot Manager

Option Menu

m Internal Shell
NetworkB0OBA209F4AT6 TPu4
EF[Network0008A209F476 IPvb

EFI Misc Device

T and ! to change option. ENTER to select an option. ESC to exit

Ti=Move Highlight <Enter>=Select Entry Esc=Exit

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-19-the-yocto-project.html
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax

The MinnowBoard Chronicles

Then the Ubuntu install began, with the dots marching across the screen:

o

.....

No matter what I did, I continued to get this error. I tried two different USB sticks and still the
problem persists. So, I decided to put this activity on hold for now, and return to my goal of
using Yocto to build an image, run it on the QEMU emulator, and then flash it into my

MinnowBoard. I’ll certainly get back to this later — it’s a necessary step in my learning process.

As I mentioned in Episode 19, I am using a VM on a slow Windows PC at home. But, following

the instructions in the Yocto Quick Start Guide, all seemed to be going according to plan....until

I ran out of memory on my hard drive! So, I have to do some cleanup before I can try this again.

Stay tuned for Episode 21!

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.yoctoproject.org/docs/2.3/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

For those who may learn from my mistakes, below is the complete console file from my efforts
building the image. I almost got there! And at the bottom is the error message displayed on the
screen by the VM, warning of my out-of-memory condition. At the very bottom is a good

graphic of my feelings after doing all of this work.

I can’t wait to get this finished so I can begin debugging with SourcePoint! In particular, I’1l be

wanting to debug the ASPEED AST25xx, once I’'m done.

alan@debian:~$ git clone git://git.yoctoproject.org/poky

Cloning into 'poky'...

remote: Counting objects: 371109, done.

remote: Compressing objects: 100% (89063/89063), done.

remote: Total 371109 (delta 275824), reused 370786 (delta 275514
Receiving objects: 100% (371109/371109), 134.20 MiB | 3.02 MiB/s, done.
Resolving deltas: 100% (275824/275824), done.

Checking connectivity... done.

Checking out files: 100% (5301/5301), done.

alan@debian:~$ 1s
Desktop Documents Downloads Music Pictures poky Public Templates Videos

alan@debian:~$ cd poky

alan@debian:~/poky$ 1ls

bitbake meta meta-skeleton oe-init-build-env README.hardware
documentation meta-poky meta-yocto oe-init-build-env-memres README.LSB
LICENSE meta-selftest meta-yocto-bsp README scripts

alan@debian:~/poky$ git checkout pyro
Branch pyro set up to track remote branch pyro from origin.
Switched to a new branch 'pyro'

alan@debian:~/poky$ ls

bitbake meta meta-skeleton oe-init-build-env README.hardware
documentation meta-poky meta-yocto oe-init-build-env-memres scripts
LICENSE meta-selftest meta-yocto-bsp README

alan@debian:~/poky$ git checkout -b pyro origin/pyro
fatal: A branch named 'pyro' already exists.

alan@debian:~/poky$ cd ~/poky

alan@debian:~/poky$ git checkout -b pyro origin/pyro
fatal: A branch named 'pyro' already exists.

alan@debian:~/poky$ 1ls -1
total 68

drwxr-xr-x 6 alan alan 4096 Jul 5 03:52 bitbake
drwxr-xr-x 14 alan alan 4096 Jul 5 03:52 documentation
-rw-r--r-- 1 alan alan 515 Jul 5 03:52 LICENSE
drwxr-xr-x 20 alan alan 4096 Jul 5 03:52 meta
drwxr-xr-x 5 alan alan 4096 Jul 5 03:52 meta-poky
drwxr-xr-x 8 alan alan 4096 Jul 5 03:52 meta-selftest
drwxr-xr-x 7 alan alan 4096 Jul 5 03:52 meta-skeleton
drwxr-xr-x 3 alan alan 4096 Jul 5 03:52 meta-yocto
drwxr-xr-x 9 alan alan 4096 Jul 5 03:52 meta-yocto-bsp
-rwxr-xr-x 1 alan alan 2121 Jul 5 03:52 oe-init-build-env
-rwxr-xr-x 1 alan alan 2559 Jul 5 03:52 oe-init-build-env-memres
-rw-r--r-- 1 alan alan 2467 Jul 5 03:52 README
-rw-r--r-- 1 alan alan 14836 Jul 5 03:52 README.hardware

8 5

drwxr-xr-x alan alan 4096 Jul 03:52 scripts

alan@debian:~/poky$ source oe-init-build-env

You had no conf/local.conf file. This configuration file has therefore been
created for you with some default values. You may wish to edit it to, for
example, select a different MACHINE (target hardware). See conf/local.conf
for more information as common configuration options are commented.

You had no conf/bblayers.conf file. This configuration file has therefore been

created for you with some default values. To add additional metadata layers
into your configuration please add entries to conf/bblayers.conf.

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.asset-intertech.com/products/#sourcepoint
http://www.asset-intertech.com/products/sourcepoint-bmc-support

The MinnowBoard Chronicles

The Yocto Project has extensive documentation about OE including a reference
manual which can be found at:
http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:
http://www.openembedded.org/

Shell environment set up for builds.
You can now run 'bitbake <target>'

Common targets are:
core-image-minimal
core-image-sato
meta-toolchain
meta-ide-support

You can also run generated gemu images with a command like 'rungemu gemux86'

alan@debian:~/poky/build$ 1ls -1
total 4
drwxr-xr-x 2 alan alan 4096 Jul 5 03:55 conf

alan@debian:~/poky/build$ cd conf

alan@debian:~/poky/build/conf$ 1ls
bblayers.conf local.conf templateconf.cfg

alan@debian:~/poky/build/conf$ 1s -1

total 20

-rw-r--r-- 1 alan alan 280 Jul 5 03:55 bblayers.conf
-rw-r--r-- 1 alan alan 10293 Jul 5 03:55 local.conf
-rw-r--r-- 1 alan alan 15 Jul 5 03:55 templateconf.cfg

alan@debian:~/poky/build$ bitbake core-image-sato
WARNING: /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb: Exception during
build_dependencies for create_shar
WARNING: /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb: Error during finalise of
/home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb
ERROR: ExpansionError during parsing /home/alan/poky/meta/recipes-core/images/core-image-tiny-initramfs.bb
Traceback (most recent call last):
bb.data_smart.ExpansionError: Failure expanding variable create_shar, expression was # copy in the template
shar extractor script

cp /home/alan/poky/meta/files/toolchain-shar-extract.sh /home/alan/poky/build/tmp/work/gemux86-poky-
linux/core-image-tiny-initramfs/1.0-r0/x86 64-deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-
core-image-tiny-initramfs-i586-toolchain-2.3.1.sh

rm -f /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/pre install command /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/post install command

if [1 -eq 1] ; then
cp /home/alan/poky/meta/files/toolchain-shar-relocate.sh
/home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/temp/post install command
fi
cat << "EOF" >> /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/pre install command

EOF

cat << "EOF" >> /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-
r0/temp/post_install command

EOF
sed -i -e '/@SDK_PRE_INSTALL COMMAND@/r /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-

tiny-initramfs/1.0-r0/temp/pre_install command' \

-e '/@SDK_POST_INSTALL COMMAND@/r /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-
image-tiny-initramfs/1.0-r0/temp/post _install command' \

/home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86 64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

substitute variables
sed -i -e 's#@SDK ARCHE#x86 64#g' \
-e 's#@SDKPATH@#/opt/poky/2.3.1#g" \
-e 's#@SDKEXTPATH@#~/poky sdk#g' \
-e 's#G@OLDEST KERNELQ@#2.6.32#g' \
-e 's#@REAL_MULTIMACH TARGET SYS@#i586-poky-linux#g' \
-e 's#@SDK _TITLEQ#S5{@d.getVar ("SDK TITLE").replace('&', '\&')}#g' \
-e 's#@SDK VERSIONG@#2.3.1#g' \

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

-e '/@SDK_PRE_INSTALL_COMMANDG/d' \

-e '/@SDK_POST_INSTALL_ COMMANDE/d' \

-e 's#@SDK_GCC_VERE#S${@oe.utils.host gcc_version(d) }#g' \

/home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86 64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86 64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

add execution permission

chmod +x /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86 64-
deploy-core-image-tiny-initramfs-populate-sdk/poky-glibc-x86 64-core-image-tiny-initramfs-i586-toolchain-
2.3.1.sh

append the SDK tarball

cat /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-
core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.tar.xz
>> /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-core-image-
tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.sh

delete the old tarball, we don't need it anymore

rm /home/alan/poky/build/tmp/work/gemux86-poky-linux/core-image-tiny-initramfs/1.0-r0/x86_64-deploy-
core-image-tiny-initramfs-populate-sdk/poky-glibc-x86_64-core-image-tiny-initramfs-i586-toolchain-2.3.1.tar.xz
which triggered exception OSError: [Errno 12] Cannot allocate memory

Summary: There were 2 WARNING messages shown.

Summary: There was 1 ERROR message shown, returning a non-zero exit code.

alan@debian:~/poky/build$ bitbake core-image-sato

Loading cache: 100% |#######44# 444444 Time: 0:00:02

Loaded 922 entries from dependency cache.

Parsing recipes: 100% |##############HHHFRFRHHHHHRHHHRHRHHARSH SRS SRS HHHHHHHE| Time: 0:01:36

Parsing of 830 .bb files complete (583 cached, 247 parsed). 1299 targets, 48 skipped, 0 masked, 0 errors.
NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB_VERSION = "1.34.0"
BUILD_SYS = "x86_64-1linux"
NATIVELSBSTRING = "debian-8"

TARGET SYS = "i586-poky-linux"
MACHINE = "gemux86"

DISTRO = "poky"
DISTRO_VERSION = "2.3.1"
TUNE_FEATURES = "m32 i586"
TARGET_FPU ="

meta

meta-poky

meta-yocto-bsp = "pyro:0920b28c93632ed53e1d50c24£260£9359fccl50"

NOTE: Fetching uninative binary shim from http://downloads.yoctoproject.org/releases/uninative/1.6/x86_64-
nativesdk-libc.tar.bz2;sha256sum=2b4fffa308d9f19e0742a1a404£f£42495fb50c165e5ca0458cedcal57372691a

--2017-07-05 04:19:24-- http://downloads.yoctoproject.org/releases/uninative/1.6/x86_64-nativesdk-libc.tar.bz2
Resolving downloads.yoctoproject.org (downloads.yoctoproject.org)... 198.145.20.127

Connecting to downloads.yoctoproject.org (downloads.yoctoproject.org) [198.145.20.127|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 2535308 (2.4M) [application/octet-stream]

Saving to:
,A0/home/alan/poky/build/downloads/uninative/2b4f££fa308d9£19e0742a1a404££42495fb50c165e5ca0458cedcal’57372691a/x
86 _64-nativesdk-libc.tar.bz2,4d

2017-07-05 04:19:28 (584 KB/s) -
,A0/home/alan/poky/build/downloads/uninative/2b4f££fa308d9£19e0742a1a404££42495fb50c165e5ca0458cedcal’57372691a/x
86 64-nativesdk-libc.tar.bz2,A5 saved [2535308/2535308]

Initialising tasks: 100% |######4###444H4444FRH4HFHRHHHFERHFHERHHHHERHHHFSHHHHHEHH| Time: 0:01:02
NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

WARNING: The free space of /home/alan/poky/build/sstate-cache (rootfs) is running low (0.991GB left)
ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!

WARNING: The free space of /home/alan/poky/build/downloads (rootfs) is running low (0.990GB left)
ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!

WARNING: The free space of /home/alan/poky/build/tmp (rootfs) is running low (0.990GB left)

ERROR: No new tasks can be executed since the disk space monitor action is "STOPTASKS"!

NOTE: Tasks Summary: Attempted 102 tasks of which 0 didn't need to be rerun and all succeeded.

Summary: There were 3 WARNING messages shown.

Summary: There were 3 ERROR messages shown, returning a non-zero exit code.
alan@debian:~/poky/build$ 1s

bitbake.lock cache conf downloads sstate-cache tmp
alan@debian:~/poky/build$ gedit local.conf

** (gedit:12624): WARNING **: Error when getting information for file '/home/alan/poky/build/local.conf': No
such file or directory

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

alan@debian:~/poky/build$ 1ls -1

total 20

-rw-r--r-- 1 alan alan 0 Jul 5 04:17 bitbake.lock
drwxr-xr-x 2 alan alan 4096 Jul 5 04:20 cache
drwxr-xr-x 2 alan alan 4096 Jul 5 03:59 conf
drwxr-xr-x 4 alan alan 4096 Jul 5 04:57 downloads
drwxr-xr-x 43 alan alan 4096 Jul 5 04:58 sstate-cache
drwxr-xr-x 12 alan alan 4096 Jul 5 04:55 tmp

alan@debian:~/poky/build$ cd conf
alan@debian:~/poky/build/confs$ 1s
bblayers.conf local.conf sanity info templateconf.cfg
alan@debian:~/poky/build/conf$ gedit local.conf
alan@debian:~/poky/build/confs$ cd
alan@debian:~/poky/build$ 1s
bitbake.lock cache conf downloads sstate-cache tmp
alan@debian:~/poky/build$ bitbake core-image-sato
WARNING: /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb: Exception during build dependencies for
create_shar
WARNING: /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb: Error during finalise of
/home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb
ERROR: ExpansionError during parsing /home/alan/poky/meta/recipes-core/ovmf/ovmf-shell-image.bb
Traceback (most recent call last):
bb.data_smart.ExpansionError: Failure expanding variable create_shar, expression was # copy in the template
shar extractor script
cp /home/alan/poky/meta/files/toolchain-shar-extract.sh /home/alan/poky/build/tmp/work/gemux86-poky-
linux/ovmf-shell-image/1.0-r0/x86 64-deploy-ovmf-shell-image-populate-sdk/poky-glibc-x86 64-ovmf-shell-image-
i586-toolchain-2.3.1.sh

rm -f /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/pre_install command /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/post_install command

if [1 -eq 1] ; then
cp /home/alan/poky/meta/files/toolchain-shar-relocate.sh
/home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/temp/post install command
fi
cat << "EOF" >> /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/pre install command

EOF

cat << "EOF" >> /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-
r0/temp/post_install command

EOF
sed -i -e '/@SDK_PRE_INSTALL COMMAND@/r /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-
image/1.0-r0/temp/pre_install command' \
-e '/@SDK_POST_INSTALL COMMAND@/r /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-
shell-image/1.0-r0/temp/post_install command' \
/home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_ 64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86 64-ovmf-shell-image-i586-toolchain-2.3.1.sh

substitute variables
sed -i -e 's#@SDK ARCHQ@#x86 64#g' \
-e 's#@SDKPATH@#/opt/poky/2.3.1#g" \
-e 's#@SDKEXTPATH@#~/poky sdk#g' \
-e 's#@OLDEST KERNELQ@#2.6.32#g"' \
-e 's#@REAL MULTIMACH TARGET SYS@#i586-poky-linux#g' \
-e 's#@SDK_TITLEQ#S${@d.getVar ("SDK TITLE").replace('&', '\&')}#g' \
-e 's#@SDK _VERSION@#2.3.1#g' \
-e '/@SDK_PRE_INSTALL COMMAND@/d' \
-e '/@SDK_POST INSTALL COMMAND@/d' \
-e 's#@SDK_GCC_VERE@#${Qoe.utils.host _gcc version(d)}#g' \
/home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf—
shell-image-populate-sdk/poky-glibc-x86_ 64-ovmf-shell-image-i586-toolchain-2.3.1.sh

add execution permission
chmod +x /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_ 64-ovmf-shell-image-i586-toolchain-2.3.1.sh

append the SDK tarball

cat /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_ 64-deploy-ovmf-
shell-image-populate-sdk/poky-glibc-x86_ 64-ovmf-shell-image-i586-toolchain-2.3.1.tar.xz >>
/home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86_64-deploy-ovmf-shell-image-
populate-sdk/poky-glibc-x86_64-ovmf-shell-image-i586-toolchain-2.3.1.sh

delete the old tarball, we don't need it anymore

rm /home/alan/poky/build/tmp/work/gemux86-poky-linux/ovmf-shell-image/1.0-r0/x86 64-deploy-ovmf-shell-
image-populate-sdk/poky-glibc-x86_ 64-ovmf-shell-image-i586-toolchain-2.3.1.tar.xz
which triggered exception OSError: [Errno 12] Cannot allocate memory

Summary: There were 2 WARNING messages shown.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Summary: There was 1 ERROR message shown,

returning a non-zero exit code.

: ~/poky/build

E File Edit View Search Tarminal Help
T

‘KE # substitute variables

| sed -1 -e 'sH#ESDK_ARCHE#xB6_647g' \

[e 's#ESDKPATH@A/opt/poky/2.3.1#g' \
‘m -@ 's#ESDKEXTPATHe#~/poky_sdkig' \

-@ 'sFQOLDEST KERNELG#2.6732¢g" \
€ -o'sWGREAL MULTIMACH TARGET_SYS@#1586-poky -Linux#g
-a 's#@SDK TITLE@#${ed.getvar("SDK_TITLE"). et & ne 1Hg" A
-o 's#@SDK_VERSIONG#2.3.14g"
-a '/@SDK_PRE_INSTALL COMMANDE/d' \

P ‘g '/@SDK_POST_INSTALL COMMANDE/d' \
om | e "s#@SDK_GCC VER@N${@ce.utils.host_gce version(d) Hig' \
| & /home/alan poky /build/tmp/work /qamuxB6 -poky -Linux/ovmf -shell -image/1.8-rO/x86_64
® -deploy-ovmf -shell -image -populate-sdk/poky-glibc -x86_64-ovnf-shell -image-1386-toolchain-2.3.1.sh
@ # add execution permission
chmod +x_/home/alan/poky/butld/tnp/wark/aenuxBs-poky-linux/oume -shel | -1nage/1.0-r6/xB6_ s |

‘E 4 deploy -ovmf-shell - image-popul ate -sdk/poky -glibe ;x86_64-ovmf-shell-image-1 86-toolchain-2.3. !

h |
| I
L)) | # append the SOK tarball |
|

cat Thome/alan/poky/build/tnp/work /qamuxB6-poky -inux/ovaf -shell -inage/1.8-rB/xB6 54 ~dep
fLoy-ovmf-shal l-inage-popuiLate-sdk/poky-gLibe -xB6_64-ount-shell-isaqe 1586 K

| 2L hone/ alan/poky/buil d/tme/work/qanuxB6 -poky -Linux/avnf -shell-image/1.
|- 21611 imaga-populata sdk/poky -glibc-xB6 64-ovnf -shell -inaga-1586-toslcha

E-ﬂﬁ

rm. /home/alan/poky/build/tm nan/uEmufov pok ©-r0/x86_64-depl| pae

1
l:na n-2

delete the old tarball, we don't need it anymo = - |

shell -inage-popul ate-sdk/poky

m Libc 3.1.tar.xz
triggered axception 0SErrar: [Ermo 12]

Sumnary: There ware 2 W
Sumnary: There was 1 ER
alandebLean :~/poky/buill

SourcePoint ScanWorks'

o1 Platform for Embedded Instruments

The MinnowBoard Chronicles

Episode 21: Building and Installing Linux, Part 2

July 31, 2017

This week, I had some success building a Linux image using the Yocto Project. But, that’s the

good news.

From last week’s Episode 20 of the MinnowBoard Chronicles, I described the trials and

tribulations of the two projects I have underway: installing Ubuntu 16.04.1 LTS on my

MinnowBoard Turbot, and building a complete Linux image using the Yocto Project.

To install the Ubuntu image, I’ve just been following the directions at the MinnowBoard site’s

tutorial. The procedure is very straightforward, but the bad news is that I haven’t yet gotten it

completed. Last week, I kept getting the following error message:
(intraramfs) Unable to find a medium containing a live file system

I found that I could get past this stage, and actually get to the main installer page, by putting the
USB stick with the ISO image on the top USB port, and the keyboard input on the bottom USB

port, opposite to what is described in the tutorial, as diagrammed below:

The above is what’s in the tutorial.

USB Keyboard
(Top)

USB Thumb drive
(Bottom)

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-20-building-and-installing-linux.html
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax/boot-the-board-from-the-usb-thumb-drive

The MinnowBoard Chronicles

When I swap them, I don’t get the intraramfs error, and am able to get to the first installation

Screen:

But, I can’t get any further! The MinnowBoard won’t accept any keyboard or mouse input at that
point. I think maybe it wants the keyboard/mouse USB hub to be plugged into USB port 1. I'm
not exactly sure what is going on here; I think I’ll need to try yet another USB flash stick, as my

next step.

So, being not easily discouraged, I returned to my second project in-work, which is building the
Yocto image. Last week, the build blew up due to a lack of space on my PC hard drive. As |
mentioned before, I’'m building this within a Debian VM using VirtualBox on my old, slow
Windows PC at home. By poking around a little, I discovered that I had only allocated 8GB of
hard disk space to the VM, as per the Linux tutorial I had used months ago to help me learn

about virtual machines and Linux. I quote from page 20:
“8GB should be plenty for learning about Linux servers.”

But, of course, learning about Linux, and building an image, are two different things. I decided I

needed about 10X that amount of space to do a complete build.

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://linux-training.be/linuxfun.pdf

The MinnowBoard Chronicles

So, that’s what I did. It took me a couple of hours to create the bigger VM, and then re-follow
the Yocto build instructions. After 15 hours of my home PC running flat out, below is the screen

I saw:

cting to downloads.yocto
Bl imonmee negl

1,230 of 6,060 tasks have been executed after 15 hours. So, at this rate, it’s going to take a few
days to complete the build!

I know, I know, don’t laugh. I’ve got to get a faster PC. This machine is about seven years old.
And I shouldn’t be running in a VM. So, that’s a project for another day: building a state-of-the-
art faster machine. I hear there are good prices available for the new AMD Ryzen 16-core
Threadripper, or maybe an Intel Skylake-X.....and I’d like to get a good graphics card with it too
(for gaming, and also to learn something about cryptocurrency mining). All these hobbies,
though, take me away from blogging (and, oh yes, there’s that work thing too....hopefully my

boss hasn’t read this far).
In any event, I hope to finish the Yocto build in time for Episode 22!

Of course, all this work is aimed at debugging UEFI, GRUB, and ultimately Linux on the
MinnowBoard, with our SourcePoint product. I’'m particularly interested in using Intel Processor
Trace (see Episode 11) to watch the boot flow. A great eBook on that subject is at Intel Adds

High-Speed Instruction Trace (note: requires registration).

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.asset-intertech.com/products/sourcepoint-intel
http://blog.asset-intertech.com/test_data_out/2017/04/the-minnowboard-chronicles-episode-11.html
http://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint
http://www.asset-intertech.com/eresources/intel-adds-high-speed-instruction-trace-sourcepoint

The MinnowBoard Chronicles

Episode 22: Project Yocto success!
August 7, 2017
In the last episode of the MinnowBoard Chronicles, I shared my progress with building a

gemux86 reference image using the Yocto Project. I’'m pleased to say that the build is complete!

Here’s how I did it.

In Episode 21, I at least got the image build started on Sunday afternoon, and as of Monday
morning it had completed 1,230 out of 6,060 tasks. I’ve been simply following the Yocto Project
Quick Start tutorial instructions, and kicked off the build with:

bitbake core-image-sato

I wanted to start building an image for the QEMU emulator first, and then move to creating an

actual MinnowBoard Turbot image.

The two WARNINGS in yellow below were worrisome, but it seemed to keep going, so I just let

it run through Monday afternoon and evening:

Connecting to downloads
.127|:80... connected. |
P reguest sent, awaiting response.
th: 2535308 (2.4M) [application/c

Tuesday morning, I got up, and the first thing I did was to go look at the progress of the build.

Disaster!

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
http://www.yoctoproject.org/docs/2.3.1/yocto-project-qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/2.3.1/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

Out of the 6,060 tasks, it completed 4,049 of them, and then crashed!

The error messages weren’t particularly meaningful, and I did notice that we had had a home
router outage sometime on Monday night (thanks Spectrum!), so I wondered if those were

related. So, I just fired up bitbake again, and it proceeded where it left off: no work was lost!

When I got home from work on Tuesday, the build was finished! Yahoo! It only took about 48

hours:

. ™ ®
SourcePoint |) ScanWorks
Platform for Software Debug and Trace Platform for Embedded Instruments

96

The MinnowBoard Chronicles

The ultimate test, of course, is to see if the image works. For that, I wanted to run the image

within the QEMU emulator, with this command:
rungemu qgemux86

That worked too! I was delighted to see it launch the first time. Here are a couple of screenshots:

PROJECT

[—

A1y creats.]
TTINFD - Running 1od) Tep ok b 54 Ll S halper-nat leas 1. 8- rlsrec Lpe-syiroet -ral v/l r/nin/ foss)

-:\;::u I*I;D e kBG4 -1 drim/ G < oL 0 8- rlf:;clp! m,;m::::-
; Bii/core- (aage - sato
stom-1386 -drive n.u :wrhpm:u::u‘wm i B D18y sk

e e saraal [l m g - - I 1817+ oue
rial mll. lwlul l-p.fﬂn\orflmon.fm

o:g:B;iIa;:eﬁ bin -append ' rocts/dewvda v hignresof | Bes=ISEN vgaed vesath,

_giaerel wasafl.tas mn»\n- L

R e T

|
o T |
|

]
$E* . armumen . 00nT . .
b - 1R a5 - R0 s B - 791 TS0 LI

B3 - i - el - 3 | PR 1 W51 89 i)

|
drelay Batly cruate.
runcdl

J o Lps - BaraaT et dve un sl e

un.nq-u"‘m s — Aerks ot et Lv U DL R
IS . Rund tmg R B (41 Fipienie Pl G 8 Ll i/ et i Sys v
wioa: 1386 ~Orive fi 1;?u.-'d-mpra --:-m'u-n-lwé-’h - Ll < L0 t:- Bf--?a TORHL1 T ik, rost P ; 14- ?ﬁu p::roﬂ
prmatera -NGh VReara cehow tursor cuBh URDIEVECE ::: Rk :‘ n I..l' q;:gv-c e e LU, s i

1al Al !--nnq'! p D | 3 L e, B g - e W”
tm;:rﬁh-b n sappend "redt -.rmhdd- ru ighreEsalf memeltiN woaed wrinilhmed _tpTlonedate it 12 oprofi]

thear=] wrasail, Eatk fLeabuts.

sain.locp: WERNIWG: 170 thread w far 100 Iteratlons !

L

That’s all I had time for this week. In my next installment, I’ll build another image for the

-

MinnowBoard, and have it running on real hardware. Stay tuned!

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

And now, a word from our sponsor: once I’ve got your image built, I’'m going to want to debug
the lowest levels of the boot process with SourcePoint. A good introduction to this technology is

in our eBook, Intel Trace Hub | Finding Root Cause (note: requires registration).

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.asset-intertech.com/eresources/intel-trace-hub-faster-software-debug-finding-root-cause

The MinnowBoard Chronicles

Episode 23: Trying Wind River Pulsar Linux, and taking a break

September 4, 2017

I’ve been stymied on both fronts: my MinnowBoard Turbot finally stopped recognizing the

keyboard, and my home computer build machine has crashed!

In Episode 21, Building and Installing Linux Part 2, I vented my frustrations in getting the

MinnowBoard to install Ubuntu Linux. Once I got past the EFI shell, the Minnow would stop
taking keyboard input. So, I’d be sitting there staring at the Ubuntu installation screen; so near,
and yet so far. Everything I tried, including using different keyboards, swapping the keyboard
and USB flash stick between USB ports, using different USB flash sticks, etc. etc. were to no

avail.

I even tried installing Wind River Pulsar Linux instead of Ubuntu. There are some very clear
instructions on the MinnowBoard site here. But, alas, I would again get to a stage in the
installation process and could get no further. Note to self: look up “linux promiscuous mode”

sometime:

Pulsar Limux 8.0.0.6 cubs-ezzential tiyl

cube-essential login: [48.909651] device ouz-zsystem entered promiscuous mode

[48.955505] device br-int entered promiscuous node

And now, the Minnow won’t take keyboard commands even at the EFI shell (this used to work).
I’ve googled this extensively, and the closest I can seem to get to a diagnosis is in some of its
Amazon reviews, where someone said that “The USB ports are underpowered/not load protected
enough...overall, it’s a great board, if you can avoid damaging the USB ports”. In any event, |
think I’ve tried everything, and I’m pretty sure what I’m left with is a hardware failure. I plan to

RMA the board with Netgate soon.

So, following up on Episode 22, Project Yocto Success!, I continued working on building a

MinnowBoard Linux image using the Yocto project. From last time, I was halfway through the
build. But then my seven-year-old dual-core home computer crashed. And the hard disk was

wiped out. I guess the 48-hour Yocto builds took too great a toll.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
https://minnowboard.org/tutorials/installing-windriver-pulsar-linux-on-minnowboard-turbot
http://blog.asset-intertech.com/test_data_out/2017/08/the-minnowboard-chronicles-episode-22-project-yocto-success.html

The MinnowBoard Chronicles

Where does this leave me? Well, this weekend, I finished ordering all of the parts for my
replacement dream machine. AMD Ryzen 7 1700X (sorry Intel, I couldn’t resist the prices; my
next dream machine will be Intel-based) with eight cores and 16 threads, 16GB RAM, 500GB
SSD, 2TB HDD, NVIDIA GTX 1060. Those Yocto builds should scream then. I’ll keep you all

posted on the dream machine build! It might take me a couple of weekends, so stay tuned.

It’ll be nice to get a new, fast machine. Some of the work I need to do with SourcePoint, such as

running CScripts, requires a lot of horsepower from the remote host. For more information on

some of these Python-based massive scripts, see our eBook, SourcePoint CScripts Support (note:

requires registration).

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

100

http://www.asset-intertech.com/eresources/intel-debug-using-python-cscripts-memory-crash-dump-caterr

The MinnowBoard Chronicles

Episode 24: New MinnowBoard, New PC, and a nod to Netgate

October 11, 2017

In Episode 23, I mentioned taking a short sabbatical, because my MinnowBoard USB ports
stopped working, and my 7-year-old home PC build machine crashed. The good news is both

issues are both fixed! Let the fun begin again.

In Episode 23, I experienced the “perfect storm” of failures: after an extended period of
intermittent behavior, my MinnowBoard Turbot finally stopped recognizing the keyboard,
mouse, and USB flash sticks entirely. This made installing a Linux image impossible. And, my
seven-year-old, Intel Core 2 Duo machine I was using to build a Yocto Linux image for the

MinnowBoard crashed for good in the middle of one of the interminable 48-hour builds.

For the MinnowBoard USB problem, I tried dozens of different things (different keyboard,
different mouse, different USB port, etc.) to try to fix or work around this problem, to no avail; it
was toast. I finally threw in the towel and decided to contact the supplier for an RMA. Having
purchased the Minnow six months ago (it was still under warranty), I had to go back and find my
purchase materials — as it turns out, I purchased it through Amazon, but the supplier was Netgate,

and the board was built by ADI Engineering.

I have to say, that the experience with Netgate was a delight. I always approach these kinds of
situations with a bit of trepidation — you never know what kind of customer service you’re going
to receive. In this instance, I simply created a userid on their Support Portal, and got a Live Chat
going with one of their staff (note that this was on a holiday weekend!). After exchanging some
information, I received an RMA number, and shipped the Minnow back to them. As it turns out,
they performed a post-mortem on the unit I sent to them and were able to verify the symptoms. I

received my new MinnowBoard that same week. That’s great turnaround and customer service!

The proof of the pudding, of course, was whether the new Minnow was able to install Ubuntu

Linux. There’s a great tutorial on the MinnowBoard site on Installing Ubuntu 16.04.1 LTS that

walks you through it. And the installation started, with full keyboard and mouse control. I was

ecstatic:

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/09/the-minnowboard-chronicles-episode-23-trying-wind-river-pulsar-linux-and-taking-a-break.html
https://www.netgate.com/
http://www.adiengineering.com/
https://minnowboard.org/tutorials/installing-ubuntu-16.04-on-minnowboardmax

But, when trying to do:

Help and support

The Offidal documentation covers many of
the most common areas about Ubuntu. It's
available both and via the Ubuntu Help
item in the System menu.

AL you can ask questions and
search an impressive collection of already
answered questions. Support in your own
language may be provided by your

For pointers to other useful resources, please
visit J

oF

sudo apt-get -y update
sudo apt-get -y dist-upgrade

to bring Ubuntu up-to-date with patches, I got an error message:

Problem executing scripts APT::Update::Post-Invoke-Success

The MinnowBoard Chronicles

Googling this led me to the workaround to remove libappstream3 with the CLI command:

sudo apt-get remove libappstream3

That did the trick. The install completed successfully, and I got a working version of Ubuntu on

my Minnow:

SourcePoint

Platform for Software Debug and Trace

)

102

ScanWorks’

Platform for Embedded Instruments

The MinnowBoard Chronicles

@/

ow...

Gr Home d ‘ ‘
F-} bin boat cdiom
4 0 G Dosbiop
O Documents ‘ - ‘
& Downloads e == lib [T]
~ [= wad il
(]
= ::::1 media mnt opt proc
B Trwh [~ :
| E3
Sl = Hetwork roo’: ﬁ ﬁ ﬂ
| uounTuieD | & d il ‘ ‘
oy £3% tmp (11

0 connedt to Server

L
&

Vg indtrel. by wmlinuz

“home” selected {containing 1ite

So, while all this was going on, I finished building my new home PC to replace the aging seven-
year-old Yocto build machine. I equipped it with the AMD Ryzen 7 1700X CPU, 16GB RAM,
500GB SSD, NVIDIA GEForce GTX 1060 video card, and Windows 10 Home. I was one of the
lucky people that build the machine and have it boot up the first time (well, there were a couple

of scary moments, but I’ll gloss over those for now).

With the machine assembled and Windows booting off of the SSD (what a joy to boot Windows
in seconds versus about four minutes on my old machine), I installed a 2TB 7200RPM SATA III
hard drive and installed Debian 9 Linux on it. This is where I plan to do most of the Yocto

builds:

Flnduls thve bl slbolbon

Piciel i Bais Tk P
sl At s complets, S0 0 1S Uma 1o Bool Inlo §our new systom. Maks surs (o remove the inat sllation modia, |
inla Thee Faw sy lem falhss Than fastait ing 1 he installation

Y orks’

peaded Instruments

Sourcq

Platform for Softwa EGEG————

103

The MinnowBoard Chronicles

Following the tutorial in the Yocto Project Quick Start Guide, I quickly fired up an image build

for emulation (QEMU). Running the command:
bitbake core-image-sato

took 1 hour, 5 minutes; compared to 48 hours on the old machine!!! So, about 50X faster. My

productivity should leap forward now:

alansgulgnagddebian: =/poky/build

i Wiew &;:Tl_‘l:rmlm'l Help 2 F
r.bz2
ing dewnlonads.yoctoproject.org (downloads . yoctoproject.org) ... 198, 145.20.6

| 5 3

Sting to downloads.yoctoproject.org (downloads.yoctoprojoct.org) | 198. 145, 20, 63 :80. .. 1
ragquest sent, awalting response. .. 200 0K

th: 2TE62BS (2.2M) [applications/octot-st raam]

to: *Shoma/alansguigna/poky s/ bulld/download i
e aLansgulgna/pok nst:uqsdh- 1?‘“0? d :ﬁ‘.‘;z Izl-’_it Ive/ed033c868bETES2DOTO5 Fad400 r3b 74

T-10-04 17:22:20 (B59 WB/s5) - * fhome falansguignaspoky/bul La/downl oads suninat ive/ed03Tc06 858
784400130744 c00aa 150647346001 a50b0d 30020750/ 266 B4 - nat 1ve sdk - Libc.tar.bz2’ saved [22Z862857

Atialising tasks: 100N |FESSSSSSSERITEIESNEREERNERNERERREEN SRR REE
AE: Exocuting SetScenc Tasks

R !:_mwung Pasnlhsaue T

%Lupnq.-ﬁzi';;:..xn N fo 1 .,:: u 9 URL hitp: AFdistfiles, gontoo.o
rrantly 1% runn

6060) 2
BANULILE - Cross ©3.28: 10 do foteh (pid 25050
RO RO RO S WO TR
& =i, 1D + (4 i ~rl do fetch
hative-3.7.3- 1 do configure - 678 {(pid 7427) o Fateh (ELIECiERg !

1 2.50.3-r0 do_configure - J08 {pid 30557)
-0 do_install - ng
il FGHAT)
Is {pid 27255

{pld 27632)
A0013

Ml’lﬁ:n:é-‘ ‘ié':lﬂd IIWIL
kot 1hE Cre oo smpile - {pia
o ungrack o D “

o _AYEFOOL - ':"ln{rl. 1] e

St ol i

Mormbal Ld/ Lepsdeployy inages/qosuxBt
pprdeploys IRbg0E Fosuxih/ . qesuloot .

Wy 0 S i

pploy/ inage s/ gosuxBE/ COre - 1RAQE: b
AlachD ¢ 1gBeA408 - i qosuxiE - 2017100

17104232225, roat T8 . axtd] i
I S8 TE - LmagH - mm-qn-u:m-zn‘l'mi_

S INFD - Acquiring lockfile 7 tmp e - Lap- LGCksS - Lock. . .

5 I"mru T e il pef . Ran rufgosa gen- Tapdeys o manaally croaté.
Irinru Hmtﬁ :_:uif::.‘hé:hga 6 - 1L Py e - has | pe 1 < Nk Lw—‘l-!‘l-fl."rﬂlw-lrlrﬁ‘-uﬂ.

oL 5 nelpar-Ratives 1. 0- rlfrecipe-sysroot- patlog
:_:‘::ﬂf:pl::‘;:n:;jw;ﬂ“cgrn R i T ﬁﬁg
-vga wesare -show.cursor -uib .ushdovwice tablat -dowlce L;
i Cpis pant b -gEriml mOnIVo -Rar =ﬂ16;:;;li.l;:'m1 I;mlq‘:’ﬁml d:‘\'
a Afoed e LaBcAABHE - ri - et - 20171 LBif -
;ﬂ::m+m¢':‘uﬂulh.m upll.m..-nqnnqlpu-_u apraf ile. tissrsl anveaalb.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.yoctoproject.org/docs/2.3.2/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

If you compare the top above screen with that in Episode 21, you can see that the new computer
is running the compilation multi-threaded (as opposed to only two running tasks/threads on the
old machine). That speeds things up tremendously. And the Yocto tutorial says that subsequent
builds past the first one are much faster, because the OpenEmbedded build system re-uses files

from previous builds as much as possible. Sweet!

Next time, I’ll do a Yocto build for the MinnowBoard Turbot, and install it. Those who follow
the MinnowBoard Chronicles know that I’ve tried this before and failed. But, with a faster

machine and a new Minnow, we’ll see!

And now, a word from our sponsor: my employer is kind enough to allow me to use my
weekends exploring technology and writing about my experiences. If you are enjoying this
series, and are also interested in learning more about this fascinating technology, please feel free

to register for one of our eBooks at ASSET’s eResources on Software Debug.

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments
105

http://blog.asset-intertech.com/test_data_out/2017/07/the-minnowboard-chronicles-episode-21-building-and-installing-linux-part-2.html
https://www.asset-intertech.com/eresources/software-debug

The MinnowBoard Chronicles

Episode 25: Yocto builds for the MinnowBoard and the Portwell Neptune
Alpha

October 16, 2017

In Episode 24, I finished off my new build machine, successfully did a QEMU image build on it,
and loaded an off-the-shelf Ubuntu image into my new MinnowBoard Turbot. This week, I
tackled a MinnowBoard Linux image build using Yocto, loaded it into my MinnowBoard, and
also set about doing a Yocto image build for the Portwell Neptune Alpha board. But I ran into

some problems.

At the end of Episode 24, I was floating on Cloud 9: my new PC did a Yocto image build for the
QEMU emulator screamingly fast: about fifty times faster than my old PC. So, I looked forward
to having a lot more fun exploring this technology, and faster too. On the other hand, another

way to look at this is, I could make 50X more mistakes in the same amount of time.

To put it to the test, I tackled a MinnowBoard Turbot Yocto image build, using the instructions

in the Yocto Project Quick Start Guide. Granted, these instructions are for the MinnowBoard

MAX, opposed to the MinnowBoard Turbot that I have, but I figured they were close enough
that it should just work. I fired up the bitbake core-image-base as per the instructions, and after

about 45 minutes, the build completed!

aslarsquignagddablan: =/poky/bulld

View Search Terminal Help

aitdebdan: ~/poky /builds baﬂmkn cerﬂ 1-unu= base

oSt distribu I.:|1| *doebian-9" g alidate I
Perience e 05 wled th o
@ recipos:]ﬂﬂ‘\ Il'-l'll'l'Ii l-l'll'-l'!l-l'l'lsl'l'll'.l'li.l'l'l.l'l'lﬂ'-l'#l-l'lul'lil'l'lll'I-l‘-l'll'-l'il'-l'i-l'll' '.' L
g of 857 .bb files complete (D cached, B5T parsed). 1328 targots. 56 skipped, O sasked,
Resolving any missing task queue denondnm:ms - A

Configuration: 1
RSTON =1.34.0"

SHB6 B4- Linux™

“universal”

“xB6 G4-poky-1inux"

'1n1v:r'l =COrgLT - G4~

IR RERAN
3ok

v
-E.

:nﬁ-l corai?"

=bsp = "pyro:717302c6Tbcbbeldlad98a5d762obSaBSd034523
ntel = "pyro:b3deabad faBlGAa2B57504 1 202bd 0 315840040~

alising tosks: 100% |SSRsasssasnaqssosanadsanaasnsansaanassassnss
Exocuting SotScene Tasks
ting RunQuous Tasks
Tasks Summary: Attespted 3899 tasks of which 1234 didn't need to be

ary: There was 1 WARNIHG mosiage shown.
dgnaddebian:~ poky/builds [

rerun and all succo

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://www.yoctoproject.org/docs/2.3.2/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

Needless to say, I was pretty excited at this point. If you’ve been following the MinnowBoard

Chronicles series, you’ll know that I’ve been working on this for quite some time. It was about

time I got a break!

Alas, after using the Linux “dd” command to create a bootable image on a USB stick, and

booting it in the MinnowBoard, I got the following messages up-front, after which the Minnow
just hung:

Update Driver: .01 <tigrandajuezian.Bsnct.

lwmh‘ﬂ
33017981 Bires Josded, credie

Jogying started
3?11313)rtcmmw setting systen clock to 2016-01-28 00:00:23 UIC ¢
3@)“‘&1@ list:
3.7269121 Mo soundoards Pound .

3.817351) ush 1-2: high-speed USB device vunber 3 Jod
3.849806] clocksource: Sujtched to clocksowrce tsc kool

desices/pc10000 00,0000 100 14 Oushl i-2-1-2 . 11-2. 1:1.0/0009:0460:C31C 0001w gt
¢ Jwput: USH HID ul. 10 Keyboard [Logitech USB ush-0000:00: 14 .0-2. 1}
ces./pc 100000000 14. OV A2/ DI L1 1 L0005:046D :CIC mm-uh.-is
CI1C 0002 : fwput: USB HID vil.10 Device [logitech USB Xeyboard] om ush-0000:00:14.0-Z. Lrivputl
0: nm—m Gemner-ic l.lllﬂ 1.0a FQ: O ANSI: 2
muﬁ:hd. scsi mulc g0 type
Jou-spesd USB device -nhm- 5 using xhci_hod
[HA! 3891200 Elz-m Jogical Blocks: (1.99 GB/1.86 GiB)
[sda] Urite Protect is off

[=sda] Urite cache: disabled, read cache: emabled, doesn't support IFO or FUA
[sda] Attached SCI]1 rerouable disk

tech USE-FS/Z Optical Mouse as sdevices/pci0000 :00-0000:00: 11 . 0usbl 1-2-1-2 .271-2 .2 : 1.040003 :0456D :000K. mﬂ'l/l—tﬁ
4.937700]1 hid-geveric 0003 :046D:C00E.0008: jwput: USB HID ul.10 Mouse [Logitech USB-PS/Z Optical Monse] om ush-0000:00:14.0-2 2/ fwpu

U
t
s
LS
1]
L
L
L
4
[
[
[
L
L
r
L
L
L
[
L
S
[
8
L
C
i
;
[

After trying it several times with different USB sticks, I kept getting the same installation failure.

So, I decided to take a rest, and do something else for a while.

At the office, our engineering group is doing some development for our ScanWorks Embedded

Diagnostics embedded JTAG product on a board we procured from Portwell. This Portwell
board, part of the Neptune Alpha OpenBMC Development Kit, has an ASPEED AST2500 BMC

that we have ported our embedded Intel x86 hardware-assisted debugging agent onto. Our

engineers are kind enough to allow me to tinker with it after-hours. But, first, I wanted to use

Yocto myself to build an image for this board.

Instructions on how to work with OpenBMC are on the Facebook OpenBMC GitHub. The

directions are fairly straightforward, and fairly similar to building an image for the

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments
107

http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
http://blog.asset-intertech.com/test_data_out/2017/01/sourcepoint-debugging-the-minnowboard-turbot.html
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/products/embedded-diagnostics
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php
http://portwell.com/solutions/pdf/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.pdf
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview
https://github.com/facebook/openbmc

The MinnowBoard Chronicles

MinnowBoard. I’'m pretty sure that the Neptune Alpha platform is meta-fbtp in the meta-
openbmc/meta-facebook directory. So I fired up bitbake again:

alansguigna@debian:~/poky/build$ bitbake fbtp-image

NOTE: Your conf/bblayers.conf has been automatically updated.

WARNING: Host distribution "Debian-9.1" has not been validated with this version of
the build system; you may possibly experience unexpected failures. It is recommended
that you use a tested distribution.

Parsing recipes: 100% |#######44H4444444444H44F4H4HFHF4H #4444 Time: 00:00:15
Parsing of 1912 .bb files complete (0 cached, 1912 parsed). 2460 targets, 379 skipped,
0 masked, 0 errors.

NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB _VERSION = "1.30.0"

BUILD SYS = "x86 64-linux"

NATIVELSBSTRING = "Debian-9.1"

TARGET SYS = "arm-fb-linux-gnueabi"

MACHINE = "fbtp"

DISTRO = "poky"

DISTRO_VERSION = "0.4"

TUNE FEATURES = "arm armvo"

TARGET FPU = "soft"

meta

meta-yocto

meta-yocto-bsp = "krogoth:426bc4c3575a85391a60328edblf7c6abbdb95fd"
meta-oe

meta-networking

meta-python = "krogoth:55c8a76da5dc099a7bc3838495¢c672140cedb78e"

meta-openbmc

meta-aspeed

meta-facebook

meta-fbtp = "helium:900b1flel0b3d4a3b7ce9b8db01182£79£f0831lea"

NOTE: Fetching uninative binary shim from
http://downloads.yoctoproject.org/releases/uninative/1.0.1/x86 64-nativesdk-
libc.tar.bz2;sha256sum=acfled44alac2e855e81da6426197d36358bf7b4e88e552e£933128498¢8910fF
8

NOTE: Preparing RunQueue

NOTE: Checking sstate mirror object availability (for 1101 objects)

NOTE: Executing SetScene Tasks

NOTE: Executing RunQueue Tasks

WARNING: byacc-native-20150711-r0 do_ fetch: Failed to fetch URL ftp://invisible-
island.net/byacc/byacc-20150711.tgz, attempting MIRRORS if available

WARNING: logrotate-3.9.1-r0 do fetch: Checksum mismatch for local file
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz

Cleaning and trying again.

WARNING: logrotate-3.9.1-r0 do fetch: Renaming
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz to
/home/alansguigna/poky/build/downloads/logrotate-3.9.1.tar.gz_bad-

checksum e475e2e83d8c63dc7/efe648cc50aabfo

WARNING: logrotate-3.9.1-r0 do fetch: Checksum failure encountered with download of
https://fedorahosted.org/releases/1/o/logrotate/logrotate-3.9.1.tar.gz - will attempt
other sources if available

WARNING: lmsensors-3.4.0-r0 do_ fetch: Failed to fetch URL http://dl.lm-sensors.org/lm-
sensors/releases/lm _sensors-3.4.0.tar.bz2, attempting MIRRORS if available

WARNING: bios-util-0.2-rl do package ga: QA Issue: /usr/bin/bios-util contained in
package bios-util requires /usr/bin/python, but no providers found in RDEPENDS bios-
util? [file-rdeps]

SourcePoint Y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

WARNING: mTerm-0.1-rl do package ga: QA Issue:
/usr/local/fbpackages/mTerm/mTerm server contained in package mTerm requires
libc.so0.6(GLIBC 2.4), but no providers found in RDEPENDS mTerm? [file-rdeps]

ERROR: 1z0-2.09-r0 do configure: autoreconf execution failed.

ERROR: 1z0-2.09-r0 do configure: Function failed: do configure (log file is located at
/home/alansguigna/poky/build/tmp/work/armve-fb-linux-gnueabi/1lzo/2.09-
r0/temp/log.do_configure.30301)

ERROR: Logfile of failure stored in: /home/alansguigna/poky/build/tmp/work/armve-fb-
linux-gnueabi/1z0/2.09-r0/temp/log.do_configure.30301

Log data follows:

| DEBUG: Executing python function sysroot cleansstate

| DEBUG: Python function sysroot cleansstate finished

| DEBUG: SITE files ['endian-little', 'bit-32', 'arm-common', 'arm-32', 'common-
linux', 'common-glibc', 'arm-linux', 'arm-linux-gnueabi', 'common']

| DEBUG: Executing shell function autotools preconfigure

| DEBUG: Shell function autotools preconfigure finished

| DEBUG: Executing python function autotools copy aclocals

| DEBUG: SITE files ['endian-little', 'bit-32', 'arm-common', 'arm-32', 'common-
linux', 'common-glibc', 'arm-linux', 'arm-linux-gnueabi', 'common']

| DEBUG: Python function autotools copy aclocals finished

| DEBUG: Executing shell function do configure

| Unescaped left brace in regex is deprecated, passed through in regex; marked by <--
HERE in m/\${ <-- HERE ([~ \t=:+{}]+)}/ at
/home/alansguigna/poky/build/tmp/sysroots/x86 64-linux/usr/bin/automake line 3939.

| Unescaped left brace in regex is deprecated, passed through in regex; marked by <--
HERE in m/\${ <-- HERE ([~ \t=:+{}]+)}/ at
/home/alansguigna/poky/build/tmp/sysroots/x86 64-linux/usr/bin/automake line 3939.

| automake (GNU automake) 1.15

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv2+: GNU GPL version 2 or later <http://gnu.org/licenses/gpl-2.0.html>
This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by Tom Tromey <tromey@redhat.com>

and Alexandre Duret-Lutz <adl@gnu.org>.
AUTOV is 1
NOTE: Executing ACLOCAL="aclocal --system-
acdir=/home/alansguigna/poky/build/tmp/work/armv6-£fb-linux-gnueabi/1zo0/2.09-
rO0/build/aclocal-copy/" autoreconf --verbose --install --force --exclude=autopoint -I
/home/alansguigna/poky/build/tmp/work/armve-fb-linux-gnueabi/1zo0/2.09-r0/1zo-
2.09/autoconf/
| autoreconf: Entering directory °~.'
| autoreconf: configure.ac: not using Gettext
| autoreconf: running: aclocal --system-
acdir=/home/alansguigna/poky/build/tmp/work/armvé-£fb-linux-gnueabi/1lzo/2.09-
r0/build/aclocal-copy/ -I /home/alansguigna/poky/build/tmp/work/armvé-fb-linux-
gnueabi/1zo0/2.09-r0/1z0-2.09/autoconf/ -I /home/alansguigna/poky/build/tmp/work/armve6-
fb-linux-gnueabi/1z0/2.09-r0/1z0-2.09/autoconf/ --force
| acinclude.m4:162: warning: the serial number must appear before any macro definition
acinclude.m4:206: warning: the serial number must appear before any macro definition
Segmentation fault
aclocal: error: echo failed with exit status: 139
autoreconf: aclocal failed with exit status: 139
WARNING: exit code 1 from a shell command.
ERROR: autoreconf execution failed.
| ERROR: Function failed: do_configure (log file is located at
/home/alansguigna/poky/build/tmp/work/armv6-fb-linux-gnueabi/lzo/2.09-
r0/temp/log.do_configure.30301)
ERROR: Task 2622 (/home/alansguigna/poky/meta/recipes-support/lzo/lzo 2.09.bb,
do _configure) failed with exit code '1'
NOTE: Tasks Summary: Attempted 1906 tasks of which 15 didn't need to be rerun and 1
failed.
Waiting for 0 running tasks to finish:

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

Summary: 1 task failed:
/home/alansguigna/poky/meta/recipes-support/lzo/lzo 2.09.bb, do configure

Summary: There were 8 WARNING messages shown.

Summary: There were 2 ERROR messages shown, returning a non-zero exit code.

Okay, something basic is going wrong. I have to figure it out. I’ve googled some of this, without
any success yet. One tip might be that I’'m building on Debian 9 on my new machine, and I got

the same warning from both the MinnowBoard Turbot and the Neptune Alpha builds:

WARNING: Host distribution "Debian-9.1" has not been validated with this version of
the build system; you may possibly experience unexpected failures. It is recommended
that you use a tested distribution.

Stay tuned!

Just as an aside, I’'m keenly interested in the Neptune Alpha board, because it bills itself as the
platform for OpenBMC development. OpenBMC is, of course, the toolchain for system
management for most if not all hyperscale cloud computing environments. Embedded JTAG

control, or ScanWorks Embedded Diagnostics, adds tremendous value to system management

for said environments. I’1l write more on this topic later.

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

110

https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

Episode 26: Linux image build segmentation faults on AMD?

October 22, 2017

It has been quite an adventure over the last week. I’'m getting intermittent segmentation faults
during my Yocto Linux image builds. Could it be a problem with my new AMD Ryzen 7 1700X
CPU?

In Episode 24, having built my new screamingly-fast AMD Ryzen 7 1700X based machine, I
used Yocto to successfully build a new QEMU image in record time. But in last week’s Episode
25, I had a mixed bag of results. I did successfully build a Yocto image for my MinnowBoard,
but unfortunately it failed to boot on my hardware. And when I tried to build a Yocto image for

the Portwell Neptune Alpha, it failed.

Last week, I presumed that the source of the problems was that I was building the images using

Debian 9.1. I would always get the following message right after the bitbake started:

WARNING: Host distribution "Debian-9.1" has not been validated with this version of the
build system; you may possibly experience unexpected failures. It is recommended that you

use a tested distribution.

So, I proceeded to somewhat haphazardly try to troubleshoot this, by first trying to re-install an
earlier version of Debian on my build machine. I rationalized this by remembering that when I
was doing builds under Virtualbox on my old PC, I was running off of Debian 8.2, and those

worked. So, I tried that first.

Alas, Debian 8.2 refused to install on my new machine. I tried the same thing with the most
current “obsolete stable” release of Debian 8 (“jessie”), 8.9. I got the same error message at the

beginning of each install, and it just hangs:
core perfctr but no constraints; unknown hardware!

-364837] core perfctr but no constraimts;: unknown hardwares!
Lumllnu please wait.

~dewszdbZ: clean, 151‘5‘??/12192911& files, 8598897-404069888 blocks

i 7.5078531 kum: dizabled by bioz

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles
I’m guessing here that these older version of Debian won’t work with the Ryzen 7 chip; the last
release of jessie was dated July 22, 2017.

So, it’s back to Debian 9.1. At least I know that I can successfully install that version on my PC.

Eventually, the Yocto project will do some testing on this release, and do some updates.

But, this time, when I tried to do the QEMU image build, it crashed!

This time (and thanks to my colleague, Adam Ley, for reminding me), [went into the log file at:
~/poky/build/tmp/work/x86 64-linux/qemu-native/2.8.0-r0/temp/log.do_compile.23003

and saw this error message:

/home/alan/poky/build/tmp/work/x86 64-linux/qemu-native/2.8.0-r0/qemu-
2.8.0/tcg/tcg.c:2800:12: internal compiler error: Segmentation fault

The “Segmentation fault” error got my attention. What’s that all about? I happened to google this

topic, and saw the article at New Ryzen Is Running Solid Under Linux, No Compiler

Segmentation Fault Issue. These segmentation fault issues seemed to happen on earlier Ryzen

chips, under heavy loads such as Linux compiles.

Could I have possibly received an older part (manufactured prior to Week 25) that exhibits this
fault under very special conditions? I’'m going to do some more testing and see if this was a
coincidence or happens repeatedly. I’ve read that there’s a “Kill Ryzen™ script that can manifest
the issue. If this is my situation, it’s reassuring to know that AMD has an RMA process for this

1SSue.

My end goal, of course, is to have my build platform rock-solid, so I can build images for the
Portwell Neptune Alpha board. This target is a development vehicle for OpenBMC, and supports
the ASPEED AST2500 BMC, the most common service processor on cloud computing servers.

Our ScanWorks Embedded Diagnostics team is using this board for its in-house development.

The MinnowBoard Chronicles Episode 27: Segfault on my AMD Ryzen 7 1700X

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

112

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh
http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics

The MinnowBoard Chronicles

Last week, I suspected that I might be seeing segmentation fault failures on my new AMD Ryzen

7 1700X computer. I dug into this some more this week and learned a lot!

I’m pretty conservative when it comes to calling suppliers with problems regarding my
electronics at home. I tend to want to dig into the issue and try to figure it out myself, often
spending hours in the process. Some might call this a waste of time, but I often learn a lot in the
process. And as an outcome, I really know what I’m talking about, when it comes time to call
Tech Support. My wife thinks that this inclination is related to my refusal to ask for directions
when I’m driving. Fortunately, in this era of Google Maps and built-in navigation systems, the

latter is no longer an issue.

So, when my new AMD-based PC started throwing segmentation faults during my Yocto Linux

builds (see Episode 26), I figured I should dig into it a little bit first. As I was tinkering around, I

got a notification on my Debian 9.1 home page that a new release was available. I clicked on the

“Updates” button, and soon enough, I now had Debian 9.2 on-board.

Also interestingly, about mid-week last week, I noticed that documentation for Yocto has been

updated for Yocto: http://www.yoctoproject.org/docs/2.4/yocto-project-gs/yocto-project-gs.html

has been updated to version 2.4 (“Rocko”), while before I was using version 2.3 (“Pyro”). So, I

had to do a little work to get onto the new update.

I then jumped in with both feet, and did a build for the Portwell Neptune Alpha, and it

succeeded! And I no longer got the warnings about Debian incompatibility, so between the jump

to Rocko and the update to Debian 9.2, that somehow resolved itself. Very encouraging!

Emboldened, I backed up and then did a build for QEMU (Quick Emulator). But, it crashed with

a segmentation fault!

Finished binary package job, result 0, filename /home/alan/poky/build/tmp/work/i586-poky-linux/gcc-
runtime/7.2.0-r0/deploy-rpms/i586/libssp-dev-6.2.0-r0.i586.rpm

Segmentation fault
WARNING: exit code 139 from a shell command

DEBUG: Python function do_package_rpm finished

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

113

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-26-linux-image-build-segmentation-faults-on-amd.html
http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

DEBUG: Python function do_package_write_rpm finished

: Function failed: BUILDSPEC (log file is located at /home/ala/poky/build/tmp/work/i586-poky-linux/gcc-
runtime/7.2.0-r0/temp/log.do_package write_rpm.30372

I then ran several different builds, for QEMU, the MinnowBoard, and the Neptune Alpha; and
sometimes it would fail, and sometimes succeed. But mostly it would fail. So, it was time to get

more rigorous on this. Having read the articles at Ryzen Is Running Solid Under Linux, No

Compiler Segmentation Fault Issue and about the Kill Ryzen script, I began to suspect that

maybe there was something wrong with my CPU, and it was an older model. So I used Git to

download the Kill Ryzen script, and ran it:

kill-ryzen.sh

= Dicramnboadartil- Ry zenfogen -«

alani@debian: =fDownloads/Kill-Ryzen/ryzen-test-master

ng 16 parallel processes :
: You are currently not seeing messages from other usars and tha
Users in the "systemd-journal’ group can sé¢ all messages. Pas
turn of f this notice.
| journal files were opencd due to insufficient permissions.
[lLoop-8] Sun Oct 29 14:45:30 20817 start
Sun Oct 145: 2817 start
Sun Oct 145: 2817 start
Sun Oct HELH 2817 start
Sun Oct X X 2017 start
Sun 0ct 145 2017 start
Sun Oct 1S5 2017 start
Sun Oct L H 2017 start
Sun Oct 45 2017 start
= 2017 start
& L stan g
-11] Sun Oct 29 14:45:41 CDT 20 star
L1oop-12) Sun Oct 29 14:45:42 CDT 2017 start @
op-13] Sun Oct 20 14:45:43 CDT 2017 start @
op-141 Sun Oct 20 14:45:44 COT 2017 start O
op-15] Sun Oct 29 14:45:45 CDT 2017 start ©
.6] Sun Oct 20 14:50:41 COT 2017 build failed
6] TIME TO FAIL: 311 s

COCCCODDDD

Yes, it crashed after five minutes. And this happened repeatedly.

But the screen shot didn’t say why it crashed. I found from the Kill-Ryzen script README.md
that [had to go into the /mnt/ramdisk/workdir/buildloop.d/loop-6/build.log to see the details
behind the failure (note that the “6” comes from the signified “loop-6” failure in the screenshot

above).

And the failure logged was, indeed, a segmentation fault, as can be seen from the fifth line below

of the last lines in the log:

checking for suffix of executables...

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh

The MinnowBoard Chronicles

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... /bin/bash: line 22: 2529 Segmentation
fault /bin/bash $s/$module srcdir/configure --
srcdir=${topdir}/$module srcdir --cache-file=./config.cache '--disable-
multilib' '--enable-languages=c,c++, fortran,lto,objc' --program-transform-
name='s,y,y,' --disable-option-checking --build=x86 64-pc-linux-gnu --
host=x86_ 64-pc-linux-gnu --target=x86 64-pc-linux-gnu --disable-intermodule -
-enable-checking=yes, types --disable-coverage --enable-languages="c,c++,1to"

--disable-build-format-warnings

Makefile:12563: recipe for target 'configure-stagel-libdecnumber' failed
make[2]: *** [configure-stagel-libdecnumber] Error 139

make[2]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6"
Makefile:27079: recipe for target 'stagel-bubble' failed

make[l]: *** [stagel-bubble] Error 2

make[1l]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6"
Makefile:941: recipe for target 'all' failed

make: *** [all] Error 2

So, it is time to contact AMD. I placed a ticket in their online support system. Let’s keep our

fingers crossed!

Why am I doing all this? Well, partly it’s a public service, as I’'m doing a lot of Linux builds as I
explore OpenBMC for the ASPEED AST2500 for our ScanWorks for Embedded Diagnostics

product line. In particular, ’'m interested in applying boundary-scan test technology on Intel-
based servers using the ASPEED BMC. You can read more about the power of in-situ JTAG-

based boundary-scan test in our eBook, Embedded JTAG for Boundary-Scan Test (note: requires

registration).

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/eresources/embedded-jtag-boundary-scan-test

The MinnowBoard Chronicles

Episode 27: Segfault on my AMD Ryzen 7 1700X

October 29, 2017

Last week, I suspected that I might be seeing segmentation fault failures on my new AMD Ryzen

7 1700X computer. I dug into this some more this week and learned a lot!

I’m pretty conservative when it comes to calling suppliers with problems regarding my
electronics at home. I tend to want to dig into the issue and try to figure it out myself, often
spending hours in the process. Some might call this a waste of time, but I often learn a lot in the
process. And as an outcome, I really know what I’m talking about, when it comes time to call
Tech Support. My wife thinks that this inclination is related to my refusal to ask for directions
when I’m driving. Fortunately, in this era of Google Maps and built-in navigation systems, the

latter is no longer an issue.

So, when my new AMD-based PC started throwing segmentation faults during my Yocto Linux
builds (see Episode 26), I figured I should dig into it a little bit first. As I was tinkering around, I
got a notification on my Debian 9.1 home page that a new release was available. I clicked on the

“Updates” button, and soon enough, I now had Debian 9.2 on-board.

Also interestingly, about mid-week last week, I noticed that documentation for Yocto has been

updated for Yocto: http://www.yoctoproject.org/docs/2.4/yocto-project-gs/yocto-project-gs.html
has been updated to version 2.4 (“Rocko”), while before I was using version 2.3 (“Pyro™). So, I

had to do a little work to get onto the new update.

I then jumped in with both feet, and did a build for the Portwell Neptune Alpha, and it

succeeded! And I no longer got the warnings about Debian incompatibility, so between the jump

to Rocko and the update to Debian 9.2, that somehow resolved itself. Very encouraging!

Emboldened, I backed up and then did a build for QEMU (Quick Emulator). But, it crashed with

a segmentation fault!

Finished binary package job, result 0, filename /home/alan/poky/build/tmp/work/i586-poky-linux/gcc-
runtime/7.2.0-r0/deploy-rpms/i586/libssp-dev-6.2.0-r0.i586.rpm

Segmentation fault

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

116

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-26-linux-image-build-segmentation-faults-on-amd.html
http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://www.portwell.com/productnews/Portwell-Neptune-Alpha-OpenBMC-Development-Kit.php

The MinnowBoard Chronicles

WARNING: exit code 139 from a shell command
DEBUG: Python function do_package_rpm finished
DEBUG: Python function do_package_write_rpm finished

: Function failed: BUILDSPEC (log file is located at /home/ala/poky/build/tmp/work/i586-poky-linux/gcc-
runtime/7.2.0-r0/temp/log.do_package _write_rpm.30372

I then ran several different builds, for QEMU, the MinnowBoard, and the Neptune Alpha; and
sometimes it would fail, and sometimes succeed. But mostly it would fail. So, it was time to get

more rigorous on this. Having read the articles at Ryzen Is Running Solid Under Linux, No

Compiler Segmentation Fault Issue and about the Kill Ryzen script, I began to suspect that

maybe there was something wrong with my CPU, and it was an older model. So I used Git to

download the Kill Ryzen script, and ran it:

Kill-ryzen.sh
s Chorarnbosd L AGI1- m,.mu.r:-,..-m 1

.ﬂm@uehlu\: nmmm:mu-mwryun-tut -master

Edit View Search Terminal Help

ing 16 parallel processes
: You are currently not seeing messages Trom other users and t
Users in the 'systemd-journal’' group can see all messages. Pa
turn of f this notice.
Ho journal files were opened due to insufficient permissions.
{ Sun Oct 29 14:45:30 CDT 2017 start
Oct 29 14:45:31 CDT 2017 start
Oct 20 14:45:32 CDT 2017 start
Oct 29 14:45:33 CDT 2017 start
Oct 29 14:45:34 CDT 2017 start
Oct 29 14:45:35 CDT 2017 start
Oct 20 14:45:36 CDT 2017 start
Oct 29 14:45:37 CDT 2017 start
Sun Oct 29 14:45:38 CDT 2017 start
oop-9] Sun Oct 29 14:45:39 CDT 2017 start
[loop-10] Sun Oct 29 14:45:40 CDT 2617 start
. -11] Sun Oct 29 14:45:41 CDOT 2017 start
12] Sun Oct 29 14:45:42 COT 2017 start
-13] Sun Oct 29 14:45:43 COT 2017 start
-14] Sun Oct 29 14:45:44 CoT 2017 sturt
-15] Sum Oct 29 14:45: ;45 COT 2017 s
%‘% Sun Dct 29 14:50:41 CDT 2017 nu.ud failed

CoooOoCoOoTOD

CODITOD

TIME TO FAIL: 311 s

Yes, it crashed after five minutes. And this happened repeatedly.

But the screen shot didn’t say why it crashed. I found from the Kill-Ryzen script README.md
that I had to go into the /mnt/ramdisk/workdir/buildloop.d/loop-6/build.log to see the details

behind the failure (note that the “6” comes from the signified “loop-6 failure in the screenshot

above).

SourcePoint”) ScanWorks’

Platform for Embedded Instruments

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://github.com/suaefar/ryzen-test/blob/master/kill-ryzen.sh

The MinnowBoard Chronicles

And the failure logged was, indeed, a segmentation fault, as can be seen from the fifth line below

of the last lines in the log:

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... /bin/bash: line 22: 2529 Segmentation
fault /bin/bash $s/$module srcdir/configure --
srcdir=${topdir}/$module srcdir --cache-file=./config.cache '--disable-
multilib' '--enable-languages=c,c++,fortran,lto,objc' --program-transform-
name='s,y,y,' —--disable-option-checking --build=x86 64-pc-linux-gnu --
host=x86_ 64-pc-linux-gnu --target=x86 64-pc-linux-gnu --disable-intermodule -
-enable-checking=yes, types --disable-coverage --enable-languages="c,c++,1lto"

--disable-build-format-warnings

Makefile:12563: recipe for target 'configure-stagel-libdecnumber' failed
make[2]: *** [configure-stagel-libdecnumber] Error 139

make[2]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6"
Makefile:27079: recipe for target 'stagel-bubble' failed

make[l]: *** [stagel-bubble] Error 2

make[l]: Leaving directory '/mnt/ramdisk/workdir/buildloop.d/loop-6"
Makefile:941: recipe for target 'all' failed

make: *** [all] Error 2

So, it is time to contact AMD. I placed a ticket in their online support system. Let’s keep our

fingers crossed!

Why am I doing all this? Well, partly it’s a public service, as I’'m doing a lot of Linux builds as I
explore OpenBMC for the ASPEED AST2500 for our ScanWorks for Embedded Diagnostics

product line. In particular, I’'m interested in applying boundary-scan test technology on Intel-
based servers using the ASPEED BMC. You can read more about the power of in-situ JTAG-

based boundary-scan test in our eBook, Embedded JTAG for Boundary-Scan Test (note: requires

registration).

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://support.amd.com/en-us/contact/email-form
https://www.asset-intertech.com/products/embedded-diagnostics
https://www.asset-intertech.com/eresources/embedded-jtag-boundary-scan-test

The MinnowBoard Chronicles

Episode 28: Returning my AMD Ryzen 7 1700X CPU

November 29, 2017
Yes, I received an older AMD Ryzen 7 1700X CPU from Amazon. It’s RMA time!

In Episode 27, I wrote about intermittently getting segmentation faults on my new AMD-based
PC whenever I did Yocto Linux builds. I found some information online in New Ryzen Is
Running Solid Under Linux, No Compiler Segmentation Fault Issue and AMD Replaces Ryzen
CPUs for Users Affected By Rare Linux Bug.

It seems that earlier production runs of the chip had a problem with cache coherency. So, after I
returned from my vacation, I put in for an RMA number from AMD, and proceeded to remove
and box up the faulty CPU. Whenever I’ve done PC builds, installing the CPU and heatsink are
always the most hair-raising part, and taking this apart was a little nerve-wracking. Nonetheless,

after CPU was removed and the thermal paste wiped off, the markings did in fact tell the tale:

The “UA 1709PGT” on the second line designated that this was a work week 09 production run,
and all CPUs prior to WW25 are expected to have the segfault issue.

So, it’s back to AMD for the bad CPU. So far, their RMA process has been pretty responsive. I
expect the new CPU back next week and will keep you posted.

Once I get my machine back together again, I’ll resume my efforts on the MinnowBoard Turbot,
to install a working implementation of Linux. I expect to do some basic source-level Linux
kernel debug using SourcePoint. Also, I’'m planning on further investigations into the Portwell
Neptune Alpha board, which supports the ASPEED AST2500 BMC, our development platform
for the ScanWorks Embedded Diagnostics JTAG-based run-control debug product.

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-27-segfault-on-my-amd-ryzen-7-1700x.html
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.extremetech.com/computing/254750-amd-replaces-ryzen-cpus-users-affected-rare-linux-bug
https://www.extremetech.com/computing/254750-amd-replaces-ryzen-cpus-users-affected-rare-linux-bug
https://www.asset-intertech.com/products/sourcepoint-intel
https://www.asset-intertech.com/registration/scanworks-embedded-diagnostics-technical-overview

The MinnowBoard Chronicles

Episode 29: My new AMD Ryzen 7 CPU works, kind of

December 25, 2017

Out of the frying pan, and into the fire: I beat the #&@! out of my new CPU from AMD, and the

segmentation faults have gone away. But, now the new system is crashing!

In the MinnowBoard Chronicles Episodes 27 and 28, I wrote about my discovery that I had
acquired an older AMD Ryzen 7 1700X CPU from Amazon. The older production runs of these
chips exhibited problems with cache coherency, that only manifest themselves rarely when
you’re cranking all 16 threads simultaneously. And that was just what I was doing with my
Yocto Linux builds for the MinnowBoard Turbot and Portwell Neptune Alpha boards: the
compilation process maxes out CPU utilization. This past month, | RMA’ed my older CPU (that
had a datestamp of work week 09) to AMD, and very promptly got a replacement in the mail (a
nod to AMD for responding so quickly and efficiently). When I unwrapped it, I was delighted to
see that it was a much more current production run:

--;\r;——n

Faulty CPU was Work Week 09!

SourcePoint | ©) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-27-segfault-on-my-amd-ryzen-7-1700x.html
http://blog.asset-intertech.com/test_data_out/2017/11/the-minnowboard-chronicles-episode-28-returning-my-amd-ryzen-7-1700x-cpu.html

The MinnowBoard Chronicles

If you look carefully, you’ll see that the datestamp is “1737”, versus the “1709” from my

previous device. From my researches on the web, via for example New Ryzen [s Running Solid

Under Linux, No Compiler Segmentation Fault Issue, we know that any CPU with a datestamp

after work week 25 should be good. So, I carefully re-installed the new CPU into my home-built
PC (which is always a nerve-wracking process, by the way, since this is my money and [don’t

want to mess anything up), and put it to the test by running the Kill Ryzen script again:

s

It ran for several hours, and it was getting late, so, I let it run overnight. When I got up in the

morning, this is what I saw:

>ourcePoint) ScanWorks'

Platform for Embedded Instruments

https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1
https://www.phoronix.com/scan.php?page=article&item=new-ryzen-fixed&num=1

The MinnowBoard Chronicles

In the middle of the night, it crashed the system, with a kernel dump! This bears further
investigation. Is it some new flaw in the new chip? Some incompatibility with Ubuntu? Did I re-
install the new CPU correctly, with the right amount of thermal paste? Or maybe a bug in the

Kill Ryzen script? So many interesting avenues to explore, so little time...

| |EkeRn] Dec

e, x:

8633: 0x7ed4bsé:

002b: uur"nnrusl EFLAGS: 80010202
: oooecoeee!

34c9¢10 RO9: 0000000000000000
0000000001401840 R12: uuvrfnnfusn
0080771712790 R15: 00000000012C

t‘“ ﬂ\l 29252k8 Lnactive_file:27192ks unevictable: 48k isol: M(._I) 290ks isolated(file):1.
teback tre: i0ks poges_scanned:13 ol unreclatmable
¥ encnioRs e M"‘h o ve mc nn u-mcmn oks writepend
ks poyeTables 0K bouncerBkd Tree_pcpioks Local_pcpioks “rea.cn10k8

-Nane. Mode :21706kB active_snon:11832kB inactive_anon:13160k active file:6188kB Lnactive_file:s520k8 ul
Mctabiero "..m-.enm:".’;lﬁ“‘.:'.ﬁ'é 213601416k8 ace slab. reclatnable: 1436kD v unreclainable:48256k8 kernel_stack:308k8 pagetables:1224kB bounce:okB free_pcpioks Local_pcp)

15092K0
a e Dec 82 % atan-Systen-Product- Nane

140106 alan-Systen-Product-Nane kernel: Lownen 2508 12508 12508 T o i taszi o0k
Nane 53844k8 Low:66304kB high: 79568kB active_anon:55272kB iactive_anon:S4192ks active 3060kB Lnac
ioie | me::m-lm M:u:d'bl:.‘ . ks 3146, reciainables s o lab_unreclatnable:197736k8 Eernel Stacki 13668k8 pegetables:40s20kd bounce:Okb free_pcpi1

: ONA: 12218 (1) 3eoakn () o=s2kn 1-2seke (1) @rsiaks deteteks (1) 1eaodsks (1) Seeseks (1) o
3 ﬁ: o nuS; ;1;:] :u':) e) ik Cime) ssaats (One) Tressss (o) sevizeks (s s oy o Laaas <R S5 1azeks Cne) ov2

+ Node © Normal: G748%4kB (UME) 312748k (UNE) 7+16kB (NE) 2032k8 (W) 1%64kB (W) 0%120kB 1°256kB (W) 1*512KB (W) 1°1024kB () 0°2048k3 0°4096ks = 540

otal=o hugepages_free=s hugepages_surp=d hugepages_size-1048576kB
”“‘.:-’r;'i..ii ane :2’ e 8 hugeps T8 hagcpages reecs bupepeges_surpes hugepapes_size-20utks

pages.
p cache
dd 10609586, delete 18593375, find 64S8678/10834895

= 13949888kB.
Swop - 16711676k

7955 ges

pages Highten/Hovabledaly

521 p-m resel

Rplus: poge allocation stalls for 10936ms 10, ode:0X14200ca(GFP_HIGHUSER_MOVABLE)
2u; 10 PI0I 13618 Com < 1plus Mot talnte 6-38-genertc $42-16.04-1-Ubuntu -
Jeten manufacturer Systen Mane/ROG STRIX BISO-F GANING, BIOS 6962 65/08/:

ox200
on Statls for 10908ns, Order:0, node:0x1420048(GFP_NOFS|__GFP_NOFAIL|__GFP_WARDNALL|_GFP_ROVABLE)
— |(xern) Dec 02 02:

It’s easy to get distracted while on a mission, but I decided to put this issue in the parking lot for
now and focus on the main goal: doing a Linux build for the MinnowBoard Turbot. Apparently,
something is still suspect with my system, but at least it appears that it can run for several hours
without the segmentation faults manifesting; which would lead me to believe that I can probably

consistently do a Yocto build without any failures. It was time to put that to the test.

Since it’s been a while since I did a Yocto build, I decided to do a QEMU emulator run from a

fresh environment, following the directions in the Yocto Project Quick Start Guide. QEMU

images were easier to build, I found, with less chance of user error on my part. I used the same

approach as documented in The MinnowBoard Chronicles Episode 22: Project Yocto success!,

and it fired up right away and started running. Normally, it takes about 45 minutes (on my new
PC, using all 16 threads, assuming it didn’t crash due to an AMD segmentation fault on the old
CPU) to build a QEMU image, so I stepped away for a coffee, and let it run:

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.yoctoproject.org/docs/2.4/yocto-project-qs/yocto-project-qs.html
http://blog.asset-intertech.com/test_data_out/2017/08/the-minnowboard-chronicles-episode-22-project-yocto-success.html

The MinnowBoard Chronicles

screenshot ty B o ssem B

L e T L L L e AEREH BB BB |

| BHHE SRR SRR ERRR SR HAD O RAC IR ORNEEAN AN MDA

@
=
3
B
B
”
éh .
5]
=
-
!!

poky

Examples

Alas, when I returned, the system was sitting in the Ubuntu login screen! Somehow, something
bad was happening during the build, and it would never complete, but rather would reboot and
put me into the login screen. I tried this numerous times, and always got the same result. I looked
into the logs in ~poky/build/tmp/log/cooker/qgemux86, and saw that it got to task 4283 of 6148,

but then the log ended, with no failure information. The last lines looked like:

NOTE: Running task 4281 of 6148 (/home/alan/poky/meta/recipes-core/dbus/dbus-
glib 0.108.bb:do_package)

NOTE: recipe libxt-1 1.1.5-r0: task do package: Started

NOTE: recipe dbus-glib-0.108-r0: task do package: Started
NOTE: recipe eudev-3.2.2-r0: task do compile: Succeeded

NOTE: Running task 4282 of 6148 (/home/alan/poky/meta/recipes-
core/udev/eudev_3.2.2.bb:do_install)

NOTE: recipe eudev-3.2.2-r0: task do _install: Started

NOTE: recipe libtirpc-1.0.2-r0: task do package: Started

NOTE: recipe cairo-1.14.10-r0: task do configure: Succeeded
NOTE: Running task 4283 of 6148 (/home/alan/poky/meta/recipes-
graphics/cairo/cairo 1.14.10.bb:do_compile)

NOTE: recipe cairo-1.14.10-r0: task do compile: Started

Somewhat frustrated at this point, I elected to try a different approach, with a completely fresh
environment. | had had some earlier success with Yocto using Virtualbox on my old machine, so
I installed Virtualbox on my new machine and clicked on “New” to begin the new installation.
What I found what that only 32-bit operating were supported! It took a little digging around on
Google, but I finally found out that the default setting on my AMI BIOS did not support

virtualization. I had to boot into UEFI and enable this setting first. It was really hard to find: in

SourcePoint L) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

the AMI UEFI BIOS Utility, it’s buried under the Advanced Menu, and labeled “SVM Mode”.

After this was done, I was finally able to create a new 64-bit virtual machine.

Create Virtual Machine

Mame and operating system

Mease choose a desariptive name for the new virtual machine
anid sededt the bype of operating yshem you inberd bo install on
it. The name you choose will be wsed throughout Yirtualbox to
identify this madchine,

Wamie: |Uby F
Type: Linu wl
Version: Ubunba (G4-bit) - rd

ot o e

I decided to go ahead and install Ubuntu 16.04.3 LTS desktop, the same as I had on my separate
Linux partition, to see if running it in a VM made any difference. I could always install Debian

or any of the other distributions later.

So, once again following the instructions in the Yocto Project Quick Start 2.4 document, I kicked

off another QEMU bitbake. It only used one thread as a default within the VM, not the 16 that I

have on my AMD CPU, but I decided to let it run anyway to see what happened. And it ran to

completion!

Terminal

documentation

meta-poky meta-selftest meta-skeletan meta-yocto-bsp g8

&
LICENSE oeinit-buildeny README hardwar iR

RORIRRARTRARRS |

README.LSS README.poky README.gemu

418 bd

S BRI S R R PR R P R AR R R A RA PR | Tine: 0:00:25

HARNING:
HARNING:
NOTE: of which 71 didn't need to be rerun and all succeeded.

shown

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

http://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html

The MinnowBoard Chronicles

Now, that is a real clue. On my separate Ubuntu partition, it was blasting away with all 16
threads, and never finishing. Cut it back to one thread and run in a VM, and it finished (albeit
taking almost 7 hours, compared to the 45 minutes it was taking when it managed to run to
completion using the older AMD CPU and 16 threads). There isa BB NUMBER THREADS
variable that I can set in my project’s local.conf configuration file that might be able to adjust

this? Maybe I should adjust this to a higher number and see when it starts to crash? Stay tuned!

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments
125

The MinnowBoard Chronicles

Episode 30: Using all 16 threads on my Ryzen?

January 14, 2018

In my last blog, I observed that running Yocto Linux builds with all 16 threads of my new AMD
Ryzen 7 1700X machine would always crash. Running under VirtualBox and only using one

thread always worked; but it took seven hours. Could I achieve a compromise?

In Episode 29 of the MinnowBoard Chronicles, I described how I RMA’ed my original 2017
work week 9 Ryzen 7 1700X CPU, and got a new one with a production date stamp of work

week 37. Luckily, this made the segmentation faults entirely go away during my Yocto image

builds. I could play Gears of War 4 for hours without troubles. But, consistently, the new system
would kick me out to the login screen after about 4,000 tasks into the 6,148 tasks executed to do

a Yocto QEMU build on my Linux partition using all 16 threads. So, was I back where I started?

Googling this online and finding nothing, I decided to go back and use VirtualBox like I had
done in earlier episodes of the Chronicles. And this worked like a charm; but by default
VirtualBox used only one thread of my 16-thread AMD CPU. Luckily, it was easy enough to
adjust the number of cores up in VirtualBox’s settings. I decided to respect its recommendations
to leave 8 cores available to Windows and have 8 decided to my Ubuntu VM for the Yocto
builds.

(2 Ubu - Settings ? X

.| General System
m System Motherboard Processor Acceleration

E Display Processor(s): |

- 1CPU 16 CPUs
|24 Storage Execution Cap: L]

p Audi 1% 100%
udio Extended Features: D Enable PAE/NX

|!—F Network

@ Serial Ports
(o UsB

u Shared Folders

E‘ User Interface

Cance

And then, firing up all eight cores for the build:

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

126

http://blog.asset-intertech.com/test_data_out/2017/12/the-minnowboard-chronicles-episode-29-my-new-amd-ryzen-7-cpu-works-kind-of.html

The MinnowBoard Chronicles

bu (Snapshot 1 122417) [Running] - Oracle VM VirtualBox . %
File Machine View Input Devices Help
GNOME System Monltor

System Monitor

» E C CPU History
% e e
b S R
=:1
> B cruz sao% B cPu3 100.0% I cPus 100.0%
I cPus 100.0% B cPus 100.0% B cPu7 100.0% [cPus 100.0%
i Memory and Swap History
ﬂ =
5] N N i Al
5 ala i p g o
RERAFERRAABRAAIARACORRREER | =
. Memory Swap
1.9GiB (33.4%) oF 5.8GIB 227.7 MiB (3.7%) of 6.0 GiB.
Network History
VARNING:
MARNING
g Fe obstes/s g o obytes/s
Total Received 3.8GiB Total Sent 66.2MiB
123) by & Ll P 0 (8 (%) might il

E~

=] H i E P& Ubu (UBU Snapshot 3 010918) [Running] - Qracle VM VirtualBox i %

File View Options Help File Machine View Input Devices Help
Sensor Value Max A © ty B 4 sdsam i

O DESKTOP-D2DPOHL
I8 ASUS ROG STRIX B350-F

=l AMD Ryzen 7 1700X

= Load
CPU Total 09 % 66.2 %
CPU Core #1 1.6% 100.0 %
CPU Core #2 0.0 % 100.0 %
CPU Core #3 00% 100.0 %
CPU Core #4 1.6% 100.0 %
CPU Core #5 0.0% 100.0 %
CPU Core #6 0.0% 100.0 %
CPU Core #7 4.7 % 100.0 %
CPU Core #8 0.0 % 100.0 %
CPU Core #9 0.0% 100.0 %
CPU Core #10 1.6 % 100.0 %
CPU Core #11 1.5% 100.0 %
CPU Core #12 00% 100.0 %
CPU Core #13 0.0% 100.0 %
CPU Core #14 16% 100.0 %
CPU Core #15 1.6% 100.0 %
CPU Core #16 0.0% 100.0 %
= B Generic Memory
B Load

Memory 582 % 588 %

& 2 Data
Used Memory 93 GB 9.4 GB
Available Memory 6.7 GB 6.9 GB

=B NVIDIA GeForce GTX 106...

i M Clocks
GPU Core 139 MHz 1607 MHz
GPU Memory 405 MHz 4007 MHz
GPU Shader 278 MHz 3214 MHz

= o Temperatures
GPU Core 320°C 35.0°C

= H Load
GPU Core 00% 320%
GPU Memory Controller 3.0 % 21.0% vl [R 21 W) @ (8] Right cl
O Type here to search L { ~ BB i [

was back to the logon screen again!

SourcePoint ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

127

The MinnowBoard Chronicles

The good news is, if I go down one core, down to seven cores, the build will complete

successfully 100% of the time.

There seems to be some strange “num_cores — 1" thing going on here: if I max out the core
utilization, it always fails; if I go down by one, it always succeeds. If anyone knows why this

might be, please do feel free to drop me a note — it’s very strange.

Now that I’'m up and running again, I can’t wait to finish a MinnowBoard Turbot Yocto image

build, and begin using SourcePoint for some serious debugging.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://www.asset-intertech.com/eresources/uefi-framework-debugging-sourcepoint

The MinnowBoard Chronicles

Episode 31: First attempts to debug the Linux kernel

March 11, 2018

In Episode 30, I finally succeeded in building a Yocto Linux image for the MinnowBoard. But, it

won’t boot! Is it time to drag out a copy of SourcePoint to help?

In the Chronicles Episode 30, Using all 16 Threads on my Ryzen?, I finally had some success in

building a Yocto Linux image for QEMU. I can’t seem to take advantage of all 16 threads,
because the build crashes consistently when the thread count is maxed out. But, in the grand
scheme of things, I’ve decided not to spend too much time debugging that. The build just takes a
little longer than it normally would running at full tilt: normally it completes in about 45 minutes
or so. | have my eye on the prize of building a real Linux embedded image for the MinnowBoard

and running it successfully.

As a warm-up and a refresher, since a lot of things have changed since I last tried this (RMA on
my AMD CPU, moving from Debian to Ubuntu, new version of YP Core — Rocko 2.4.1, etc.), |
wanted to first install a copy of Ubuntu Linux on the MinnowBoard. It is easy enough to just

follow the instructions at the MinnowBoard.org tutorial page, Installing Ubuntu 16.04.3 LTS.

This worked like a charm, just like it did way back in Episode 24, New MinnowBoard, New PC,

and a nod to Netgate. It’s worth noting that a full install of Ubuntu Desktop runs very slowly on

the MinnowBoard, but for me this is just a proof-of-concept and a learning experience, so that’s

fine.

Feeling confident, it was time to build a fresh image for the MinnowBoard using the Yocto
Project. Things have changed a bit since I last tried this, not the least of which is that we are now

on the “Rocko” release of the YP. I followed the instructions in the Yocto Quick Start Guide,

that describes clearly how to build an image for the MinnowBoard Turbot. And it took multiple

runs before the image would build; but finally it came out.

Having had success in building a Yocto Linux image, it was time to try to install it on my
MinnowBoard. Just as before, this is accomplished by inserting the USB stick with the image
files into the board, and then hitting F2 while powering up to go into the UEFI menu. Selecting
“Boot Manager” followed by “EFI USB Device” starts the boot process:

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2018/01/the-minnowboard-chronicles-episode-30-using-all-16-threads-on-my-ryzen.html
https://minnowboard.org/tutorials/installing-ubuntu-lts/
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-24-new-minnowboard-new-pc-and-a-nod-to-netgate.html
https://www.yoctoproject.org/docs/2.4.1/yocto-project-qs/yocto-project-qs.html

The MinnowBoard Chronicles

Device Path :
Boot Option Menu PciRoot (0x0) /Pci (0x14,0x0) /us
B(0x0D,0x0)
EFI Internal Shell

EFI Network 0008A2098B492 IPv4
EFI Network 0008A209B492 IPv6
EFL Misc Device

USBE Device

Tand |to change option, ENTER to select an option, ESC to exit

Alas, I got the same issue as I did way back in Episode 25, Yocto builds for the MinnowBoard

and the Portwell Neptune Alpha; the boot process runs up a point and then just hangs:

tumeling drjuer

registered

icrocode: sig=0x30679, pf=Oxl, reuision=0s0

mﬁmﬂg: Ricrocode Update Driver: 2.01 <tigraveaivezian.Esnct.
3.378758.

E lwmhlnf
3.381798] Btrfs loaded, cre3ec: .

high speed SIHC card at addvess 0007
0007 SIG2G 28.8 GiB
3.6618121 rechlIZ: pl 2 3
3.704920] comsole [metcond] ensbled
3.709144]1 metconsole: wetuork Jogging started
3.711?13! Ttc_cnos 00:00: setting systen clock to 2016-01-28 00:00:23 UG ¢

3.723555) ALSA device list:
3.72591Z21 Mo Pound .,

30171 weh Lo h-specd Jod
. ush 1-2: neu higl USB device vunber 3
319490061 clocksource! Suttched to clocksmmos ta - Y oo

4 ports detected
4.3040%2) Fhcon: futeldrnfb (F10) s prinary device
4.340074] usb 1-2.1: weu Jou-speed

£ ree n DOME.
:.i?ﬂ?‘ﬁ; I;Ili'.:"l'l;?" thf-eJiee PARTULID=5a46e305-24a P—4490-804F-69CF 17635277 . . .

AB7S08] imput : Itech Xeyboard as deuices/pci0000:00,0000 :00: 14 .0usblr1-Z-1-2 . 112 . 1:1.0-,0003 :046D :CI1C 000!
4.5393) hid-generic 0003 :046D:C31C.0001: fwput: USB HID ul.10 Keyboard [Logitech USB 1 on umm:“.o—z?‘c'i““”!*“
4.560665]1 jwput: Logitech USB Keyboard as ~deui H0000 :00,0000 :00: 14 .0/usbl/1-2/1-2. 1/1-2.1:1. 1000 :046D :C31C 0002 fnput fwputsS
4.626264]1 hid—generjc 0008 :046D:C31C.0002: fmput: USB HID ul.10 Deuice [Logitech USB Neyboard] on ush-0000:00:14.0-2, L-fwput1
4.7438909] scsi 0:0:0:0: Direct-ficcess Gemeric UDISK 1.0a FQ: O ANSI: 2

0! [sda] Attached SCS] renowable disk
: logitech USB-PS/Z Optical Mouse as sdevices pci0000 :00/0000:00: 14 Omshlr1-2/1-2.2/1-2 211.0/0003 :046D :000K 0000 fnput.rdnputt.
4.937700]1 hid-geveric 000G :046D:000E.0003: jmput: USB HID vl.10 House [logitech USB-PS/Z Optical Mousel om ush-0000:00:14.0-2 2/ it

i
i
[
[
L
4
L
L
(4
4
[
4
S
L
r
L
4
[
t
[
S
L
4
8
r
(4
t
[

The boot process stalls right after it seems to be enumerating the USB keyboard and then mouse.
I tried a lot of different things to get past this: get rid of the USB hub that I’'m using, ditching the
mouse, swapping ports, pulling the keyboard USB port out and putting it back in again, etc.

So, with all this time going by, I still haven’t managed to get my own Linux image onto the
MinnowBoard. It was time to drag out the “big guns”: a tool that would help me identify root
cause in the code as to why the image would not build. It was time to use our hardware-assisted
debugger, SourcePoint. With its capabilities of viewing the offending code, setting breakpoints,

single-stepping through the code, and finally trace capabilities, I should be able to see what’s
going on.

O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
http://blog.asset-intertech.com/test_data_out/2017/10/the-minnowboard-chronicles-episode-25-yocto-builds-for-the-minnowboard-and-the-portwell-neptune-alph.html
https://www.asset-intertech.com/products/sourcepoint-intel

The MinnowBoard Chronicles

The first thing I did was to power up the MinnowBoard, and have it start booting off the USB

stick. Powering up the emulator, I used JTAG to halt the boot process somewhere close to where

the USB mouse enumeration is failing:

. 7253681
.?7298981
.7299181
. 7371551
. 7418631
-7940131
.8030471
p.8128461
p.8201031
p.B8360381
B.8B416271
B.8477301
.8596931
.8749051
.8822841
.8896611
-8951311
.9010471]
-9341211
.9474731
.9582961
-9741971
.9879831
-1449541
.1550281
.5004761
.6657311
0003 : 046D :
4.7437821

microcode: sig=0x30679, pf=0x1, revision=0x0

microcode: Microcode Update Driver: uZ.01 <tigranRaivazian.fsnet.co.u
SSE version of gcm_enc-dec engaged.

Btrfs loaded, crc32c=crc32c-generic

Key type encrypted registered

console [netcon®] enabled

clocksource: Switched to clocksource tsc

netconsole: network logging started

rtc_cmos 00:00: setting system clock te 2016-01-28 00:00:31 UTC (14539
ALSA device list:

No soundcards found.
md: Waiting for all devices to be available before autodetect
md :

If you don’t use raid, use raid=noautodetect
md: Autodetecting RAID arrays.

md: Scanned © and added 0 devices.
md: autorun ...

md: ... autorun DONE.
Waiting for root device PARTUUID=204d4bdd-e1b9-4eb5-9c67-c06d33b62845 .
mmc2 :

new high speed SDHC card at address 0007
mmcblkZ: mmcZ:0007 SD32G 28.8 GiB

usb 1-2: new high-speed USB device number 3 using xhci_hcd
random: fast init done

mmcblkZ2: pl p2 p3
hub 1-2:1.0: USB hub found
hub 1-2:1.0: 4 ports detected
usb 1-2.1: new low-speed USB device number 4 using xhci_hcd

input: Logitech USB Keyboard as ~devices. pci0000:00.-0000:00:14.0. usb1.1]
C31C.0001/ input/input3

hid-generic 0003:046D:C31C.0001:

input: USB HID v1.10 Keyboard [Logitec
usb—0000:00:14.0-2.1/inputd

4.7788871
0003 :046D :
4.8092381
4.8245371
4.8248091
4.8250131

input: Logitech USB Keyboard as ~devices.pci0000:00.-0000:00:14.0. ushi 1
C31C.0002/ input-input4

scsi 0:0:0:0: Direct-Access 1.0a PQ: 0 ANj
sd 0:0:0:0: Attached scsi generic sg® type ©

Generic UDISK

sd 0:0:0:0: [sdal 3891200 512-byte logical blocks: (1.99 GB-1.86 GiB)
sd 0:0:0:0: [sdal UWrite Protect is off

If you look carefully at the two outputs, you can see that SourcePoint halted the code flow right

after the message “Write Protect is off”, which is about six lines of output above where the

system hung in the prior screenshot.

The SourcePoint screen shows that only one of the cores is running (the second core is sleeping

from the Viewpoints window); the General Purpose Registers (GPRs) are displayed; and the

Code window shows where we are in the boot code:

Platform for Software Debug and Trace

| O ScanWorks

Platform for Embedded Instruments

The MinnowBoard Chronicles

R i g
Fle €d2 View Processor Options Registers Windw _ Help

BER DB S8 @ 8o Goon foe @ S Pomertycefion G L]
@ Bresipoints G Code ? Command [l Log [l Memory TP Registers @ Symbets 5 Trace €8 viewpaimt €3, Watch

D FIR G5 [000000000008EBC0]

D BT [RAX]

641 E{818nd14cL

t pur £
BCK, 00000001
X, RId

Value

BAX.QY0RD PTR GS: (000000080000EBC0] ol
BITE FTR (RAX)+02.di et
RAX ®D FTR [RAX] EDX Qoooeo00
A FLEOIEAR
short pur (EECE(E818ed16L BIEBTDAD
00000000
BIE03E00

DI s

E

EDIDEL EC I
1SEDIDIL 450B1SDMBTPFO0 WOy
ATFTTTTSIeEoitc, () [Damantly_+] (Gt (EaBas] it (Vewr) (Hoisho)

3] €ommund
%mm C-yJmers-Janes Docunents hri un SourceFoint-Ta 7.10. 1. Z8¢“Hacros™coul ig-utils. nac

tiguring JTA

Fl:Help, F5Ga, ShifteF3Stop, Fe-Seep Imta, Oves, Shifte FILReset 3 18:

The information in the Code window isn’t particularly edifying to me. I do see a couple of
instructions I haven’t tripped across before in my UEFI travels, such as “LOCK AND” and
“MFENCE”; but without source code, it’s hard to see what’s going on.

Just for reference’s sake, here is what the Intel Software Developer’s Manual, Volume 2B says:
LOCK

Causes the processor’s LOCK# signal to be asserted during execution of the accompanying
instruction (turns the instruction into an atomic instruction). In a multiprocessor environment,
the LOCK# signal ensures that the processor has exclusive use of any shared memory while the

signal is asserted.

In most IA-32 and all Intel 64 processors, locking may occur without the LOCK# signal being

asserted. See the “IA- 32 Architecture Compatibility” section below for more details.
MFENCE

Performs a serializing operation on all load-from-memory and store-to-memory instructions that
were issued prior the MFENCE instruction. This serializing operation guarantees that every

load and store instruction that precedes the MEFENCE instruction in program order becomes

SourcePoint’ |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

https://software.intel.com/en-us/articles/intel-sdm#three-volume

The MinnowBoard Chronicles

globally visible before any load or store instruction that follows the MFENCE instruction. The

MFENCE instruction is ordered with respect to all load and store instructions, other

MFENCE instructions, any LFENCE and SFENCE instructions, and any serializing instructions
(such as the CPUID instruction). MFENCE does not serialize the instruction stream.

Weakly ordered memory types can be used to achieve higher processor performance through
such techniques as out-of-order issue, speculative reads, write-combining, and write-collapsing.
The degree to which a consumer of data recognizes or knows that the data is weakly ordered
varies among applications and may be unknown to the producer of this data. The MFENCE
instruction provides a performance-efficient way of ensuring load and store ordering between

routines that produce weakly-ordered results and routines that consume that data.

Processors are free to fetch and cache data speculatively from regions of system memory that
use the WB, WC, and WT memory types. This speculative fetching can occur at any time and is
not tied to instruction execution. Thus, it is not ordered with respect to executions of the
MFENCE instruction; data can be brought into the caches speculatively just before, during, or
after the execution of an MFENCE instruction.

Rather than continue any investigations into the use of these instructions at this time, I decided to
then let the boot process continue until it hangs, by using the Run button; and then halt it again

and see what I could learn.

Interestingly, nothing further comes out on the screen over the HDMI connection. I realize that I
should have had the serial output capture on my Mac’s CoolTerm application as a backup, but

that’s for later.

But we’re at a different point in the code now:

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

The MinnowBoard Chronicles

e
Optsons.

TR Sourceoin
File Edt View Processor

Code Vimdow Help
BEE UE B & et oo Fouk O Powerlyeoes G L]

- @ presipoines G Code > Command [tog [l Memory TP Regicters @ Symbois 8 Trace €8 Viewpoim O, Waach
16 Code (PO 164-2) Trackineg IP: BOCODOMGOD0000L - FFFFFFFFFFFFFFFEL
g3

-

£££813070781

EEEEEEEEB11070a30
1800000 0

CI3970F 281

673100

9405

Gir e

| Smeaninii
FrreerrrnOTeL -+ [(Doomenty - (Gt | [Setbuan] @tk [Vewie | [Rehen]

[Command
neTuding CUseradanes 0.4 Tgeutiis mes
{rguring JTA5

mning Davices
figuring Devices
mecting

F F5:Go, Shilte F5:Sh Inta, Over, Shift~ FI2Reset

Again, we are halted at an instruction “XRELEASE PAUSE” that I am not familiar with. The
SDM reveals XACQUIRE and XRELEASE as “prefix hints”:

The XRELEASE prefix hint can only be used with the following instructions (also referred to as
XRELEASE-enabled when used with the XRELEASE prefix):

e [Instructions with an explicit LOCK prefix (FOH) prepended to forms of the instruction
where the destination operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS,
CMPXCHG, CMPXCHGS8B, DEC, INC, NEG, NOT, OR, SBB, SUB, XOR, XADD, and
XCHG.

e The XCHG instruction either with or without the presence of the LOCK prefix.

e The “MOV mem, reg” (Opcode 88H/89H) and “MOV mem, imm” (Opcode C6H/C7H)
instructions. In these cases, the XRELEASE is recognized without the presence of the
LOCK prefix.

The lock variables must satisfy the guidelines described in Intel® 64 and 14-32 Architectures
Software Developer’s Manual, Volume 1, Section 16.3.3, for elision to be successful, otherwise

an HLE abort may be signaled.

SourcePoint’ |) ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

https://software.intel.com/en-us/articles/intel-sdm#three-volume

The MinnowBoard Chronicles

This is a little obscure. I don’t see reference to an “XRELEASE PAUSE” anywhere in the SDM,
or just about anywhere in Google. But looking at the definition of the PAUSE instruction might

be educational:

Improves the performance of spin-wait loops. When executing a “spin-wait loop,” processors
will suffer a severe performance penalty when exiting the loop because it detects a possible
memory order violation. The PAUSE instruction provides a hint to the processor that the code
sequence is a spin-wait loop. The processor uses this hint to avoid the memory order violation in
most situations, which greatly improves processor performance. For this reason, it is

recommended that a PAUSE instruction be placed in all spin-wait loops.

An additional function of the PAUSE instruction is to reduce the power consumed by a processor
while executing a spin loop. A processor can execute a spin-wait loop extremely quickly, causing
the processor to consume a lot of power while it waits for the resource it is spinning on to
become available. Inserting a pause instruction in a spinwait loop greatly reduces the

processor’s power consumption.

This instruction was introduced in the Pentium 4 processors, but is backward compatible with all
1A4-32 processors. In earlier I4-32 processors, the PAUSE instruction operates like a NOP
instruction. The Pentium 4 and Intel Xeon processors implement the PAUSE instruction as a
delay. The delay is finite and can be zero for some processors. This instruction does not change
the architectural state of the processor (that is, it performs essentially a delaying no-op

operation).

Presuming that the disassembled code is correct, I can only guess that we are in some sort of
critical time loop, maybe a CPU deadloop. Will it ever exit? There’s only one way to find out:

keep stepping through the code and use SourcePoint to provide some insight into the loop.

There are four instructions that are part of the loop:

FFFFFFFF8110707BL ~ F390 XRELEASE PAUSE
FFFFFFFF8110707DL 418B5C2420 MOV EBX, DWORD PTR [R12]+20
FFFFFFFF81107082L 39D3 CMP EBX, EDX
FFFFFFFF81107084L 74F5 JE SHORT PTR FFFFFFFF8110707B

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

You can see from the screenshot that both EBX and EDX are set to 1 currently, so the loop will
keep executing until EBX gets changed by the MOV instruction, that sets EBX to the value
contained at the address 20 bytes offset from the contents of R12. We need to see the Intel 64
GPRs in order to determine what address is contained within R12, and then to peek at the address

offset 20 bytes from that:

pines G oos o) B PowerCyclefeser 8 L] cec @5 HOB: & SyaConfigTabie @3 DumoMemidap BlOumpolitac S H B P (M @ & 2
@ bresspeinss G Code > Command [iog Ml Memory TP Reguters @ Symbois »¥ Trace £ Viewpoine €4 Warch LB ARl
G0 Code (P0°): (54-bit) Tracking IP: GOMOXO000000000L - FFFFFFFFFFFFFFFEL EAECAE: EE Viwpont ol
T TER Hama Daseriphon Status
107 ® P0 SLN Core Stopped
1107
107
H TP Genena Registers (0} R hE]
1107 ey Hama_| Valoe
i et
e Fluiciey Peibt RCX 0080000000000008
1107 Segment ROX 0000000600000001
110707 Conol RBP FFFFCI00000SFESO
. Debug RSl 0060008000000040
1107 v D1 FEFFFFELE2I040
Hhe gl R3p FPFFCI00000SFELE
L0 "B FEFFABO0774SERCH
1107 sl B 0000000000000002
4 A - It Rl0 FEFFUB0079FSCOE0
1107 g Rl FEFFUBO079FSCON0
107 General Lt FRCI0D004EIELE
110203, B vk R} FEFFFFFFOL107001
i s Ri4 1000000000000282
1o Segment RS FEFFCH00004EIEIC
1307 Control
107 Bebug
1107
107 e
1107 P
107 a0
o XM - o
1107 nsk
107 Gemeral
Hios s
1107 Machine Ched
s Ditug
1107 1 14 s
FEFREFRFETIONCS. ~ (79| ~) [(GaCumser | [Setbres] Twskip [VemiP) (o] i
[Moersery (P0"): FFRECSOOD0SEIEREL sl
REIDI6L 16 3E GE 00 03 C3 EF EF G1 00 00 00 00 00 60 00
GEIDBAL 20 S4 EZ 1 FF FF EF EF EQ 1D €E 00 00 C9 FF FF
6L 00 72 10 81 FF FF FF FF 02 00 00 00 00 00 00 00
i EEIDAGL 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
A0BAL B8 30 6E 00 00 C3 FF FF B& 3D £E 00 00 C9 FF FF
= 0CEL 38 7D FZ §1 FF FF EF FE 40 70 10 91 FF EF FF FF
Rl L R AR AR ARRR
anonta AT i anSourcePoint-Th 7,10, 1, 256 Hocros~cont 15-uti I8 . nec IDFOL. £ OF B6 81 ¥ v BE E5 00 05 00 68 06 5 b 05
i 1E0BL 58 3E GE 0D 00 C3 FF FE 34 77 10 81 FF FF FF FF
= JEISL EQ FE QD 1 FF F¥ FF FF CO OE EF 91 FF FF FF FF
3201 02 00 00 00 00 00 0D 00 03 0 0D 00 00 00 02 00
3E38L 01 00 00 00 01 00 00 00 Co O EF 81 FF FF FF FF
FRFFCHMOEER ~ (5 [Bbe =) [Henadoomal =] [16kytms e +] (HoASOH v [Rebesh
-
FHelp, F:Go, ShifteFSStop, Fi-Step Into, FilStep Gwes, Shifte FLEReset ” 18: Stopped s Hotbdode ||

R12 contains FFFFC900006E3E18, and the x’20’ offset yields FFFFC900006E3E38, and
looking at the memory display windows shows that address containing 0000000100000001
(remember that x86 is little-endian). Taking the DWORD value always yields 1 being put into
EBX. This is a deadloop; unless some other process changes the value at address

FFFFC900006E3E38, it will never exit the loop. And that is just what I found.

I did try to tinker with the contents of the EDX register, and also the value at
FFFFC900006E3E38, and did manage to get the code to temporarily exit the four-instruction

loop. But, it always came back to the deadloop, sooner or later.

There are quite a few different directions I could go at this point, including using some of the
x86 Trace features like Branch Trace & Store (BTS) to follow the code flow leading up to this
problem. But, realistically, admitting that, one way or the other, I’'m lost without source code,

that’s become the next step: creating my Yocto Linux build with source and symbols, and

SourcePoint |) ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

The MinnowBoard Chronicles

loading them into SourcePoint so I can see exactly what is happening in this area of the code.

There are no guarantees that seeing the source will help me debug this problem, but it’s a start.

This looks like a big challenge. Even though I’ve read Robert Love’s Linux Kernel Development

from cover to cover, | am by no means a Linux expert (which should be obvious to anyone
following these MinnowBoard Chronicles episodes), let alone understanding the operations of
the kernel well enough to figure out why it won’t boot. There is an entire document at Yocto

Project Linux Kernel Development Manual that should help me, though. We’ll see how it goes!

With source code, I should be able to see what code is accessing FFFFC900006E3E18, and set a
Data Write breakpoint at that point to see what is putting data in there. I’ll also be able to use
SourcePoint’s support for the powerful x86 Trace features (check out the eBook; requires
registration) to see backwards in time and maybe get some insight as to why I’m stuck in the

deadloop. Should be fun!

| O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

137

https://www.amazon.com/Linux-Kernel-Development-Robert-Love/dp/0672329468
https://www.yoctoproject.org/docs/2.4.1/kernel-dev/kernel-dev.html
https://www.yoctoproject.org/docs/2.4.1/kernel-dev/kernel-dev.html
https://www.asset-intertech.com/eresources/hardware-assisted-debug-and-trace-within-silicon

The MinnowBoard Chronicles

Afterword

Phew! After about 15 months of exploring and writing about the MinnowBoard, I’'m ready to
take a break. I learned a huge amount about Intel Architecture, UEFI, Linux, JTAG, and a
plethora of other technical topics during this journey. I’ve always absorbed information better
when I’ve subsequently written about it. I can see myself referring back to this book in the

future, recalling some of the more obscure technology that I’ve dabbled with.

I’m hoping that this book makes for a good, albeit long, story. Maybe others will use it as a
reference for some of the technical topics therein. It’s easy enough to search through the
contents, looking for tips. And perhaps someone has a problem with the design or debug of a
particular piece of hardware, firmware, or software that I ran into and solved, and will learn in

this book how to move forward. I’d be happy about that.
So, I’'m ready to move on to write about other topics. So much to write about, so little time.

On the other hand, there are a few nagging MinnowBoard issues that I never did manage to solve
in the last year or so. I’'m already starting to feel an itch to take another look at them. Will there

be an update to this book in the future, or perhaps a Volume 2? We’ll see!

| O ScanWorks’
Platform for Software Debug and Trace

Platform for Embedded Instruments

	Foreword
	Episode 1: SourcePoint Debugging the MinnowBoard Turbot
	Episode 2: Updating the UEFI Firmware
	Episode 3: Building the UEFI Image
	Episode 4: UEFI Source Code
	Episode 5: PEIM and DXE
	Episode 6: LBR Trace
	Episode 7: Single-Stepping through Code
	Episode 8: The Reset Vector, and Boot Flow
	Episode 9: SourcePoint Command Language and Macros
	Episode 10: The UEFI shell
	Episode 11: Using Instruction Trace
	Episode 12: Writing UEFI Applications
	Episode 13: UEFI Applications using Standard ‘C’
	Episode 14: Poking around SecCore in UEFI
	Episode 15: More UEFI Application Development in ‘C’
	Episode 16: Delving into LBR Trace
	Episode 17: Using LBR Trace without Source Code
	Episode 18: Reverse-Engineering Code Execution
	Episode 19: The Yocto Project
	Episode 20: Building and Installing Linux
	Episode 21: Building and Installing Linux, Part 2
	Episode 22: Project Yocto success!
	Episode 23: Trying Wind River Pulsar Linux, and taking a break
	Episode 24: New MinnowBoard, New PC, and a nod to Netgate
	Episode 25: Yocto builds for the MinnowBoard and the Portwell Neptune Alpha
	Episode 26: Linux image build segmentation faults on AMD?
	Episode 27: Segfault on my AMD Ryzen 7 1700X
	Episode 28: Returning my AMD Ryzen 7 1700X CPU
	Episode 29: My new AMD Ryzen 7 CPU works, kind of
	Episode 30: Using all 16 threads on my Ryzen?
	Episode 31: First attempts to debug the Linux kernel
	Afterword

