PLATFORM DEBUG USING
NTEL® CUSTOMER SCRIPTS

(CSCRIPTS)

@ SourcePoint - HSW Core - DAaa\WDB\7,10.2\wdb32\Debug Intel\HSX-MayanCity-CStep.prj (safe mode) - [Command (Python model]
Ei\e Edit View Processor Options Command Window Help
%%Hlﬁn‘ﬁ'ﬁ |ﬁ @;@5@5@3 L= M@‘uﬁ'lm @Breakpoiﬂts (& Code > Command Log
= @M
Els

Plruncoreinfo. ioapic_dunp
Bus Humber : Ox
IIQO ICAPIC Memory Base Address i= 0=x91d404000
MBAR + 00 i= the 8-bit APIC index reg
MBAR + 0xl10 i= the 32-bit APIC window reg
IIO IQAPIC ID is 0=09
IIO ICAPIC Version is 0=20
Max Redir Entries 23
Fin Azszertion Reg Support = 0x 0 : 0=AFPIC doss not implement IR(Q Assertion reg
PCI devices may not write it to cauze interrupts.

| CPU's I-0 APIC Redirection Table |

|Ent |Redirection |Vec |Deliwv |Dest |Deliv |Polarity |Remote | Trig |Hasked” |Ext |Dest

| rv#|Table Entry |tor |Hode |Mode |Status | IRR | Hode |Hot Hasked |De=st ID|ID |

| | [63:0] [[7:07][10:8]]|bit 11 |bit 12 | bit 13 |bit 14 |bit 15 |bit 16 |[55:48]][63:56]
00| oooogooooooloooo oo Fized Phy=sical Idle Act: HI Hone Edge Hasked oo oo
01| oooogooooooloooo oo Fized Phy=sical Idle Act: HI Hone Edge Hasked oo oo
02| oooogooooooloooo oo Fized Fhy=sical Idle Act: HI Hone Edge Hasked oo oo
03| oooogooooooloooo oo Fized Fhy=sical Idle Act: HI Hone Edge Hasked oo oo
04| 0000000000010000 0o Fized | Physical Idle Act: HI Hone Edge Masked oo oo
05| 0000000000010000 0o Fized | Physical Idle Act: HI Hone Edge Masked oo oo
06| 0000000000010000 0o Fized | Phy=sical Idle Act: HI Hone Edge Mazked oo oo
07| 0000000000010000 0o Fized | Phy=sical Idle Act: HI Hone Edge Mazked oo oo
0&| 0000000000010000 0o Fized | Phy=sical Idle Act: HI Hone Edge Mazked oo oo
09| 0000000000010000 0o Fized | Phy=sical Idle Act: HI Hone Edge Mazked oo oo
10| 004£f00000001a00a Oa Fixed Fhy=zical Idle Aot LD Hone Ievel Ha=zlked 4if oo
11| o000000000010000 0o Fized | Physical Idle Act: HI Hone Edge Masked oo oo
12| o000000000010000 0o Fized | Physical Idle Act: HI Hone Edge Mazked oo oo
13| 005100000001a00d 0d Fized Fhy=ical Idle Aot LD Hone Ievel Ha=led g1 oo
14| 0000QODOOOO10O00 oo Fized | Physical Idle Act: HI Hone Edge Masked oo oo
15| O000Q0DOOOO10000 oo Fized | Physical Idle Act: HI Hone Edge Masked oo oo
16| 0000Q0DOOOO10000 oo Fized | Physical Idle= Act: HI Hone Edge Hasked oo oo
17| O000000O0O010000 0o Fized | Physical Idle= Act: HI Hone Edge Hasked oo oo
18| oooogooooooloooo oo Fized Phy=sical Idle Act: HI Hone Edge Hasked oo oo
19| oooogooooooloooo oo Fized Phy=sical Idle Act: HI Hone Edge Hasked oo oo
20| oooogoopoooloooo oo Fized Fhy=sical Idle Act: HI Hone Edge Hasked oo oo
21| oooogooooooloooo oo Fized Fhy=sical Idle Act: HI Hone Edge Hasked oo oo
22| O000000000010000 0o Fized | Physical Idle Act: HI Hone Edge Masked oo oo
23| 003b00000O00Lanl? 17 Fized Fhy=sical Idle Act: LO Hone Lewvel Hasked 3b oo

Bus Number : 0x80

II0 ICAPIC Memory Base Address i= 0xcBO0000O0
MEAR + Ox=0 i= the 8-bit APIC index reg

MEAR + 0x10 i= the 32-bit APIC window reg

Fl:Help, F5:Go, Shift+F5:Stop, FA:Step Into, F10:Step Over, Shift=F12:Reset PO

EBOOK

BY LARRY TRAYLOR

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

By Larry Traylor, Vice President Software Debug and Trace

Larry Traylor co-founded Arium Corporation in 1977. Larry served as
president, CEO, and chairman of the board of Arium. He was
instrumental in driving that company’s vision for product creation of
hardware-based program debug and code trace tools. In 2013, Larry
joined ASSET InterTech when Arium was acquired by ASSET. He has a
BSEE from Cal-Poly Pomona.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Table of Contents

INEEOAUCTION ...t ettt e b e st e bt e s et e et e eateebeesabeenbeeeaee 4
What Intel Customer SCIIPS DOooviiiuiiiiieiieieeee ettt et st bee et eeaee e 4
A Brief History of Intel CuStOmMer SCIIPLSecuieiieriieiiieiii ettt ettt et st aee e eaeesane e 5
A More Detailed Look at Some Intel Customer Script Features..........coocveerciieeniieecieeeieeeeeeee 6
Future Plans at Intel for its CUStOMET SCIIPLS ...ecevuvieeiiieeiiieeiieeeiee et e e eeeeeaeeesvee e 10
ASSET InterTech Support for Intel CSCIIPLSeeevieriiieiieiieeiieee et 10
COMCIUSIONS ..ttt ettt b et et ae et sh e e s bt e st e sb e e bt et e eb e e bt e st e sbee bt enteeaeebeennes 11
LEAIN IMIOTE. ...ttt et ettt e et ab et e et e e e bt e e bbe e s bt e e st e e sabee e 11
Table of Figures

Figure 1: An example of an ICS OUtPUL.......cccueiiiiiiiiiiecieeee et 7
Figure 2: Output from a sysTopo() commandccceecueriiiriiiiiienieeieeie e 8
Figure 3: Output of the SySError functionccecviieiiiieiiiecieee e 9

© 2014 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks and the ScanWorks logo and SourcePoint are trademarks of ASSET InterTech,

Inc. All other trade and service marks are the properties of their respective owners.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Introduction

Bringing up a new computer based on Intel processor(s) can be a daunting task. Intel® provides
a group of scripts to its customers, that is intended to provide convenience and help when
bringing up a new hardware design or debugging the firmware on a new hardware design, which
uses Intel processors. The methods can range from basic state dump (register and memory

dumps) to error injection/logging and sideband-enabled postmortem access.

These Intel Customer Scripts have classically been called ‘CScripts’ by Intel in order to
differentiate them from the scripts Intel uses internally for silicon validation. This eBook refers
to them as Intel Customer Scripts (ICS). This eBook is intended as an overview and introduction
to these scripts and not an in-depth reference manual. There are several packages of ICSs, each

with different features and functionality. However, there are many commonalities among them.

To understand the diversities in ICSs, it is necessary to take a brief look at their history. In
addition, due to both scripting language and language revisions, it is important to know what the

required runtime environment for each of these packages of scripts is.

While the functionality of each of these packages varies, each has fundamental groups of

services. These groups will be described.

It also can be important to know what is coming from Intel and tool vendors in the future, so tool
plans can be made accordingly. Intel is making great progress in providing a uniform
environment to run these scripts and in enabling reasonable and available support for its

customers.

What Intel Customer Scripts Do

ICSs are provided by Intel to their Original Equipment Manufacturers (OEMs), Original Design
Manufacturers (ODMs) and others to ease the task of bringing products to market which are
based on Intel Processors. ICSs are used at board bring up as well as at various times during
debug or when an error occurs. They are also used to help find the cause of catastrophic failures
such as ‘three-strike-failures.” For many of the first use cases, the basic goal is to display the way
a system is currently configured in a manner that can be easily compared to a known working

version of a given platform type.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

For example, the codename for the generic Intel topology of a two-package server system based
on Haswell is code-named Grantley. Therefore, Intel distributes a package of ICSs for this
platform. If an OEM has just powered up a new design that is based on Grantley and has run well
into the PEIM-phase of a UEFI BIOS, then the OEM might run these Grantley (actually called
“Haswell EP/...”) ICSs and dump the state of many registers to a file that can be compared to
one generated on the Intel reference design. If these files are identical or the differences can be
logically explained, then much of PEIM module code that has run and the hardware it is

accessing is likely mostly functional.

The teams at Intel refer to four major functional groups of features in ICSs as the BIG 4. These

arc:

a. sysError - extracts and decodes all error registers from each socket

b. sysInfo - displays decoded CPUID leaves, revision number of code and micro-
code patches

c. sysTopo (formally sysStatus) — displays DDR, PCI, USB , SATA information

d. sysDump - dumps MCRs and other registers

In addition to the BIG 4 most sets of ICSs also contain:

a. Error injection, logging, and display
b. Other handy routines

The above groupings provide a very high level look at what is contained in ICS packages.

A Brief History of Intel Customer Scripts

ICSs have been around at Intel for many years. They were originally written in the C-like
command language that has been in the Intel debuggers since the 1980s. Later, Intel began using

a version of Python with an interface to the original ITP product.

One schema used to model the target (board and ICs in a system) was called Python for System
Validation (PythonSV). Scripts in this language have been written and used inside Intel for

several years.

More recently, Intel Customer Scripts have been published in Python. The ICSs based on the

existing scripts have been written in PythonSV with an interface directly for the ITP II.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Additionally, newer ICS packages are sometimes written in the native Python of the ITP II called
PythonCLI. This version uses a different target schema. Most client packages today are written
in PythonCLI while server ICSs are all written in PythonSV. It is important to remember that
both of these kinds of packages are written in Python. Just the domain naming schema is slightly

different between the two.

A second change, moving from Python v2.6 to Python 2.7, occurred in 2014. Because some of
the scripts within these packages are precompiled, it is mandatory that the scripts be run in a

Python environment in the version that matches the scripts.
There are three main bodies of scripts. These are:

a. Client platforms (“Core”) (Python-CLI)
b. Server Platforms (“XEON”) (Python-SV)
c. Micro-server platforms (ATOM) (Python-CLI)

There are many versions of each of these ICS packages corresponding to different generations of

the processors, such as Nehalem, Ivytown, Haswell, etc.

In all cases, the latest versions are produced in Python 2.7. When running older packages it is

important to use a tool version that supports the correct Python version.

All later ICS packages are available on Intel’s IBL website to those with authorized login

credentials.

A More Detailed Look at Some Intel Customer Script Features

As mentioned earlier, there are four major classes of ICS functions plus several important
miscellaneous ones. In order to look a little deeper into what exactly these scripts are, the

following five classes will be examined:

a. syslnfo

b. sysTopo

c. sysError

d. sysDump

e. Error Injection

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

While there are functions outside of these classes, this set will provide a good understanding as
well as cover the majority of the functions. Figure 1 shows an example output from running an

ICS function. In this case the function was ioapic_dump.

@ SourcePoint - HSW Core - D\aa\WDB\7.10.2\wdb32\Debug Intel\H5X-MayanCity-CStep.prj (safe mode) - [Command (Python mode]] -
File Edit View Processor Options Command Window Help
== 'ﬂ | E 'H | = | ﬂq %%5 2%91 2%5 2%5 =73 @ @ u']—' | m @ Breakpoints G} Code » Command Log
CR -
PO
Fl:uncoreinfo. icapic dunp
Eus Humber : 0=0
II0 IQAPIC Memory Base Address is 0291404000
MEAR + 0x=0 is the 8-bit APIC index reg
MEAR + 0xl10 i= the 32-bit APIC window reg
IIO IOAPIC ID i=s 0=x09
II0 IOAPIC Wersion is 0x20
Max Redir Entries 23
Fin Assertion Reg Support = Ox 0 : 0=APIC doe=s not implement IRED Assertion reg
PCI devices may not write it to cause interrupts.
| CPFl's I-0 APIC Redirection Table
Ent |Redirection Veo Dzliv |Dest Deliw Polarity |Remote Trig Haslked~ E=xt Dest
ry#|Table Entry tor Hode Hode Status IRE Hode Hot Hasked De=t ID|ID
[63:0] [7:07][10:8]|bit 11 bit 12 bit 13 bit 14 bit 15 |bit 16 [E5:48][[B3:56]
00| ooooooooooolooon an Fized Phy=ical Idle= Act: HI Hone Edge Ma=lked an an
01| Ooooooooooolooon an Fized Phy=ical Idle= Act: HI Hone Edge Has=lked an an
02| ooooooooooolooon an Fized Phy=ical Idle= Act: HI Hone Edge Has=lked an an
03| ooooooooooolooon an Fized Phy=ical Idle= Act: HI Hone Edge Has=lked an an
04| O0000000O0O010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
05| o0000000o0o0looan an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
06| O0000O000OOOL1O0000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
07| o0000000o00l0000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
08| 0O000000000010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
09| O000000000010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked [uli] an
10| 004£f00000001a00a Oa Fized FPhy=ical Idle Act: LO Hone Level Hasled 4f on
11| 0000000000010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
12| 0000000000010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked il an
13| 005100000001a004d od Fized Fhysical Idle Act: LO Hone Lewvel Ha=sked g1l uli]
14| 00000000OOO10000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
15| O000000000010000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
16| O0000000OOO1O0000 an Fized FPhy=ical Idl= Act: HI Hone Edge Ha=lked an an
17| ooooooooooolooon an Fized Fhy=sical Idl= Act: HI Hone Edg= Mas=slked an an
13| Ooo0oooooooolooon an Fized Fhy=sical Idl= Act: HI Hone Edg= Mas=slked an an
13| Oo000ooooooolooo0 an Fized FPhy=sical Idl= Aot HI Hone Edge Ma=sked an an
20| Ooooooooooolooon an Fized FPhy=sical Idl= Aot HI Hone Edge Ma=sked an an
21| Oo0oooooooolooon an Fized FPhy=sical Idl= Aot HI Hone Edge Ma=sked an an
22| 0000o00oo0oooloo00 an Fized FPhy=ical Idl= Act: HI Hone Edge Ma=sked an an
23| 003b0o0000001anl? 17 Fized Fhysical Idle Act: LO Hone Lewvel Hasked 3b oo
Eus Number : 0x80
II0 IOAPIC Memory Ba=e Address is 0xcB8000000

MEAR + 0x0 i= the 8-bit APIC index reg
MEAR + 0x=l10 is_the 32-bit APIC window reg

S TAATT

Fl:Help, F5:Go, Shift+F5:5top, F8:5tepInto, F10:5tep Over, Shift+Fl2:Reset PO

Figure 1: An example of an ICS output

SysTopo must be run in the emulator halted state. When run, it will print a tabular output
containing information about what is in each socket on the board. Details include number of
cores, SKU, frequency, along with many other details of what is physically in the target systems.
This will also indicate what revisions of firmware and patches are contained in the system. This
is a good place to start to see if the system is configured as expected, is up to date as expected

and all the chips are accessible. Figure 2 shows a sysTopo() function output.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

@ SourcePoint - HSW Care - D\aa\WDB\7.10.2wdb32\Debug Intel\HSX-MayanCity-CStep.prj - [Command (Python mode]]
File Edit View Processor Options Command Window Help
%WH|EE|D~ |ﬁ 9 4 4 4 - ||m| B & & Breakpoints (¥ Code > Cor
23
IS
Pl r=y=Topol)
AR A A A A AR A A A
#

kg
Sv=temn Topology ~ Link State Information ¥
&

—

#
FREEARRFEEXRER RS AR LR RRFFH XA RS AR RS R R R R EF R R RREF TR AR BE XL RS R H R LR XL R AR
OFI TOPOLOGY . . .

| Port 0O | Port 1
Connected to zocket 1, port 1 zocket 1, port O
QFILS Init Status 0x6 — normal O0xf — normal
Tz =tate 0=z0d - Lip 0z0d - Lip
OFI T= Lane Status 11111 1111 1111 1111 1111 1 1111 1111 1111 11311 1111
Rz state 0x0f - L0 0x0f - LO
OFI Rz Lane Status 11111 1111 1111 1111 1111 1 1111 1111 1111 11311 1111
FPeriodic Retraining Enabled {0x08) Enabled (0=x08)
Scrambling Enabled Enabled
Lip En (T:0x6£2997) (RE:0=3921les) En (T:0=x6e0302) (E:0=x396264)
L1 Enabled {0=x000000% Enabled (0=x000000%
FFS O=00000000 O=z00000000
Link Speed | 9 &6 GT- =

nH

Connected to zocket 0, port 1 zocket 0, port O

QFILS Init Status 0x6 - normal 0zt — normal

Tz =tate 0=0d - Lop Ox0f — LO

JFI Tz Lan= Status 11111 1111 1111 1111 1111 11111 1111 1111 1111 1111
Fz =tate 0=z0d - Lip 0z0d - Lip

JFI E= Lan= Status 1 1111 1111 1111 1111 1111 1 1111 1111 1111 11311 1111
Feriodic Retraining Enabled {0z08) Enabled (0=x08)

Scrambling Enabled Enabled

Lip En (T:0x23Zalc) (E:0=2{bl05) En (T:0=x6bddéd) (E:0xlbcb0f)
I1 Enabled {0=x000000) Enabled (0x000000%

FFS O=00000000 O=z00000000

Link Speed | 9 &6 GT- =

Running...

Figure 2: Output from a sysTopo() command

SysStatus provides more information about the dynamic configuration and state of the target.
This will include a topological look at what peripherals are present as well as their operational
status. This command is likely to indicate any areas that are not working in a target that is mostly
working. Part of this display is a detailed display of what is on the PCI and PCle connections, the

status of the memory banks and many other things.

SysError and SysDump are used to find information left from the occurrence of an error. While
SysError is usually used for non-fatal errors, SysDump performs a postmortem on a catastrophic

€1ror.

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Error injections and logging provide a way to test and validate code that is intended to do error
handling. A great example of this is injecting an error in a memory access in ECC-capable
memory. Services provided by these functions provide both a facility to inject the error as well as

logs to determine the occurrence of errors.

While only a few of the script functions have been discussed here, this should give a good
overview of what the ICS packages contain and what they are used for. Figure 3 shows the first

part of a sysError () execution.

@ SourcePoint - HSW Core - Dr\aa\WDB\7.10.2wdb32\Debug Intel\HSX-MayanCity-CStep.prj (safe mode) - [Command (Python mode)] L Ll
Eile Edit View Processor Options Command Window Help
ﬁﬁﬂ|ﬁﬂ|ﬁ |ﬁ %%@5*@ 8- |m =ﬁ @Breakpoints G}Code > Comt
=

PlrsysError()
Dunping CFU errors. ..
checking socket 0 port DMI

+— Socket 0 — Port DMI~ dmi~s 0

i i
| EPUNCERRSTS: 0O=00000040 * VALID = |

checking socket 0 port 0
checking =socket 0 port la

+— Socket 0 — Fort lasdDlf0s 2 .
| |

| Warning: Link lawer inactiwe to an apparent down device |
| {lnksts. link training = 0 |

checking socket 0 port 1b
checking socket 0 port 2a

+— Socket 0 —— Port 2a-.d02£0- 4
| . . _ . . |
| Warning: Link layer inactiwve to an apparent down device |
| {Ink=st=s link training = 0) |

checking =socket 0 port 2b
checking =socket 0 port 2o
checking socket 0 port 2d
checking socket 0 port 3a

+— Socket 0 — Port 3a-d03£0- 8 }
| . . _ . . |
| Warning: Link layer inactiwve to an apparent down device |
| {Ink=st=s link_training = 03 |

checking =socket 0 port 3b
checking =socket 0 port 3c
checking socket 0 port 3d
checking socket 0 mem errors
checking socket 0 gpi errors
checking sockst 0 global srrors

+— Soclket 0 global srrors

Fl:Help, F3:Geo, Shift+Fx5top, F8:5tep Into, F10:5tep Over, Shift+Fl2:Reset

Figure 3: Output of the SysError function

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Future Plans at Intel for its Customer Scripts

These scripts are almost all based on scripts originally written for internal validation and
troubleshooting inside Intel. Because of this, they were originally run on the internal versions of
the tools that Intel uses. For many years, this was the ITP. Recently, this has been the newer

version of the ITP (ITP II).

Many Intel customers (OEMs and ODMs) use tools from ASSET for BIOS debug. Because of
this there has been a strong desire to run the ICSs on ASSET’s SourcePoint (formerly Arium’s

SourcePoint). This is working today!

To ensure that this continues to work well, Intel is developing an environment for these scripts to

operate on TPV tools. One example of these tools is ASSET InterTech’s SourcePoint™.

The new interface spec for Python, called IPC by Intel, should accomplish Intel’s goal of the
scripts being available earlier in the board bring up process and with more robustness on third

party tools.

ASSET InterTech Support for Intel CScripts

ASSET InterTech is taking a two-pronged path to ensure that SourcePoint users have a good
experience when running Intel Customer Scripts on SourcePoint, ASSET’s world class software

debugger.

The first of these two solutions is already available in current SourcePoint products for Intel
processors. This solution provides the ability to set the command line mode inside SourcePoint
to Python and the support ICSs directly in this environment. This is available now for processors

up through Haswell.

ASSET is also actively working with Intel to support the new IPC interface. With this feature
ASSET’s customers will have the choice of using the built-in SourcePoint Python shell or
running a shell delivered by Intel to support ICSs. Support for the new IPC interface will be

available beginning with the next micro-server chip introduction from Intel.

10

URCEPOINT™

More visibility. Software Debug and Trace.

Platform Debug using Intel® Customer Scripts (CScripts)

Conclusions

Intel Customer Scripts (CScripts) are very useful for board bring up, error injection and finding
the root causes of failures. These scripts (ICSs) are delivered by Intel and tested for execution in
several operating environments. One of these environments is ASSET InterTech’s SourcePoint.

For more information on SourcePoint, click here.

Learn More

You might also be interested in
our “Intel Adds High Speed
Instruction Trace” eBook. This
eBook explains how you can

take advantage of Intel’s new

trace capabilities to accelerate

your debug processes.

http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/Intel-Adds-High-Speed-Instruction-Trace-SourcePoint

	Introduction
	What Intel Customer Scripts Do
	A Brief History of Intel Customer Scripts
	A More Detailed Look at Some Intel Customer Script Features
	Future Plans at Intel for its Customer Scripts
	ASSET InterTech Support for Intel CScripts
	Conclusions
	Learn More

