INTEL® ADDS HIGH SPEED

INSTRUCTION TRACE

,l’ Instruction Trace Search - 5275 calls EI@
Code | CallTree| Cal Chart |
=0E Cycle:-53895 Total tme:52.295 me Measured time: +47.072 us
Function < 102.139 us > Incl. Time Excl. Time -
1 CoreloadImnage L300 m= 103.000 n=
5 CoreloadImnageComnmnon L300 m= B87.000 n=
6t GetFileBufferByFilePath 164 us 178.000 n=
7 FvReadFileSection L6993 us 114.000 ns
8 GetSection | B AN (| (BN -c G50 us 119.000 ns
9 AllocatePonl | TilNe T | RN [(1 [1 [/ /|| [10.988 us 154.000 ns
10 CorekllocatsPonll (LT DT | i [{1 T [10.811 us 64.000 ns
11 CoredllocatePoolPages 4.515 us 39.000 ns L
12 CoreConvertPages 11 || | 1 1] [N I 3.636 us 227.000 ns 3
13 CoreiddRange | N | | 1 1l I 2.363 us 358.000 ns
14 RemovelemnorvMapEntry | ||| | | || |I||| 624 000 ns 36.000 ns
15 RemoveEntryLis=t 219.000 n= 11.000 n=
16 IsListEnpty] 208.000 n= 28.000 ns
17 InternalBaseliblsNodelInlist | 180.000 n= 180.000 n= ™
« v \POY P1Y P2 PE PAY PSY Pa (T 7 | « [r

EBOOK

BY LARRY TRAYLOR

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

By Larry Traylor, Vice President Software Debug and Trace

Larry Traylor co-founded Arium Corporation in
1977. Larry served as president, CEO, and chairman
of the board of Arium. He was instrumental in
driving that company’s vision for product creation
of hardware-based program debug and code trace
tools. In 2013, Larry joined ASSET InterTech when
Arium was acquired by ASSET. He has a BSEE

from Cal-Poly Pomona.

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

Table of Contents

OVETVIBWttt ettt et h e et e b e e a bt e bt e eab e e bt e e a bt e beeeabeeeheeeabe e st e eabeesheeanbeeaseeenbeenabeenbeenaee 4
What 1S INtEI® DOTNEZ? ...eeoeiiiiiiiecieeee et et e e e e e et e e sste e e saeeesseeensaaesnsaeesnseeennses 4
How Intel Processor Trace Compresses the Informationccceeveeeciienieeiiienienieeieeieeee 5
Trace Features Used by ASSET InterTech’s SourcePoint TOOIScccccvvevieiciieniiiiieieeieeee 5
The Older Intel Trace Methods:.........c.ooiiiiiiiiiie e 6
Use Models and Advantages for High Speed Traceccovveeiiieiiiiiiiieeiieecee e 6
How Trace can be Displayed in Modern Tools like SourcePoint............cccooceeveiieniiniienieniieenne 7
Call Graph DISPIAY ...ccuvieiiiiiieiie ettt ettt e et e b e e beesaaeesbeessseenseesnseenseennns 8
Using the Statistics View to Tune Execution Timescccccccvveviiiieniieeniie e 10
Other Features of SourcePoint that Make Use 0f Tracecccoeevieiiieiiiiniiiiieniccieeieeeeeee 11
There is Even More on the Way from Intel!.............ccoooiiiiiiiiiiiiiee e 12
COMCIUSIONS ..ttt ettt ettt e a e bt et sh e e bt e st e ebe e bt et e eb e e bt e st e sbee bt entesseenbeennes 12
Learn More about SourcePoint™ for INtel®cccooiiiiiiiiiiiiiiieeeeee e 12
Table of Figures

Figure 1: A SourcePoint LiSt DiSPlay......c..cccciiiiiiiiiiiiciie et 8
Figure 2: Sample Instruction Trace of UEFI Code...........ccoooiiiiiiiiiniiiiieieceeeece e 9
Figure 3: A SourcePoint Call Chart DiSplay........c.ccoccviiiiiiieiiieeieeeieeeeee et 10
Figure 4: SourcePoint’s StatiStICS VIEWcccuieriieiiieniieeiieeieeiteeiieeieeeteeieeseaeeeeeseeeeseeseneeneeas 11

© 2014 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks while the ScanWorks logo and SourcePoint are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

Overview:

Instruction-Trace-Producing hardware is now included in newer Intel® processors and SOCs.
Until recently the only instruction trace in Intel processors and SOCs had been provided by
either last-branch-record registers (LBR’s) or branch-trace-messages (BTM’s). Neither of these
features provided powerful enough trace to be of much use and certainly were much weaker than
the popular competitive brands. Without good instruction-trace capabilities, some kinds of
problems are very difficult to diagnose, as shown later in this paper. Intel’s new trace features
offer some major new capabilities for software defect diagnosis (“‘code debugging”). These
features, when combined with full-featured debuggers like ASSET’s SourcePoint™, will

significantly reduce development time.

What is Intel® Doing?

Intel has included one of two forms of this new trace in several recent SOCs. Because it was still
being defined and improved, Intel chose not to enable most users with this capability on early
silicon. Several new processors, currently being sampled to OEMs, have these features included
and enabled in all versions of the silicon. In these processors the trace feature is available
architecturally, which means all parts have it enabled. This feature, referred to as “Intel

Processor Trace (PT)”, is described in the following Manual:

Intel® 64 and IA-32 Architectures Software Developer’s Manual
Volume 3 (3A, 3B & 3C): System Programming Guide, Chapter 36
Order Number: 253668-051US June 2014

In earlier SOCs the feature was called “real-time instruction trace” (RTIT). In some current
SOCs RTIT is available. In later SOCs and other Intel processors the feature is called “Intel

Processor Trace”.

Information about the presence or version of a trace feature in a specific processor or SOC is
“Intel confidential”, so this article will only talk about the features in general. For information
about a specific part, contact your ASSET InterTech representative and ensure you have the

appropriate Intel NDA for the discussion.

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

While there are many technical differences between the two versions (RTIT and Intel PT) and
also among some of the instantiations, there is plenty of common ground for discussion. For
purposes of this paper, the author will call these trace features collectively “High Speed
Processor Trace”. This is to differentiate it from older methods, such as Branch Trace
Message/Branch Trace Store (BTM/BTS), which slowed the execution down substantially when
enabled.

How Intel Processor Trace Compresses the Information

Intel Processor Trace, like many trace algorithms today, limits the data it carries to time-stamped
instruction-flow information. In the most compressed form, a portion of a trace stream of bytes
will simply represent taken/not-taken branches in the execution stream. In this mode, each byte
represents up to 6 branches, and this will usually represent 30 or more executed instructions.
Along with these taken/not-taken packets there are several other packet types that include new
address packets (when needed), time-stamp information, and other auxiliary packet types. Some

of these packets are periodic while others are as-needed.

This format is more completely described in the referenced Intel manual. It provides a very

compressed trace stream for collecting and post processing by tools like SourcePoint.

Trace Features Used by ASSET InterTech’s SourcePoint Tools

One of the most important features of “High Speed Processor Trace” in Intel’s newer ICs is that
it is nearly full speed. It has no significant impact on the execution speed of the program being
executed. In contrast, when using BTMs with BTS (storage to memory) there was a minimum of
a 60% slow down. For some code this could be much greater. This change in execution speed
could often impact whether a bug does or does not occur. High Speed Processor Trace (HSPT)

has no measurable impact on the experiment.

In addition, HSPT has several types of time stamp available in most of its instantiations. Using
cycle-accurate timestamp, time can be measured with a resolution of the processor clock. In later
instantiations, global timestamp will allow alignment with all threads and all other trace sources,

including AET and other new sources.

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

This, highly-compressed, full-speed trace, when enabled, provides instrumentation of an
operating program to allow for examination of the exact sequence of execution of instructions,

including asynchronous sequences like exceptions and external interrupts.

These trace features are on par with trace methods found in other architectures and will produce
the results that firmware engineers have come to expect. These features can also be used at the

application level and for diagnosing system faults.

The Older Intel Trace Methods:

In the ten years prior to Intel’s introduction of High Speed Processor Trace, (Intel Processor
Trace in the long term), Intel had only two methods of instruction trace. These were BTM to

BTS and LBR.

LBR trace was based on a relatively small number of pairs of last-branch-record registers. A
typical number was 8 or 16 pair. Each pair of registers would record the “from” and “to”

addresses” of the last 8 or so changes of execution flow. This could typically record 40 or 50
instructions. This would rarely capture all of the last interrupt. Due to the small depth of this

trace, it often did not contain the fault producing event.

The other method available was BTM to BTS. This was cumbersome to setup and use, and it
slowed the execution of the processor greatly. This often altered the problem being diagnosed.

Because of the difficulty in use and the speed issue, most programmers did not use this feature.

Neither of these types of trace had any notion of time stamp, so, many post-processing features

could not be implemented, such as time based execution call graphs and statistics views.

Use Models and Advantages for High Speed Trace

There are many powerful uses for instruction trace. These include several types of defect root-
cause determination, understanding of performance issues, and gaining a quick overview of the

execution of a program or process.

The classical and still most compelling use of instruction trace is in finding the interference in a

particular program sequence by an asynchronous event. There is nothing more frustrating than

finding the place that a program is making the wrong decision, only to discover that you have no

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

way of telling what altered that data object upon which the errant decision is based. In a simple
case, it could be a matter of determining what code sequence called this code; call stacks can
often show this. In a difficult case, the data may have been changed by code running in an
interrupt that was not supposed to modify the data in question (maybe from an errant pointer?).
In this case, even though the software engineer may be able to reliably trigger the debug tool on
the exact errant decision, he has no way of knowing what piece of code modified the bad data or
why. Using trace to see what code preceded the bad decision will usually yield the culprit in a
very short amount of time. This can literally save weeks in diagnosing a blue screen or Linux

“OOpS”_

Another very common use of trace is to actually measure which parts of code are contributing to
the execution time of a function. Nothing shows this more clearly than a statistics view of the
code operating at full speed. This can often directly show the engineer exactly which pieces of
code can be optimized for the maximum improvement. Measuring these times using real-time

trace allows making the measurement without altering the experiment.

These are just two examples of how using instruction trace can take weeks out of a development
schedule. Many developers of embedded programs have been using trace for years and the
number of ways it can be used to diagnose problems is almost limitless. Firmware (UEFI)

development on Intel based computers can now take advantage of these silicon/tool features.

How Trace can be Displayed in Modern Tools like SourcePoint

Now that High Speed Processor Trace is available in Intel chips, development engineers can take
advantage of the powerful features in tools like SourcePoint. SourcePoint has many different
ways it can display data collected in a trace buffer. Conventional displays that are list-based are
available with many format options ranging from simple disassembly to full source display.
These displays are enhanced by many features such as flyover symbol. In addition to the
classical list-based displays, SourcePoint offers several trace post-processing features and
displays that make it very easy to visualize code execution at a high level and then drill down to
the line by line views. Modern large trace buffers, in the gigabyte range, make examining trace
detail without good browsing tools impractical. SourcePoint offers several types of post-

processing tools which include:

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

e Structured Search

e Call Charts

e (Call Graphs

e Statistical Summary Displays.

Several of these will be described in detail in later sections.

The most basic trace display is the list display. In SourcePoint, the software engineer can select
the items to be displayed and control the color coding to differentiate multiple trace sources. The
lines are time-stamped and can be used to index into other displays such as source windows,
chart windows, or other trace list displays. The lines can be assembly, source, or mixed. An
example of a list display is shown in Figure 1. This display shows both assembly and source-

level depiction of the executed code. This list display is very configurable by the user in

SourcePoint.
.l’ Instruction Trace (P&*) E@
STATE Pn ADDE INSTRUCTION TIMESTAME -
Pe 000000007F241840 JE CoreHandleProtocol+Ze
P& 000000D0D7E2A1542 AND [RE].00000000
P& 000000007F241846 CALL CoreValidateHandle
handle. o (CoreValidateHandle)
77 if (Handle == HULL) {
Pe 000000007F2AQE40 TEST RCE RCE
Pe 0D0DODD0DD0O7F240E43 JHE CoreValidateHandle+10
handle. o {(CoreValidateHandle+10)
80 1f (Handle—3Signature |= EFI_HANDLE SIGHATURE) {
—0069459 P& 000000007F2AQESD HOW RAX, [RCX] —4.736 ns (+1.045 us)
Pb 000000007 F240ES53 HOW RCX. 8000000000000002
Pe 000000007F2AQESD SUB RAX, 6cbd6e6d
Pb 000000007 F240E6S NEG RAX
Pe 000000007F2A0EEE SEB RAX RAX
Pb 000000007F240E6S AND RAX RCXK
handle.c {(CoreValidateHandle+ic)
84 }
Pe 000000007F2A0EEC RETH
—0069452 P& 000000007F24184E HOW RBY RAX —4.736 m= (+65. 000 n=)
Pe 000000007F24184E TEST RAX RAX
P& 00000DOD7E2A1851 JS CoreHandleProtocol+15c
Pe 000000007F241857 LEA RCH, [gProtocolDatabaselock]
P& 000000007F2A185E CALL Corehcquirelock
library.c (Coredcguireloclk)
Pe 00000000 7F245944 PUSH RBX
Pe 000000007F245946 SUB RSE. 00000020
Pe 00000000 7F245944 HOW RBX, RCX
library.c (Coreicquirelock+9)
70 ASSERT (Lock != HIULL):
Pe 000000007F2A594D TEST RCHE, RCE
P& 0000D00007F2A5950 JNE Coredcquirelock+24
library.c (Coredcquirelock+24)
71 SSERT (Lock—>Lock == EfilockReleased)
Pe 000000007F245968 CHP [REE]+10,. 00000001
P& 000000007F2A596C JE Coredcquirelock+42
librarv.c (Coredcouirelock+42 A
-O0E3462 Disassembly = [Configue... | [Displap.. | [Filler . Calibrate Refresh

Figure 1: A SourcePoint List Display

Call Graph Display

When a large amount of trace has been captured, and the code base is extensive, looking at the
detail of the trace is very tedious. The Call Graph display allows the SourcePoint user to look at

large portions (or even all of the trace buffer) and view it in a graph showing call depth. Each

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

line in this graph can represent a different function at different points in time. Changes in color
represent changes in a function. Each line moving downwards represents another level of call
depth. A moveable cursor points to specific points on the timeline (x axis of graph). The left-
hand column displays the names of the functions, at each level, at the point indicated by the

cursor.

The controls above the graph allow the user to expand the graph (zoom in) at the point indicated
by the cursor. Figure 2 shows an actual trace of a range of UEFI in the boot-up of an Intel based

computer. This is a good illustration of the power of this viewer:

,l’ Instruction Trace Search - 5275 calls EI@
Code | CallTree| Cal Chart |
=0E Cycle:-53895 Total tme:52.295 me Measured time: +47.072 us
Function < 102.139 us > Incl. Time Excl. Time -
1 CoreloadImnage 27.300 m= 103.000 n=
5 CoreloadImnageComnmnon 27.300 m= B87.000 n=
f GetFileBufferByFilePath I B ;164 us 178.000 ns
7 FvReadFileSection 57.693 us 114.000 ns
8 GetSection | B AN (| (BN -c G50 us 119.000 ns
9 AllocatePonl | TilNe T | RN [(1 [1 [/ /|| [10.988 us 154.000 ns
10 CorekllocatsPonll (LT DT | i [{1 T [10.811 us 64.000 ns
11 CoredllocatePoolPages 4.515 us 39.000 ns L
12 CoreConvertPages 11 || | 1 1] [N I 3.636 us 227.000 ns 3
13 CoreiddRange | N | | 1 1l I 2.363 us 358.000 ns
14 RemovelemnorvMapEntry | ||| | | || |I||| 624 000 ns 36.000 ns
15 RemoveEntryLis=t 219.000 n= 11.000 n=
16 IsListEnpty] 208.000 n= 28.000 ns
17 InternalBaseliblsNodelInlist | 180.000 n= 180.000 n= ™
« v \POY P1Y P2 PE PAY PSY Pa (T 7 | « [r

Figure 2: Sample Instruction Trace of UEFI Code

Another way of looking at the same information is with the Call Chart. In this view, specific
areas can be drilled into by function name, expanding or collapsing as desired. Both of the call
views can be synchronized to a list view so that the specific code can be examined at the point of

interest. Figure 3 is a Call Chart display.

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

.c’ Instruction Trace Search - 5275 calls EI@
| Code | Call Tree | Call Chart|
[Analyze] [Help] [Expand All] [Collapse Al] Upper limit: 0 2| Lower limit: 39 2 7] Show interrupts
Cycle Address # |+ Function Timestamp Incl. Time Excl. Time -
—69462 7F299805 7 E CoreHandleProtocol —4.737 n= 3.332 us 164.000 ns
—69462 TFZAl846 8 CoreValidateHandle —4.737 n= 1.045 us 1.045 us n
—69452 7FZA185E 8 @ Coredcquirelock -4 736 ns 165.000 ns 13.000 ns
—69452 7FZAB989 9 CoreRaiseTpl —4.736 ns 152.000 ns 152,000 ns
—-£9441 JF241869 8 CoreGetProtocollnterface —-4.736 ns 286.000 n= 81.000 n=
—69441 JFZAL7EA 9 CoreValidateHandle —4.736 n= 0 n= 0 ns
—-69436 7F2417D0 3 CompareGuid —4.736 ns 205.000 n= 205.000 ns
—69436 7F2A6BDE 10 ReadUnaligned6d —4.736 ns 0 n= 0 ns
—69430 7FZAGBE1 10 ReadUnaligned&d —4.736 ns 0 n= 0 ns
—69425 7F2A6BED 10 ReadUnaligned6d -4 736 ns 0 ns 0 ns
—69420 7FZAGEBFY 10 ReadUnalignedéd —4.736 ns 0 n= 0 ns
—69405 JF24190E 8 & AllocatePool -4.736 ns 1.4597 us 211.000 ns
—69402 7F2A7059 9 CoreRai=eTpl —4.735 ns 0 n= 0 ns
—-69337 TF247077 3 E CoreillocatePooll —4.735 ns 1.061 us 256.000 ns
—69397 JFZ2A01CA 10 LookupPoolHead —4.735 ns 0 n= 0 ns
—-69391 7F240231 10 IsListEnpty —4.735 n= 358.000 ns 42.000 n=
-69391 JF24667E 11 InternalBasslibI=sNodel -4 735 ns 316.000 n= 316 000 ns
—-£9371 7F240341 10H RemoveEntryLlist —-4.735 n= 180.000 n= 11.000 ns=
—-69371 JF246735 11H IsListEnpty —4.735 ns 169.000 n= 23.000 n=
—69371 TFZABGR7E 12 InternalBaseliblsHode —4.735 ns 146.000 n=s 146.000 ns
-69347 7F240374 100 DebugCleardemnory —4.735 ns 267.000 n= 267 .000 ns
—69346 JF246B23 11 InternallemSetHem —4 735 m=s 0 ns 0 ns
—-£69337 7FZA0399 10 DebugPrint —-4.734 ns 0 n= 0 ns
-69328 JF247086 9 CoreReleaselock —4.734 n= 225.000 n= 225.000 ns
—69325 7F2A23D6 10 CoreSetInterruptState —41.734 ns 0 n= 0 ns
-69311 7F241945 8 [InsertTaillist -4.734 ns 109.000 n= 13.000 n=
—69311 JFZABLSB? 9 InternalBaseliblsNodeInl —4.734 ns 96.000 ns 96.000 ns
—-B9238 7F241957 8 E CoreReleaselock —-4.734 n= 66.000 n= 66.000 n= -
< PO P}, P2) PSS, P P e T/ I - — i : v

Figure 3: A SourcePoint Call Chart Display

Using the Statistics View to Tune Execution Times

Without trace, it can be very difficult to determine the execution time of the various areas in the
program. Very often some programmed operation, such as booting up a computer with UEFI,
takes longer than desired. It may not be obvious what portions of the code are the real culprits.
SourcePoint’s statistics view can be used to quickly find out exactly where the time is being

spent. Figure 4 shows the statistics view in SourcePoint.

10

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High Speed Instruction Trace - eBook

.C’Instruction Trace Statistics EI@

Function Profiling |
[Andpze | [Help | [Jinchde interupts Total time: 52,295 ms Calls: 5275

Function Count Incl. Time Incl. % Excl. Tirme Excl % -
DebugPrint b7 52 070 m= 99 5 L1 99 913 . 4 }
BasePrintLibSPrintMarker 13 110267 us L21% E0.022 us 0. 4
InternalBaseliblsHodeInlist 285 41.082 us .08x 41.082 us 0.08x
DebugClearHenory 42 30,911 us L0ex 30,911 us 0.06% E
Comparetuid £34 26,335 us L 0B 28 982 us 0.058%
Copylen %] 26 . 460 us L 0B 24 567 us 0.058%
Ba=ePrintLibValuseToString 6l 17 728 us S03x 17 210 us 0.03% s
AzciiStrlen 34 8.259 us L02% 8.259 us 0.02%
CorelnstallProtocolInterfacelNotify 4 36 . 887 ns 0.54x 7.899 us 0.02x
CoreFresPooll 11 38.816 us 075 4.823 us 0.01%
CoreFindFreePage=1 b 4. 312 u= .01 4. 312 us= 0.01%
CoreiddRange in 22 504 us .04 4.183 us= 0.01%
CoreRelea=elock 77 4.228 us L01% 4.090 us 0.01%
CoreRai==Tpl 91 4.090 u= .01 4.090 us= 0.01%
CoredllocateFooll 27 60.059 us 11 3.838 us 0.01%
CoreConvertPages in 51 150 us C10x 3.5896 us 0.01%
CoreHandleFrotocol 14 21.231 us .04 3.582 us 0.01%
CoreReadInageFile 43 13.809 us L03% 3428 us 0.01x
IsListEnpty 138 25 486 us .05 3.278 us 0.01%
CoreLloadPelnage 1 8.754 m= 6. 74 3,268 us 0.01%
CoreFindProtocolEntry 18 20290 us .04 3.048 us 0.01%
IsDevicePathEnd 40 2.959 us L0014 2.851 us 0.01%
CorelocateHandle [10.584 us L02% 2. 664 us 0.01%
CoreFresdencrviapStachk in 13 680 us .03% 2. 417 u= 0.00%
InsertHeadlist g5 8.963 us Loax 2.057 us 0,00
InternaldenCopyien %] 1.893 us= 00 1.893 us 0,00
Coredcquirelock E4q 4,327 us= 01 1.870 us 0,00 -
« v \POYP1} P2} P3Y P43 PS5, PR . | < | i ’

Figure 4: SourcePoint’s Statistics View

Note that in all of the trace post-processing displays there is a tab per processor. The list display,
which can be time-aligned to all these other displays, can be one display per processor or

multiple color-coded trace displays.

The exact time-stamp features, and therefore the exact alignment features available, differ from
one Intel processor to another. For exact features for a specific processor please contact your

local ASSET representative.

Other Features of SourcePoint that Make Use of Trace

In addition to the post-processing screens shown, SourcePoint has several other popular trace-
processing features. Trace views may be searched in either simple textual algorithms or in
structured algorithms that evaluate addresses and data and search for those. Also, all trace views
contain flyover examination of data objects. Code windows and symbol windows can be opened,

referencing cursor-selected objects in the trace window.

11

URCEPOINT"

More visibility. Powerful debug. System trace.

Intel® Adds High-Speed Instruction Trace - eBook

SourcePoint also contains some of the most powerful and quick symbol-finding/evaluating
dialogs available in any tool. These symbol-search tools work across program modules making

them extremely convenient when used in a UEFI environment.

There is Even More on the Way from Intel!

This document has provided an overview of new processor instruction-trace features in existing
and coming Intel processors. In addition to instruction trace, Intel processors still produce
Architectural Event Trace. In the very newest processors (not yet released) there are even more
types of trace available to the software engineer. ASSET InterTech can describe some of these as
long as there is an appropriate three-way NDA in place. Please ask your local ASSET

representative.

Conclusions

Newer Intel processors and SOCs offer many trace features not available before in Intel silicon.
The most significant is High Speed Processor Trace. While not all of the deployment details are
in the public domain yet, there is enough information available to engage in very useful
conversations. For several of these processors and SOCs, these features will be available to
anyone who has access to the chips. These features, when used with a tool like SourcePoint

from ASSET InterTech can greatly reduce UEFI debug time.

Learn More about SourcePoint™ for Intel®

Find your local ASSET InterTech Sales Manager.

SourcePoint for Intel - web page

Software Debug and Trace eBooks

SourcePoint for Intel - Resources:

Data Sheets

o SourcePoint for Intel Processors with UEFI Support Data Sheet

http://www.asset-intertech.com/About-Us/Contact-Us
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel
http://www.asset-intertech.com/eResources/eBooks-Software-Debug
http://www.asset-intertech.com/eResources/eBooks-Software-Debug
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel%23RES

	Overview:
	What is Intel® Doing?
	How Intel Processor Trace Compresses the Information
	Trace Features Used by ASSET InterTech’s SourcePoint Tools
	The Older Intel Trace Methods:
	Use Models and Advantages for High Speed Trace
	How Trace can be Displayed in Modern Tools like SourcePoint
	Call Graph Display
	Using the Statistics View to Tune Execution Times
	Other Features of SourcePoint that Make Use of Trace
	There is Even More on the Way from Intel!
	Conclusions
	Learn More about SourcePoint™ for Intel®

