
 

 

IJTAG VS JTAG VS IEEE 
1500 ECT | TECHNICAL 

TUTORIAL – 2ND EDITION 

 

BY AL CROUCH 

 
Vice-Chairman of the IEEE 1687 IJTAG Working Group 

  



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
2 

 

Al Crouch  
Al investigates the use of embedded instruments for IC test and debug, 

board test and debug, and software debug. He is a Senior Member of the 

IEEE and serves as the vice chairman of the IEEE 1687 IJTAG working 

group that is developing this standard for embedded instruments; and is the 

chair for the IEEE 1687.1 study group to extend the access interfaces 

associated with 1687. He has contributed significantly to the IEEE 1687 hardware architecture 

definition. Al is also a member of the P1838 Working Group on 3D test and debug, and co-chair 

of the iNEMI BIST group, which is defining the use of embedded instruments for board test. 

Al’s work experience includes various design-for-test, debug and test-automation positions at 

test tools companies, including ASSET InterTech, where he served as chief technologist, 

semiconductor companies, such as TI, DEC and Motorola, as well as chief scientist at startup 

companies DAFCA and INOVYS. Al has published extensively in journals, industry magazines, 

and conference proceedings, and is an inventor on 20 issued patents. 

 

  



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
3 

Table of Contents 
Executive Summary ........................................................................................................................ 6 

Introduction ..................................................................................................................................... 8 

Differences among the three standards ....................................................................................... 9 

Creeping Overlap ...................................................................................................................... 14 

Understanding and Comparing Hardware Architectures .............................................................. 15 

Comparing the IEEE 1149.1 and IEEE 1500 Hardware Architectures .................................... 18 

Scalability Problems with IEEE 1149.1 and IEEE 1500 Instruction-Based Architectures ...... 22 

The Daisy-Chained TDR Configuration ............................................................................... 23 

The Single-Instruction Per Instrument Configuration .......................................................... 24 

Comparing the IEEE 1149.1/1500 and IEEE 1687 Hardware Architectures ....................... 27 

Key Differences supported by IEEE 1687 IJTAG Hardware Architecture .................................. 33 

Separating Hardware Control from Instrument Interface ............................................................. 36 

One Chip: One TAP Controller ................................................................................................ 37 

Plug-and-Play Interface for Portability ..................................................................................... 40 

Description Language and Operational Protocols for JTAG and IJTAG ..................................... 45 

IEEE 1687 ICL/PDL versus IEEE 1149.1 BSDL/SVF versus IEEE 1500 CTL/STIL ............ 47 

IEEE 1149.1 JTAG (Boundary Scan) ................................................................................... 47 

IEEE 1500 Embedded Core Test .......................................................................................... 48 

IEEE 1687 IJTAG (Embedded Instrumentation) .................................................................. 48 

IEEE 1687 IJTAG’s PDL versus IEEE 1149.1-2013 JTAG’s PDL ......................................... 51 

The Practical Usage of IEEE 1149.1, IEEE 1500, and IEEE 1687 .......................................... 54 

Conclusions ................................................................................................................................... 56 

Learn More.................................................................................................................................... 57 

Appendix ....................................................................................................................................... 58 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
4 

Introduction to IEEE 1149.1 ..................................................................................................... 58 

Introduction to IEEE 1500 ........................................................................................................ 60 

Introduction to IEEE 1687 Internal JTAG (IJTAG) ................................................................. 62 

 

Table of Figures 
Figure 1: Capabilities of IEEE 1687 IJTAG, IEEE 1149.1 JTAG and IEEE 1500 ECT ............... 6 

Figure 2: Hardware similarities and differences account for the overlap of standards ................ 15 

Figure 3: The IEEE 1149.1 JTAG Finite State Machine (FSM) .................................................. 16 

Figure 4: The IEEE 1149.1 TAP (left) with register architecture and protocol FSM .................. 19 

Figure 5: The IEEE 1500 Wrapper Serial Port (right) and register architecture .......................... 19 

Figure 6: Where IEEE 1500 fits within IEEE 1149.1 ................................................................... 21 

Figure 7: Where daisy-chained IEEE 1500 fits within IEEE 1149.1 JTAG ................................. 22 

Figure 8: Inefficient instrument access with long daisy-chained scan paths ................................ 24 

Figure 9: Inefficiency in one-instrument-at-a-time/one-instruction architecture ......................... 26 

Figure 10:  The Segment Insertion Bit (SIB) adds a scan path ..................................................... 28 

Figure 11:  The Segment Swap Bit (SSB) selects a mutually-exclusive active scan segment ..... 28 

Figure 12:  An IJTAG architecture with three instruments and three SIBs .................................. 30 

Figure 13:  Hierarchical IJTAG architecture; SIBs and nested SIBs opening multiple scan paths
....................................................................................................................................................... 31 

Figure 14:  IJTAG architecture with SIBs and NIBs configuring the scan path configuration .... 32 

Figure 15:  Where IEEE 1687 IJTAG fits within an IEEE 1149.1 JTAG architecture ................ 33 

Figure 17:  SIBs daisy-chained to TDI-TDO scan chain .............................................................. 35 

Figure 18:  Side-by-side comparison of IEEE 1149.1 JTAG and IEEE 1687 IJTAG routing ..... 36 

Figure 19:  IJTAG architecture with multiple eTAPs ................................................................... 38 

Figure 20:  Multiple eTAPs enabled by IEEE 1149.1 instructions............................................... 39 

Figure 21:  IJTAG architecture with multiple eTAPs and a configuration register ...................... 40 

Figure 22:  A portion of an IEEE 1687 network with IEEE 1687 interface ................................. 41 

Figure 23:  Embedded memory BIST instrument with targeted memory array ........................... 43 

Figure 24:  Embedded instrument with associated PDL vectors .................................................. 44 

Figure 25:  IP cores with IEEE 1500 wrappers controlled by JTAG TAP Controller.................. 61 

Figure 26:  An IJTAG architecture showing network, instrument interface and vectors ............. 64 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
5 

Figure 27:  Embedded instrument connections to TAP described in ICL .................................... 65 

Figure 28:  IJTAG architecture with SIBs and NIBs .................................................................... 66 

Figure 29:  The active portion of the JTAG FSM for IJTAG operations ..................................... 66 

 

Table of Tables 
Table 1:  Prominent capabilities of IEEE 1687, IEEE 1149.1-2013 and IEEE 1500 ................... 13 

Table 2:  A summary of IEEE 1687 Scan Path Elements ............................................................. 32 

Table 3:  Standard Languages ....................................................................................................... 45 

Table 4:  Comparison of IEEE 1687 vs IEEE 1149.1-2013 PDL Commands ............................. 52 

 

 

 

 

 

 

 

 

 

 

 

© 2016 ASSET InterTech, Inc. 

ASSET and ScanWorks are registered trademarks, and SourcePoint and the ScanWorks logo are trademarks of ASSET 

InterTech, Inc. All other trade and service marks are the properties of their respective owners.  



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
6 

Executive Summary 

Engineers working with embedded instrumentation – which is defined as intellectual property 

(IP) embedded within chips to support test and measurement applications – may find themselves 

using the capabilities of several IEEE standards, including IEEE 1687-2014 Internal JTAG 

(IJTAG), IEEE 1149.1 Boundary Scan (often simply referred to as JTAG) and the IEEE 1500-

2005 Embedded Core Test (ECT) standard. Contrary to any confusion in the industry, each of 

these three standards was developed for distinct and specific purposes. In fact, each standard has 

capabilities that the others do not, even though some of their capabilities may be similar. (Figure 

1) 

 

Figure 1: Capabilities of IEEE 1687 IJTAG, IEEE 1149.1 JTAG and IEEE 1500 ECT 

Moreover, standards change over time. Since its first ratification in 1990, the oldest of these 

three standards, IEEE 1149.1 JTAG, has evolved to include features that are far removed from its 

original purpose of non-intrusive (probe-less) structural circuit board test. Since the 1990s, 

embedded instrumentation has exploded, bringing with it many requirements that were totally 
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unforeseen when the original IEEE 1149.1 JTAG standard was developed. Several standards, 

including IEEE 1687 IJTAG, IEEE 1500 ECT and several others have used the JTAG standard’s 

Test Access Port (TAP) and controller because these have been widely deployed in chips and 

they provide non-intrusive physical access to the internal operations of semiconductors. 

Generally speaking, IEEE 1687 IJTAG is able to manage, coordinate and schedule embedded 

instruments while IEEE 1500 is able to access and manipulate complex embedded cores through 

the access provided by IEEE 1149.1 JTAG’s TAP and controller. 

Recent changes in the IEEE 1149.1 JTAG standard (IEEE 1149.1-2013) seem to suggest that it is 

evolving away from its original purpose in circuit board test and migrating toward other 

applications, such as chip test. This may or may not be a good thing for circuit board test. One 

can question whether the original intent of a standard such as IEEE 1149.1 JTAG is being 

compromised when it evolves into areas that have very different requirements from those that led 

to its development in the first place. 

This eBook compares and contrasts the capabilities of these three standards to illustrate how the 

unique capabilities of each can be applied to achieve engineering goals in development, 

manufacturing and field support. In particular, some of the confusion that has arisen around the 

IJTAG and JTAG standards will be dispelled by explaining how the seminal objectives upon 

which these standards were developed actually limit their growth and applicability to new use 

cases and that these new use cases are beyond the scope of the standards’ original objectives as 

well as applications. In addition, the strengths of each standard will also be described. In fact, 

understanding where each standard should not be used is as important as understanding where 

they should be applied. In addition, it should be noted that any one chip or circuit board may 

require the capabilities of all three standards because each one has certain capabilities not found 

in the others. In addition, the adoption of any one standard may be driven by the IP provider 

since the standards supported by any IP may be limited. Moreover, the ease of integrating IP may 

require the support for all three standards at the IC level. 
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Introduction 

A cursory understanding of the objectives that drove the original development of the IEEE 

1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 IJTAG standards will indicate the use cases, 

strengths and weaknesses of each. 

When the development of the IEEE 1149.1 Boundary-Scan Standard (JTAG) began in the late 

1980s followed by its first IEEE ratification in 1990 (IEEE 1149.1-1990), its goal was to provide 

a more effective circuit board test methodology that would verify the connectivity of chips to 

boards. At the time, new chip packaging technologies, such as surface mount ball grid arrays 

(BGA), were making the pins on chips inaccessible to probe-based validation, test and debug 

methods because the pins were hidden under the silicon die. Test and measurement equipment 

such as oscilloscopes, in-circuit testers (ICT) and others have traditionally relied on probe-based 

access to chips and circuit boards. In essence, surface mount chips began to erode the 

economical probe access that the industry previously had available. In reaction to this situation, 

chips conforming to the IEEE 1149.1 JTAG standard added limited logic to support the 

boundary-scan test methodology, which eliminated the need for probe access. The IEEE 1149.1 

standard has been updated several times since it was first ratified. The last such update in 2013 

(IEEE 1149.1-2013) introduced several features that overlap certain functionalities included 

within the IEEE 1687 and IEEE 1500 standards. For additional background information on the 

IEEE 1149.1 Boundary-Scan Standard, see the Appendix. 

The IEEE 1500 Embedded Core Test (ECT) standard was 

ratified in 2005. Prior to IEEE 1500’s ratification, multiple IP 

cores were being integrated on-chip, but these cores typically 

numbered in the tens of cores. These cores could be hard cores 

(physical layout macros) or soft cores (synthesizable HDL or 

RTL). IEEE 1500 ECT provided a methodology for validating 

that the cores embedded in a chip could interact as specified by 

including self-contained tests and by supporting a core 

boundary wrapper. Today, IP cores in a typical system-on-a-

Examples of Embedded Instruments: 
• Memory BIST 
• Scan 
• Scan Compression 
• Logic BIST 
• PLL BIST 
• Debug trace 
• Capture triggers 
• Assertions 
• Voltage monitors 
• Temperature monitors 
• Frequency monitors 
• Power mode settings 
• Bus configurations 
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chip (SoC) may number well over 100. For additional background information on the IEEE 1500 

Embedded Core Test Standard, see the Appendix. 

Development of the IEEE 1687 Embedded Instrumentation (IJTAG) Standard began in 2005 

when the number and types of embedded instruments inside chips began to proliferate 

dramatically. Chip designers had discovered that embedded instrumentation was one of the most 

cost-effective and efficient means of testing, validating, characterizing and debugging their ICs. 

(It was more cost-effective to use features on-silicon instead of using external equipment such as 

a multi-million-dollar ATE system.) Additionally, the capabilities of the embedded instruments 

within chips were being applied to additional applications, including the debug, validation and 

test of circuit boards. An example of these wider applications would be applying a SerDes built-

in-self-test (BIST) instrument to verify the high-speed low-voltage differential signaling (LVDS) 

traces on a circuit board. 

There was little or no consistency among embedded instruments with regards to management 

and coordination procedures, access ports and usage protocols, on-chip access architectures and 

other aspects of their operations. For instance, certain types of instruments were used in different 

environments and, therefore, supported different access mechanisms. Wafer probe, for example, 

accessed embedded process monitors (ring oscillators) through probe pads; chip test accessed 

manufacturing scan and scan compression through a custom pin interface; and debug/yield-

analysis accessed debug and trace logic through the JTAG port. IEEE 1687 IJTAG was 

developed to ensure the inherent portability of embedded instruments and to make the 

application of embedded instruments more effective and efficient without disturbing the 

purposes of other standards, such as IEEE 1149.1 JTAG. For additional background information 

on the IEEE 1687 Embedded Instrumentation Standard, see the Appendix. 

Differences among the three standards 

On the surface, these three standards may seem somewhat similar, but in reality there are 

significant differences among them. Since IEEE 1149.1 JTAG is the oldest and most established 

of these standards (IEEE 1149.1-1990), it established the definition of the register configurations 

and the state machine-based protocol that were adopted as a foundation for the other two 
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standards. As a result, one could easily believe that all three standards have similar hardware 

architecture. However, since the use cases for each standard are quite different, the nature of 

their hardware architectures is also different. The biggest differences, however, are in their 

methods of documentation; that is, their architectures and vector descriptions. Therefore, the 

differences among the three standard can be found in both the hardware architectures and their 

description languages. 

As mentioned previously, since its first ratification in 1990, IEEE 1149.1 JTAG has been 

deployed in circuit board test and validation applications, and its on-chip Test Access Port (TAP) 

and TAP Controller have become de facto methods for accessing embedded on-chip resources. 

IEEE 1149.1 JTAG’s original use case was to provide on-chip logic to support board 

interconnect testing. The JTAG TAP, which is defined as four mandatory (TCK, TMS, TDI, 

TDO) and one optional (TRST*) package pins for accessing JTAG’s internal functionality, is 

simply referred to as the JTAG port and IEEE 1149.1’s mandatory and optional data registers are 

the vehicles for accessing or implementing the standard’s functionality. 

JTAG’s board test purposes are executed through a centralized instruction register that is 

operated by a dedicated portion of the JTAG state machine. This results in the separation of 

instruction selection from data operations. The original intent of the IEEE 1149.1 JTAG standard 

was to define and describe registers that had operational purposes narrowly defined by the 

standard so that the selection of an instruction mapped onto a known test operation. Here are a 

few examples:  1) updating an EXTEST instruction (encoding) into the JTAG Instruction 

Register (IR) results in the Boundary Scan Register (BSR) taking on a particular configuration to 

statically set the output logic values of the output pins of the chip;  2) the use of the IDCODE 

instruction results in the access and reading of a 32-bit register that contains a defined value 

established by the chip provider, the chip family and a JEDEC standard; and  3) the use of the 

BYPASS instruction resolves the entire chip’s contribution to the board’s overall scan path to a 

single bit. 

The IEEE 1500 ECT standard has a similar use case and functionality to IEEE 1149.1 JTAG but 

IEEE 1500 ECT specifies a means for wrapping embedded cores so they can contain test modes 

for validating the core’s operations and for conducting an interconnect test when the core is 
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embedded on a particular chip. An IEEE 1500 core wrapper is similar to an IEEE 1149.1 JTAG 

register architecture, but the IEEE 1500 standard does not specify that a state machine must be 

part of the architecture. The IEEE 1500 architecture is meant to be operated and synchronized at 

the test controller level of the SoC by the IEEE 1149.1 TAP Controller state machine. An IEEE 

1500 core might house multiple test and debug functions that parrot how IEEE 1149.1 provides 

test functions for a chip, but these functions are applied to the embedded core. In this respect, 

one could think of an IEEE 1500 wrapper as IEEE 1149.1 JTAG and boundary scan for a core. 

In this sense, the core might represent a “virtual chip.” (That is, a core is a design unit without 

the chip package pins. In other words, a core is to a SoC as a chip is to a circuit board.) The test 

functions or instruments housed inside an IEEE 1500 core wrapper are accessed by an IEEE 

1500 Core Data Register (CDR) or Wrapper Data Register (WDR), which are equivalent to an 

IEEE 1149.1 TDR. The IEEE 1500 Wrapper Architecture allows a wrapped core to be delivered 

with tests already included, thereby adding a measure of portability to core test. It must be noted 

that a core provider has the option of delivering the core with an IEEE 1500 wrapper and 

predefined tests or just the core itself. If only a core is delivered, the chip integrator will have to 

wrap the core and add tests that meet the needs and purposes of the specific SoC. 

IEEE 1687 IJTAG’s use case has always been to provide access to embedded instruments so 

they could be operated for test, debug, environmental monitoring, process monitoring, and 

functional configuration, thereby bringing multiple use environments under one standard access 

mechanism. The stated purpose of the IJTAG standard is to “facilitate vector retargeting” from 

embedded instruments to the chip or board level. Retargeting is accomplished by providing 

instrument vectors written at the instrument interface and by providing a minimal description of 

the access architecture that delivers the vectors, thereby making embedded instruments portable 

and independent of the access architecture. 

Since IEEE 1687 IJTAG was the last of these three standards to be developed, one can better 

understand what its strengths and use cases are by examining those of the other two, IEEE 

1149.1 JTAG and IEEE 1500 ECT. Although IEEE 1687 IJTAG was developed so that it would 

not overtly duplicate the capabilities of IEEE 1149.1 JTAG and IEEE 1500 ECT, the IEEE 1687 
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IJTAG working group had no control over the working groups overseeing the further 

development of these other two standards. 

The IEEE 1687 IJAG working group started with the belief that there were shortcomings with 

both IEEE 1149.1 JTAG and IEEE 1500 ECT. For example, IEEE 1149.1 JTAG’s centralized 

instruction register architecture was seen as a physical hindrance to scalability as the number of 

embedded instruments grew. In addition, the fixed and somewhat rigid aspects of the JTAG 

architecture, such as selected instructions accessing only a fixed-length TDR, limited an 

engineer’s ability to design access networks with engineering tradeoffs in mind, like power, area, 

routing, non-centralized decode and others. In addition, the operational tradeoffs engineers could 

incorporate, such as flexible instrument scheduling, instrument concurrence of operation and 

scan path length management, were also limited under the JTAG standard. The IEEE 1687 

IJTAG working group believed JTAG or ECT involved too much overhead for individual simple 

instruments. (Compliance to the IEEE 1149.1 JTAG standard requires support of the boundary 

register, bypass register, IDCode register, instruction register and some mandatory instructions.) 

Also, the JTAG standard could not efficiently handle concurrent and flexible instrument 

scheduling. The IEEE 1687 IJTAG working group concluded that something simpler than IEEE 

1149.1 JTAG and IEEE 1500 ECT was needed. 

Some of the other objectives of the IEEE 1687 IJTAG working group were to avoid affecting the 

IEEE 1149.1 JTAG and IEEE 1500 ECT standards to the extent that their use cases would be 

compromised or that using them would be made more difficult. This meant that the board test 

community, which expected to use the defined IEEE 1149.1 JTAG instructions of EXTEST, 

BYPASS, IDCODE, and a handful of other defined instructions, should not be burdened with the 

hundreds or thousands of instructions that might be associated with IC test and their 

documentation within JTAG’s Boundary-Scan Description Language (BSDL) file. The IEEE 

1687 IJTAG working group concluded that the content accessed for IC test should somehow be 

accessed by just a few instructions and that the documentation of these instructions should not 

bloat a chip’s BSDL file. (Similar considerations were made for the IEEE 1500 Wrapper-IR 

(WIR) and CTL files.) This led to the development of a different description language for the 

IEEE 1687 IJTAG architecture. In addition, the purpose of IEEE 1687 IJTAG was to allow 
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portable instruments to be delivered with their vectors and for those vectors to be reused or 

retargeted with automation tools instead of manually modifying vectors followed by chip-level 

re-simulation. So, a vector language with an application focus different from IEEE 1149.1 

JTAG’s, which is restricted to its TAP and access network, was needed. This language would be 

focused on the internal embedded instrument, not the IC or an SoC’s TAP package pins. 

In short, the three standards, IEEE 1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 IJTAG may 

all be based on the same basic operations (Reset - Shift – Capture – Update), but their particular 

use cases result in significant applied differences as well as different sets of pros and cons for 

each standard. 

Table 1:  Prominent capabilities of IEEE 1687, IEEE 1149.1-2013 and IEEE 1500 

Feature IEEE 1687 
IJTAG 

IEEE 1149.1-
2013 JTAG 

IEEE 1500 
ECT 

Includes Hardware FSM Controller No Yes No 
Includes an Instruction Register No Yes Yes 
Includes Mandated Defined Instructions No Yes Yes 
Supports Persistent Instructions No3 Yes No 
Separation of Instruction and Data No Yes  Yes 
Includes Defined Connection to Controller Yes Yes No 
Data-based operations only Yes No  No1  
Mandates a Boundary Register No Yes  Yes 
Mandates a Bypass Register No Yes  Yes 
Mandates an ID Register No Yes Yes 
Support of a Test Data Register (TDR) Yes Yes Yes 
Support of Network Instruction Bits Yes No No 
Support of Network Configuration Bits Yes Yes No 
Portable instruments supported Yes Yes2 No 
Embedded TAP Controller supported Yes No No 
Architecture description language ICL BSDL CTL  
Test Data Register based vectors No Yes Yes 
Portable instrument vectors supported Yes No No  
Vector description language PDL SVF, PDL STIL 

1. An IEEE 1500 Wrapper may be operated from only the DR-side of the IEEE 1149.1 state machine, but the wrapper itself still 

separates instruction operations from data operations. 

2. IEEE 1149.1 JTAG supports instruments if they are designed and delivered with a Test Data Register attached and the vectors are 

written to the TDR. IEEE 1687 IJTAG allows and supports true portable instruments and vectors with no required TDR. 

3. IEEE 1687 IJTAG has embedded instruction bits in the data scan path that are used mainly to configure the scan path, conduct local 

resets, and apply action limitations such as “deny capture.” These instructions are written on each DR-Scan and are not persistent 

through reset. 
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Table 1 above summarizes some of the more prominent capabilities of the three standards. It 

shows that both IEEE 1500 ECT and IEEE 1687 IJTAG are controller-less standards, which rely 

on IEEE 1149.1 JTAG and its TAP Controller to provide operational signals and sequences. Of 

the three standards, only IEEE 1149.1 JTAG specifies a controller. Both IEEE 1149.1 JTAG and 

IEEE 1500 ECT mandate a register architecture that includes boundary registers, ID registers, 

bypass registers and a formal instruction register. In contrast, IEEE 1687 IJTAG only mandates 

TDR registers and optionally allows embedded instruction and configuration bits in the data-side 

scan path. IEEE 1149.1 JTAG and IEEE 1500 ECT both define instructions such as BYPASS 

and IDCODE since each of these standards set aside a fixed portion of their architectures to 

support these instruction-based features. Only the most recent revision of the JTAG standard, 

IEEE 1149.1-2013, supports reset-independent persistent instructions. IEEE 1687 IJTAG is the 

only standard to support multiple embedded TAPs and TAP Controllers. IEEE 1149.1-2013 

JTAG and IEEE 1687 IJTAG support variable-length scan paths by allowing the inclusion of 

Segment-Select or Segment-Insertion Bits. And each of the three standards mandates different 

description languages. 

Creeping Overlap 

The confusion over the respective functionality of IEEE 1149.1 JTAG and IEEE 1687 IJTAG 

began in 2011 when the IEEE 1149.1 JTAG working group opened an IEEE Project 

Authorization Request (PAR) to update the IEEE 1149.1 JTAG standard. The IEEE 1687 IJTAG 

working group had begun developing its standard in 2005. IEEE 1149.1-2013 JTAG was ratified 

in 2013, while IEEE 1687 IJTAG passed ballot in 2014. Some companies and individuals 

participated on both committees. 

IEEE 1149.1-2013 JTAG added several new features to the standard but it steadfastly maintained 

a dual register separation architecture which separated data and instruction operations and was 

made up of centralized instructions and multiple parallel data registers. Although some of the 

new features of IEEE 1149.1 JTAG by definition overlap the features of both IEEE 1687 IJTAG 

and IEEE 1500 ECT on a purely functional level, in real-world implementations some of these 

same capabilities could be accomplished more effectively and efficiently with either IEEE 1687 
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IJTAG or IEEE 1500 ECT. In addition, both IEEE 1687 IJTAG and IEEE 1500 ECT include 

capabilities not found in IEEE 1149.1-2013 JTAG at all. 

Understanding and Comparing Hardware Architectures 

 

Figure 2: Hardware similarities and differences account for the overlap of standards 

The hardware architectures specified by IEEE 1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 

IJTAG (Figure 2) have a major effect on the scalability, portability and use cases for each 

standard. 

As mentioned previously, IEEE 1149.1 JTAG defines a controller. This controller consists of a 

four-bit finite state machine (FSM), which generates 16 states that control the operating 

sequences defined in the standard. The inputs to the IEEE 1149.1 JTAG FSM (Figure 3) are two 

of the four signals defined in the standard, the Test Mode Select (TMS) and Test Clock (TCK). 

The states in the FSM that are used to generate the key operational signals are:  Test-Logic-Reset 

(TLR), which may generate the Reset Signal; Shift-IR/DR, which may generate the Shift-Enable 

signals; Capture-IR/DR, which may generate the Capture-Enable signals; and Update-IR/DR, 
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which may generate the Update-Enable signals. The definition of the controller and its operations 

is unique to the IEEE 1149.1 JTAG standard. For the IEEE 1687 IJTAG standard, only the data-

side operations of the controller are important. IEEE 1500 ECT may be connected to the IEEE 

1149.1 JTAG TAP Controller in such a way that it may be operated with only data-side 

operations or it may require both data-side and instruction-side operations. 

 

Figure 3: The IEEE 1149.1 JTAG Finite State Machine (FSM) 

No physical controller is specified in the IEEE 1687 IJTAG or IEEE 1500 ECT standards. IEEE 

1500 and IEEE 1687 have been designed with a separable (plug-and-play) signal interface that 

makes use of the signals generated and the protocol established by the IEEE 1149.1 JTAG 

controller. IEEE 1500 ECT may connect to an IEEE 1149.1 JTAG FSM on both the data-side 

and instruction-side because both IEEE 1149.1 and IEEE 1500 have formal instruction registers. 

Alternatively, IEEE 1500 may connect to only the data-side operations of the state machine. In 

contrast, IEEE 1687 IJTAG only makes use of the data-side of the JTAG FSM since IEEE 1687 

IJTAG supports no formalized instruction register, but does allow data-side embedded 

instruction or embedded configuration bits. 
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One of the development goals of IEEE 1687 IJTAG was to maintain flexibility and re-

configurability. As a result, IEEE 1687 could utilize other controllers in the future if warranted 

by industry demand. This could be accomplished by connecting the IEEE 1687 separable 

interface to a different controller that would generate the Shift-Enable, Capture-Enable, Update-

Enable, and Reset signals. At the time of this writing, the IEEE 1687 IJTAG standard specifies 

and includes only the IEEE 1149.1 JTAG Controller as the preferred implementation, but the 

standard also provides a generic description of an AccessLink, which shows how alternative 

controllers could be associated with an IEEE 1687 IJTAG serial network. A formal IEEE 

P1687.1 effort will update and define alternate controller access for 1687 networks in the future. 

To a certain extent, the hardware architectures defined by IEEE 1149.1 JTAG and IEEE 1500 

ECT share many characteristics. In general, the IEEE 1149.1/1500 architecture is comprised of a 

collection of fixed-length registers that are included in an active scan path through the placement 

of an instruction in an associated instruction register. This differs decidedly from the flexible 

hardware architecture of an IEEE 1687 IJTAG on-chip network of embedded instruments. A 

single IEEE 1687 AccessLink instruction selects the network. Then, single-bit in-line embedded 

instructions configure the network. In a sense, these single-bit instructions act as switches or 

traffic lights to direct traffic over the various segments of the on-chip network of embedded 

instruments. One of the changes in IEEE 1149.1-2013 JTAG is the addition of “segment-select 

bits,” which incorporate some of this functionality into the IEEE 1149.1 JTAG standard. IEEE 

1687 IJTAG, unlike the IEEE 1149.1/1500 hardware architectures, makes no distinction between 

data and instructions in its network. 

IEEE 1500 ECT also has its own unique capabilities that are not supported in IEEE 1149.1 

JTAG or IEEE 1687 IJTAG. These include the Wrapper Parallel Port (WPP) and the Transfer 

operation. These are defined hardware configurations that are optimized for core-based test and 

the reuse of functional interface or boundary registers in the boundary wrapper. 

Another unique characteristic of IEEE 1687 IJTAG is the inclusion of embedded Network 

Instruction Bits (NIBs). In general, NIBs are in-line data bits in the scan path that can modify 

other portions of the scan path, which comprises the IEEE 1687 IJTAG on-chip network of 

embedded instruments. These bits may be used to gate the Capture-Enable, Update-Enable and 
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Reset signals to provide a Deny-Capture, Deny-Update, and Deny-Reset functionality. In 

addition, these bits may enable a capability known as Local-Reset, which resets a TDR or scan 

path segment and which is initiated by a NIB in the scan path. These capabilities are very useful 

during scan chain debug when, for example, a hold-time violation through a scan path flip-flop 

must be debugged or diagnosed. 

Perhaps one of the most significant capabilities of IEEE 1687 IJTAG that is not supported by 

IEEE 1149.1 JTAG or IEEE 1500 ECT is multiple embedded TAP Controllers. This became a 

problem when IEEE 1500 ECT adoption began in the industry. Some IP providers would deliver 

a core with an IEEE 1500 wrapper that also included the IEEE 1149.1 TAP state machine. 

Instead of the 1500 plug-and-play interface defined in the standard, the delivered IP would 

instead support an IEEE 1149.1 TAP signal interface. In effect, such a core would include a 

complete IEEE 1149.1 architecture that would function as a secondary JTAG architecture to the 

primary JTAG architecture of an IC or SoC. The question of how to incorporate multiple cores 

each with its own TAP and TAP Controller into one SoC is not dealt with in a cost-effective 

manner in the IEEE 1149.1 JTAG or IEEE 1500 ECT standards. So, IEEE 1687 IJTAG took on 

the task of defining how multiple embedded JTAG TAPs could be incorporated within an IEEE 

1687 IJTAG network and how these multiple TAPs would be described. However, an embedded 

TAP should more properly be viewed as either an instrument or a scan path reconfiguration 

element within the IJTAG network. 

It must be noted that all three standards support fixed-length TDRs, but each standard has a 

different method of documenting these registers. 

Comparing the IEEE 1149.1 and IEEE 1500 Hardware Architectures  

The two following graphics (Figure 4 and Figure 5) point out the similarities between the IEEE 

1149.1 JTAG and IEEE 1500 ECT hardware architectures. 

Figure 4 shows the IEEE 1149.1 JTAG architecture with its parallel set of Data Registers, 

Instruction Register (1149.1-IR), the FSM and the instruction decode for generating Register 

Control Signals. Several of the registers are required (mandated) functions, including the bypass 

register (BYP), the ID code register (IDCode) and the Boundary Scan Register (BSR). (Note that 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
19 

the BSR can only be constructed from cells defined in the IEEE 1149.1 and 1149.6 JTAG 

standards.) One or more generic Test Data Registers (TDR) are optional for accessing embedded 

instruments. 

 

Figure 4: The IEEE 1149.1 TAP (left) with register architecture and protocol FSM 

When the FSM is on the data-side (Figure 3), the active instruction in the Instruction Register 

selects which register is active and, as a result, it is included in the active scan path. However, 

when the FSM is on the instruction-side (Figure 3), only the Instruction Register is included in 

the active scan path. This architecture is documented with the IEEE 1149.1 standard’s BSDL. 

 

Figure 5: The IEEE 1500 Wrapper Serial Port (right) and register architecture 

The IEEE 1500 ECT architecture shown in Figure 5 is extremely similar to the IEEE 1149.1 

JTAG architecture in Figure 4. The register structure is practically identical except the registers 

are renamed as wrappers. The IEEE 1500 Wrapper Bypass Register (WBY) performs the 
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function of IEEE 1149.1’s BYP; IEEE 1500’s Wrapper ID Code (WID) register corresponds to 

IEEE 1149.1’s IDCode; and IEEE 1500’s Wrapper Boundary-Scan Register (WBR) mirrors 

IEEE 1149.1’s BSR; and IEEE 1500’s Wrapper Instruction Register (WIR) represents the same 

function as IEEE 1149.1’s IR. In IEEE 1500, one or more generic Core Data Registers (CDR) or 

Wrapper Data Registers (WDR) are optional for accessing embedded instruments in a manner 

similar to the IEEE 1149.1 TDR. 

The main difference between the IEEE 1149.1 JTAG and IEEE 1500 ECT architectures is not 

that the registers have been renamed, but that the IEEE 1149.1 FSM is not included as part of the 

IEEE 1500 architecture. As a result, the IEEE 1149.1 TMS signal that operates the FSM is 

replaced in IEEE 1500 by the control signals that are normally produced by the IEEE 1149.1 

FSM: ShiftWR, CaptureWR, UpdateWR, and ResetN (where the WR represents the word 

Wrapper on signals normally named ShiftDR or ShiftEn, for example). These signals must be 

included as inputs to the wrapper architecture instead of the IEEE 1149.1 TAP TMS signal. The 

IEEE 1149.1 TDI, TDO and TCK signals are included and are represented in IEEE 1500 as WSI, 

WSO and WRCK, respectively. In addition, a separate IEEE 1500 signal, SelectWIR, selects the 

Wrapper Instruction Register (WIR) to make the wrapped core part of an active scan path when 

instructions need to be installed or changed. The SelectWIR signal may be generated when the 

IEEE 1149.1 FSM is on the instruction-side (as the Select-IR signal is created for IEEE 1149.1) 

or this signal may be generated on the data-side when a SelectWIR type of instruction is installed 

in the IEEE 1149.1 IR. Where SelectWIR is generated depends on how the IEEE 1500 wrapper 

unit is connected to the 1149.1 TAP controller. The entire IEEE 1500 architecture is documented 

in that standard’s Core Test Language (CTL), which is its own standard, IEEE 1450.6. 

The IEEE 1500 ECT standard does not specify a connection to the IEEE 1149.1 JTAG TAP. 

Some implementations can connect one or more IEEE 1500 wrappers to the IEEE 1149.1 TAP 

with a single instruction. The WIR is operated in concatenation to the IR when the FSM is on the 

instruction-side and the IEEE 1500 Instruction is installed. (Essentially, this means that the IR 

can change length depending on the active instruction.) More often though, the favored 

implementation requires two instructions per IEEE 1500 wrapper unit: one IEEE 1149.1 

instruction selects the IEEE 1500 wrapper WIR as the active scan path and the second IEEE 
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1149.1 instruction selects the IEEE 1500 Data Registers as the active scan path. The specific 

active IEEE 1500 Data Register depends on the IEEE 1500 instruction contained within the 

WIR. In this case, all IEEE 1500 operations are on the DR-Side of the IEEE 1149.1 FSM. This 

type of connection is shown in Figure 6 where a complete IEEE 1500 Wrapper is subsumed 

within the TDR-space of an IEEE 1149.1 JTAG architecture. Note that multiple IEEE 1500 

wrappers may be selected by individual instructions or the wrappers may be daisy-chained 

(Figure 7) and treated similarly to a board test architecture. (Those wrappers not active may be 

placed in bypass to reduce the length added to the daisy-chain scan path to one bit for that 

particular bypassed IEEE 1500 wrapper.) 

 

Figure 6: Where IEEE 1500 fits within IEEE 1149.1 
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Figure 7: Where daisy-chained IEEE 1500 fits within IEEE 1149.1 JTAG 

In summary, the intent of the IEEE 1149.1 JTAG and IEEE 1500 ECT hardware architectures is 

to provide well defined test operations while maintaining a separation between the instructions 

that configure the architecture as well as activate the test operations and the data that can be used 

for test and debug purposes. 

It should be noted that IEEE 1500 wrapper units sometimes cause malfunctions in 1149.1 

JTAG/boundary-scan board test tools because the IEEE 1500 WIR instructions are invisible to 

JTAG’s BSDL description of the 1149.1 architecture. 

Scalability Problems with IEEE 1149.1 and IEEE 1500 Instruction-Based 
Architectures 

The differences in hardware architectures between IEEE 1149.1/1500 and IEEE 1687 IJTAG are 

critical with regards to issues of scalability. Over the upcoming decades as more and more 

instruments are embedded on-chip or in multiple levels on complex multi-die packages, it will be 

essential that the network connecting them must be extremely scalable and flexible so that it will 

allow for engineering and operational tradeoffs, and take into consideration clock and power 

domains as well as security instruments. The hardware architecture defined in the IEEE 1687 
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IJAG standard enables a scalable on-chip environment while the IEEE 1149.1/1500 architecture 

is limited in scalability because the IEEE 1149.1/1500 architecture is based on centralized 

instructions. 

While the IEEE 1149.1 JTAG FSM that drives the IEEE 1149.1/1500 hardware architecture has 

a dual instruction/data structure, the IEEE 1149.1/1500 hardware architecture itself is 

instruction-based insofar as instructions configure the scan path and activate the operations of 

any associated embedded instruments. This exclusive instruction orientation of the IEEE 

1149.1/1500 architecture has inherent failings involving efficiency of operations and 

management of resources. 

The Daisy-Chained TDR Configuration 

When instructions select or activate the scan paths for embedded instruments, one 

implementation can result in a lengthy single TDR architecture. Referred to as a daisy-chain 

configuration, the embedded instrument TDRs on the long active scan path will be daisy-chained 

together (Figure 8). When a long scan path such as this is selected, everything on the scan path, 

including all of the embedded instruments are active and consuming power. And, because of the 

length of the scan path, access times for any given embedded instrument interface will be 

relatively long. 

Consider this example: 10 embedded instruments each with a 32-

bit interface comprise the scan path. To access all 10 instruments, 

the single daisy-chained scan path would be 320 bits long. An 

access to any single embedded instrument would require the 

entire 320 bits to be shifted into the register chain and 

subsequently updated. In addition, all 320 scan flip-flops would 

be turned on, active and using power even though only one 32-bit 

instrument interface was being accessed. 

This architecture also features high risk. If only one bit is broken (stuck-at, open, hold-time 

problems, slow clock, slow data etc.), the entire scan path will not shift correctly, possibly 

disabling all of the embedded instruments on the chain. And lastly, there is no way to document 

Deficiencies of daisy-chained 
scan path in the IEEE 
1149.1/1500 architecture: 
• Long instruction lengths 
• Excessive power 

consumption 
• High risk of failure 
• Absence of instrument 

documentation 
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in IEEE 1149.1 JTAG’s BSDL all of the separate instruments on the path because features 

connected to the access TDR are not officially part of the BSDL description. Generally, an 

embedded instrument scan path is listed as private in IEEE 1149.1 and only the length of the 

selected TDR is required to be documented in the BSDL. 

 

Figure 8: Inefficient instrument access with long daisy-chained scan paths 

This daisy-chained type of architecture is also not scalable because adding more embedded 

instruments just makes matters worse. A scan path of 100 32-bit instruments results in a scan 

path 3,200 bits long and 1,000 instruments resolves to a scan path 32,000 bits long. And, of 

course, more power is consumed, access times get longer and the risk increases since a longer 

scan path will include a greater number of possible points of potential failure. 

The Single-Instruction Per Instrument Configuration 

Another IEEE 1149.1 JTAG architecture would be to include a TDR for each embedded 

instrument (Figure 9). In this structure, each instrument could be selected by its own unique 

instruction. This type of configuration is sometimes referred to as a one-at-a-time access 

architecture. 
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This configuration mitigates the risk of failure somewhat since a broken data scan chain only 

disables access to one instrument. The power problem is 

mitigated because instruments could be selected and activated 

individually through each instrument’s TDR while other non-

active instructions may have quiescent TDRs by not receiving 

clocks or active control signals. Unfortunately, this 

individualization may result in routing congestion since each 

separate TDR will require uniquely selected control signals. 

Lengthy access times can be avoided since the scan path could 

contain only the instrument or instruments that are required. 

In addition, this one-at-a-time architecture also has efficiency 

and scalability problems. Each instrument must have its own unique access instruction. Adding 

more embedded instruments quickly escalates the number of instructions. Moreover, it is 

impossible to effectively schedule and operate multiple instruments simultaneously. In addition, 

this is essentially a centralized decode structure since all instructions are decoded in the chip’s 

IEEE 1149.1 JTAG TAP Controller. Thousands of unique instructions could be routed from the 

TAP to all of the embedded instruments located throughout the chip. This could lead to long 

instruction registers, long test execution cycle times and possibly routing congestion problems. 

(Routing congestion is one of the more significant scalability problems.) Furthermore, the BSDL 

file describing the device could become bloated with all of the required unique instruction 

descriptions for each instrument. 

Deficiencies of one-at-a-time scan 
path configuration: 
• Potentially many unique 

instructions (one for each 
instrument) 

• Poor efficiency 
• Multiple instruments cannot be 

scheduled and operated at same 
time 

• Central decode leads to long 
instruction registers, test execution 
times and on-chip route congestion 

• Bloated BSDL file with many 
unique instructions (one per 
instrument) 
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Figure 9: Inefficiency in one-instrument-at-a-time/one-instruction architecture 

The two methods explained above could be combined in an architecture featuring unique 

instructions for groups of instruments so that each instrument would not need its own individual 

instruction. The drawback for this configuration is it lacks flexibility. It would be hardened in the 

chip during design and could only be altered through a re-design, a time-consuming and 

expensive process. To overcome this deficiency and ensure a flexible configuration, many 

multiplexors could be inserted into the architecture, but this would require massive amounts of 

decode within the TAP Controller and lead to excessive on-chip logic processing and routing 

congestion. Ultimately, the operating frequency of the IEEE 1149.1 architecture would be 

slowed down. 

The following example illustrates the difficulties with this type of architecture. The architecture 

is a fully selectable centralized instruction architecture with just 50 instruments. Allowing any 

six instruments to be combined would require decoding and multiplexing to create 15 million 

instructions. The problem is not that 15 million instructions would require a large instruction 

register. In fact, only a 24-bit Instruction Register would be needed to store all 15 million 

instructions. However, a chip designer or test engineer would need to manually examine and 

select the one instruction from among the 15 million possible instructions that would operate the 

configuration he wanted to deploy. Clearly, this would not be feasible. A more flexible 

architecture would allow 50 instruments to be represented as 50 items and a selection of each 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
27 

item would include it within the scan path. This is what the IEEE 1687 IJTAG architecture 

accomplishes. 

Comparing the IEEE 1149.1/1500 and IEEE 1687 Hardware Architectures 

The IEEE 1687 IJTAG architecture does not rely on several hardware architecture and 

operational aspects that are essential in both IEEE 1149.1 JTAG and IEEE 1500; namely, a 

centralized instruction architecture and a separation of data and instructions. The IEEE 1687 

IJTAG architecture does not include its own controller or its own centralized instruction register, 

and it does not mandate any defined instructions. The IJTAG hardware architecture is based on a 

signal interface designed to be plug-and-play portable and to be operated by a controller that is 

external to the IEEE 1687 IJTAG architecture itself. The separable interface and external 

controller is very similar to the IEEE 1500 ECT standard, but without the mandated multiple 

register architecture with Bypass, Boundary, ID, and other features, for example. Currently, the 

IEEE 1687 IJTAG standard describes only the IEEE 1149.1 TAP Controller as the default 

generator of the operational protocol to the IEEE 1687 IJTAG plug-and-play signal interface, but 

the standard does allow for different chip interfaces and controllers and describes a generic 

AccessLink instruction. Note that a formal effort to investigate other interfaces and controllers is 

under way as IEEE P1687.1. 

Because the IEEE 1687 IJTAG architecture does not feature one centralized instruction register, 

it allows a greater degree of flexibility by supporting data-side scan path bits that may be viewed 

as Network-Instruction-Bits (NIBs). That is, the concept of a NIB allows bits in the data scan 

path to act as instruction bits when they are written and asserted. For example, the update cells 

associated with scan shift cells in the scan path become a distributed instruction register mingled 

with scan path data bits and are operated on the DR-side of the IEEE 1149.1 FSM. These 

embedded instructions can reconfigure the scan path or modify the behavior of the scan path on 

any Update-DR assertion. One of IEEE 1687 IJTAG’s primary configuration NIBs is the 

Segment Insertion Bit (SIB), which is a normal IEEE 1149.1 JTAG-type scan path TDR cell 

with a shift-side and an update-side. However, the SIB’s update-cell holds a value that operates a 

ScanMux multiplexor, which can reconfigure the scan path. In other words, whereas the IEEE 

1149.1/1500 architecture performs a register-swap, the IEEE 1687 IJTAG SIB add or subtract a 
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segment (Figure 10). This means that the SIB itself can be viewed as an embedded scan path 

bypass register. IEEE 1687 supports the IEEE 1500 scan path configuration mechanism as well. 

This is similar to the SIB. It uses a construct known as a Segment Swap Bit (SSB) that swaps one 

mutually-exclusive scan path segment for another (Figure 11) instead of adding or subtracting a 

scan path segment to/from the active scan path as an IJTAG SIB would. 

 

Figure 10:  The Segment Insertion Bit (SIB) adds a scan path 

 

Figure 11:  The Segment Swap Bit (SSB) selects a mutually-exclusive active scan segment 

Figure 10 shows a SIB that can add a scan path (SP) segment (SP #1) to an existing scan path 

(SP #3) and can expand the active scan path from 13 bits (SP #3’s 12 bits plus the SIB’s 1 bit) to 

45 bits (Scan Path #1’s 32 bits plus the existing 13 bits). On any given DR-Scan, the SIB can be 

opened to add SP #3 or include the segment, or the SIB can be closed to subtract or dis-include 

the segment. When the SIB is closed, the TDR segment is no longer in the active scan path, but 

by IEEE 1687 IJTAG’s rules of operation, the TDR segment is frozen (holds state) and does not 

process any ShiftEn/CaptureEn/UpdateEn when the Select generated by the SIB is de-asserted. 
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Figure 11 shows an example of the IEEE 1500 type of scan path configuration mechanism and 

its IEEE 1687 architecture method. Instead of having the register selection coming from a 

formalized centralized instruction register such as the IEEE 1500 WIR, a single in-line NIB can 

be used to generate a Select signal as a SIB would. This type of NIB could be called a Segment 

Swap Bit (SSB). In the example in figure 11, the constant scan path segment would be the 12-bit 

SP #3 plus the 1-bit SSB. The variable portion would be one of either the 32-bit Scan Path #1 or 

the 40-bit Scan Path #2. As with the SIB, the IEEE 1687 rules would be that the de-selected scan 

path would freeze and hold state. 

Freezing and holding state the de-selected segments of the scan path allows for the flexible 

scheduling of embedded instruments. A scan segment can be activated and written to, which will 

configure and start an instrument on the scan segment. Then, the scan segment can be de-

selected, but the instrument will continue to operate. This allows the rest of the scan path to 

continue to be used without disturbing the embedded instrument, which eliminates the need for 

the common IEEE 1149.1 method of forcing the state machine to stay in the Run-Test-Idle (RTI) 

state until the instrument has completed its operations.     

Figure 12 shows how any single SIB, which represents a scan path of just one bit, can add a scan 

path (TDR) that accesses an embedded instrument or multiple instruments on the same daisy-

chain scan sub-path. However, a more efficient architecture would be to have a daisy-chain of 

multiple SIBs. For example, the path might contain 10 SIBs. The overall normal scan path would 

only be the number of SIBs or 10 in this hypothetical example. Each SIB can then be opened one 

at a time or concurrently, as needed. The resulting scan path becomes only the basic SIB 

architecture plus the scan path segment(s) behind each opened SIB. For example, a SIB for an 

instrument with a 32-bit interface would represent itself (1 bit) and the 32 TDR bits of the 

instrument as a 33-bit scan path when the SIB was opened. When closed, the SIB would 

represent a scan path of 1 bit. Simultaneously opening 10 SIBs each with a 32-bit TDR 

instrument interface would create a scan path of 330 bits. When all SIBs are closed, the scan path 

would be only 10 bits long. Opening just one of these 10 SIBs results in a scan path of 42 bits. 

Figure 12 shows this concept with three SIBs. Note the IEEE 1687 IJTAG network interface is 

very similar to the IEEE 1500 wrapper interface. The only difference is a Select signal, which 
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1687 uses to activate the Shift/Capture/Update enable signals) instead of a SelectWIR signal, 

which is used by 1500 to select a centralized instruction register. 

 

Figure 12:  An IJTAG architecture with three instruments and three SIBs 

In addition, the IJTAG standard specifies that when a SIB is open, it must further propagate or 

provide a Select signal that enables the operation of the segment elements (such as TDRs or 

hierarchical SIBs) on the segment of the scan path added by the SIB. This Select signal further 

enables the ShiftEn, CaptureEn, and UpdateEn signals or may enable the TCK to the target scan 

path. Either method is allowed. Conversely, when a SIB is closed, the IJTAG standard states that 

the Select signal must be de-asserted, which may gate-off the aforementioned ShiftEn, 

CaptureEn, UpdateEn, or TCK, rendering the scan path elements behind the SIB inaccessible 

since it will be off of the active scan path and frozen in its current state. This means that if an 

embedded instrument is operating and it doesn’t require repeated inputs of data to operate, it will 

simply continue operating. If an embedded instrument is not operating, it will maintain its 

quiescent state. The Select signal is used to enable or disable the TDR, not the embedded 

instrument itself. This freezing of the de-selected segment, while allowing the SIB portion of the 

scan path to operate, eliminates the Run-Test-Idle (RTI) requirement of most embedded 

instruments. For example, instead of a Memory BIST sitting in the RTI state for hundreds of 

thousands of TCK cycles until it is completed, the IJTAG scan paths can continue to be actively 

used while the Memory BIST simultaneously operates behind a closed SIB. 
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The state of the scan and update path behind a closed SIB can only be changed by either opening 

the SIB and shifting new data into the scan path followed by an UpdateDR or by asserting the 

global (TAP-based) or the local (NIB-based) reset signal known as Local-Reset. 

Furthermore, multiple SIBs may be nested in a hierarchical arrangement (Figure 13). In the 

previous example of an IEEE 1687 IJTAG architecture with 10 SIBs, one of the 10 SIBs may 

open a 32-bit register made up of 32 SIBs and each of those SIBs may open into a 32-bit 

instrument interface. This provides many different mathematical possibilities for creating an 

access architecture that can be adjusted to meet engineering budgets in terms of area, gates and 

power, and operating budgets in terms of access times, instrument scheduling and instrument 

concurrence. 

 

Figure 13:  Hierarchical IJTAG architecture; SIBs and nested SIBs opening multiple scan paths 

As stated previously, the Select signal allows a segment of the network to be operated. A Select 

may be provided from the IEEE 1149.1 TAP Controller through an AccessLink instruction, 

which would select the IEEE 1687 network, or the Select may be passed along or propagated by 

a SIB or NIB. The Select signal can then gate the ShiftEn, CaptureEn or UpdateEn signals to 

allow a portion of the scan path to operate. However, embedded NIBs may also generate signals 

that can be used to gate the CaptureEn or UpdateEn signals associated with the active scan path 

to provide what is known as a Deny-Capture, Deny-Update or Deny-Reset. These types of 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
32 

functions are especially helpful for debug and diagnosis of scan path problems such as hold 

times or blocked (stuck-at) scan path bits. 

Another type of NIB is the Local Reset function that allows a bit in the scan path to apply a reset 

to a portion of the scan path. The basic rule is that the Local Reset (LR bit) is applied on the 

falling edge of TCK in the UpdateDR state (while the UpdateEn signal to the network is 

asserted) and that the LR bit must self-clear itself before the CaptureEn signal is asserted, which 

is at least 1.5 TCK cycles in the IEEE 1149.1 JTAG TAP FSM. In addition, a NIB may also 

generate a blocking function of either a Global Reset or Local Reset. This is known as a Deny-

Reset function. Figure 14 shows NIBs used for configuration (SIBs), the deny functions (NIB) 

and Local Reset (LR). See Table 2 for a description of scan path objects. 

 

Figure 14:  IJTAG architecture with SIBs and NIBs configuring the scan path configuration 

Table 2:  A summary of IEEE 1687 Scan Path Elements 
1687 Network Scan Path Element Purpose or Action 
Test Data Register (TDR) Scan Path bits that interface to instrument signals 
 Shift-Update Write-only cell that interfaces to an instrument input signal 
 Shift-Capture  Read-only cell that interfaces to an instrument output signal 
 Shift-Capture-Update Read-Write cell that interfaces to both an instrument input & output 
 Shift-Only Dummy bit used for timing purposes or neg-edge adjustment 
Network-Instruction-Bit (NIB) Scan Path bits that generate network control signals 
 Disable-NIB Generates disable signals (e.g. deny-update, deny-reset, etc.) 
 Enable-NIB Generates enable signals (e.g. Select for a ScanMux) 
 Local-Reset Generates a reset pulse to set targeted scan cells to a default value 
 SIB Self-contained cell and ScanMux to add-subtract scan segments 
 SSB Self-contained cell and ScanMux to select between scan segments 
ScanMux A multiplexor that allows Scan Segment configuration 
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In summary, Section 2 of this eBook showed that the IEEE 1687 IJTAG hardware architecture is 

made up of the data scan path known as the network and that this network may include both data 

bits that may be organized into test data registers (TDRs) as well as embedded instruction bits 

(NIBs) that may configure the network or manage the operations of the network with both deny 

and enable functions. Because the IEEE 1687 IJTAG network interface like the IEEE 1500 ECT 

interface is defined separately from the network itself, the network may be assembled from plug-

and-play portable network sub-sections. Moreover, the IEEE 1687 IJTAG network will reside 

within a selected TDR space in the IEEE 1149.1 JTAG TAP Controller (Figure 15) just as the 

IEEE 1500 ECT wrapper does. 

 

Figure 15:  Where IEEE 1687 IJTAG fits within an IEEE 1149.1 JTAG architecture 

Key Differences supported by IEEE 1687 IJTAG Hardware Architecture 

As noted previously, IEEE 1149.1 JTAG and IEEE 1500 ECT both share a defined register 

structure that includes mandated registers, an instruction register and mandated instructions. 
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These two standards concern themselves with how to create a hardware architecture that is 

compliant to the standards. That means that IEEE 1149.1/1500 compliance addresses questions 

such as: does the architecture have a boundary scan register, a bypass register, an instruction 

register, an EXTEST instruction etc.? In contrast, IEEE 1687 IJTAG does not define or mandate 

a multi-register structure or a formal instruction register. The IEEE 1687 IJTAG standard is more 

concerned with providing options, embedded configuration capabilities and operations 

management for the scan path network. These IJTAG capabilities allow more flexibility and 

engineering tradeoffs. This eBook also explained that both the IEEE 1500 ECT and IEEE 1687 

IJTAG architectures were defined to be included within a TDR space of an IEEE 1149.1 TAP 

Register Architecture, since neither the IEEE 1687 IJTAG nor the IEEE 1500 ECT standard 

define their own controllers. 

Fundamentally, the different architectures implemented by IEEE 1687 IJTAG and IEEE 1149.1 

JTAG provide physical hardware differences, which represent design tradeoffs. When the IEEE 

1687 AccessLink instruction is selected, the rest of the IEEE 1149.1 architecture becomes 

irrelevant and all IEEE 1687 IJTAG actions can be accomplished only with DR-Scans. This 

method of only one AccessLink Instruction for accessing one or more instruments by way of a 

network of NIBs and SIBs is more efficient in terms of IC physical placement and routing. The 

ShiftEn, CaptureEn, UpdateEn, and Reset can be distributed as a tree, grid or system bus, which 

may be generated only once and directly sourced from the JTAG state machine with no further 

decode within the TAP Controller. This enables a higher operating frequency and reduces 

routing congestion. The SIBs (labeled “S” in Figure 16) can be daisy-chained to provide one 

TDI-TDO scan chain. In the example illustrated below, the top-level scan chain selected by the 

AccessLink would be 10 bits long. When a SIB is opened (UpdateDR with a logic-1), the 

associated TDR is added to the scan path and enabled when a locally generated Select signal 

gates the ShiftEn, CaptureEn, UpdateEn distributed to the target TDR. The decoding of the 

control signals is done local to the physical location of the SIB. In addition, local resets can be 

generated from NIB bits in the scan path. This means that instruction decode for scan path 

configuration happens locally near the TDR and only one single decode operation (the first 

Select signal generated by the AccessLink instruction) is performed within the TAP Controller. 
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Figure 16:  SIBs daisy-chained to TDI-TDO scan chain 

When IEEE 1149.1 JTAG provides individual instructions to access individual instruments 

(Figure 17), then all of the decode to generate unique ShiftEn, CaptureEn, UpdateEn, Reset, and 

to provide a TDI-TDO pathway is accomplished within the TAP Controller. As a result, all of the 

unique signals for each instrument must pass through the TAP Controller boundary. The IEEE 

1500 hardware architecture may alleviate this problem somewhat because instructions relating to 

an IEEE 1500 WIR can be grouped together so that only one or two instructions from the IEEE 

1149.1 JTAG TAP Controller are needed to select the IEEE 1500 wrapper and the wrapper and 

its WIR can be physically located with a core. A side-by-side comparison of IEEE 1149.1 

JTAG’s method of one-instruction-per-instrument vs IEEE 1687 IJTAG’s single AccessLink 

method is shown below in Figure 17. 
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Figure 17:  Side-by-side comparison of IEEE 1149.1 JTAG and IEEE 1687 IJTAG routing 

It is important to note that IEEE 1687 IJTAG’s ability to configure and manage the network from 

inside the network by providing control functions like Deny-Capture, Deny-Update, Deny-Reset 

and Local-Reset further allow the distribution of operations and decode to points physically near 

the instrument, as opposed to supporting multiple TAP controller IR encodings that select the 

same scan path, but configure the operations and actions differently. The IJTAG method 

contrasts significantly with that of IEEE 1149.1 JTAG where all of this functionality is contained 

within one centralized area, the JTAG TAP Controller. Figure 17 highlights the fact that the 

IEEE 1149.1 ’instruction(s)-per-instrument’ method requires extensive TAP controller decode 

operations and dense routing, whereas the IEEE 1687 ‘instrument network’ method reduces both 

the routing and decode in the TAP controller, by moving much of the selection decode to the 

SIBs that are physically located close to the target TDR. 

Separating Hardware Control from Instrument Interface 

Like the IEEE 1500 ECT standard, IEEE 1687 IJTAG does not specify a hardware controller; 

instead, IEEE 1687 defines a signal interface for operating the network. As a result, compliance 

to the IJTAG standard is measured by being interface-able and operable by an IEEE 1149.1 state 

machine, which may or may not be within a IEEE 1149.1-compliant TAP controller. This means 

that an entire IJTAG on-chip network may be delivered as intellectual property (IP) that can be 
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integrated with other IEEE 1687 IJTAG network components in a plug-and-play manner. The 

IJTAG network interface is the ShiftEn, CaptureEn, UpdateEn, ResetN, TCK, TDI, TDO and 

Select signals. A distinct interface allows the IJTAG network to be operated directly by a piece 

of test equipment, such as an IC ATE tester, and it allows controllers other than the IEEE 1149.1 

JTAG TAP Controller to be designed and used with IJTAG network components. For example, 

SPI, I2C or a CPU memory mapped bus could be designed to operate an IJTAG network by 

creating the correct sequence of ShiftEn, CaptureEn, UpdateEn, and ResetN signals. It must be 

noted that the current draft of the IEEE 1687 IJTAG standard does not describe controllers 

defined in any other standards besides the IEEE 1149.1 JTAG standard, but this is an option that 

can be investigated in future extensions of the IJTAG standard. 

One Chip: One TAP Controller 

Another major difference between all versions of the IEEE 1149.1 JTAG standard (1990, 2001 

and 2013) and the IEEE 1687 IJTAG standard is the restriction that IEEE 1149.1 JTAG 

mandates by limiting to only one1 the number of TAPs and TAP Controllers which can be 

implemented on any one chip. However, many ICs now have architectures with multiple TAPs 

and/or TAP controllers. This happens because many IP cores are delivered with either IEEE 

1500 Wrappers and, at a minimum, the IEEE 1149.1 JTAG FSM, which is needed to generate 

the distinct IEEE 1500 ShiftWR, CaptureWR, UpdateWR, ResetN and SelectWIR interface 

signals; or the IP core features a full IEEE 1149.1 architecture. Including the IEEE 1149.1 JTAG 

FSM with an IEEE 1500-wrapped instrument IP produces a self-contained virtual component 

with its own JTAG-like interface that can be integrated directly into an IC. When this is done, 

the most popular connection schemes for accessing all of the embedded TAPs (eTAPs) involve 

treating the IC as if it were a circuit board with either a star or daisy-chain architecture for the 

on-chip IEEE 1500 instruments or 1149.1 embedded architectures. However, this is not 

sanctioned in the IEEE 1149.1 JTAG standard and produces an architecture that is not power-

domain friendly. The sanctioned method is to use IEEE 1149.1-defined compliance enable 

package pins to map different TAP controllers to the same TAP pins and to activate these 

individually one at a time. 
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(Note: More than one TAP controller is allowed and is handled in the 1149.1 standard by the use 

of compliance enable package pins that allow only one TAP controller to be mapped to the 

JTAG TAP pins and to be active and in control of the chip for any given encoding on the 

compliance enable pins. Adding package pins to a device is not cost effective or scalable.) 

The IEEE 1687 IJTAG standard was developed to support this sort of multiple TAP and 

embedded TAP (eTAP) architecture (Figure 18). So, IEEE 1687 IJTAG does accommodate the 

notion of eTAPs. In fact, several possible methods are supported by the standard for deploying 

multiple eTAPs. To accomplish this, the IEEE 1687 IJTAG rules were kept to a minimum while 

properly documenting the architecture so it will be understood. 

The first of the following three diagrams (Figure 18) shows an eTAP with an in-line ScanMux 

select register. The important aspect of this architecture is that the TMS signal from the primary 

TAP on the chip must be brought into the chip to operate embedded TAPs inside the chip and to 

maintain synchronization with the primary TAP. Once inside the chip, the signal is referred to as 

eTMS (embedded TMS). It can be gated so that eTAP Controllers (eTAPCs) can be put to sleep 

to conserve power. When asleep, an eTAP is removed from the active scan path. Similar to the 

definition of an IEEE 1687 Scan Segment, the eTAP must not process ShiftEn, CaptureEn, or 

UpdateEn operations when it is not selected. 

 

Figure 18:  IJTAG architecture with multiple eTAPs 
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A second possible IJTAG architecture (Figure 19) deploys IEEE 1149.1 JTAG instructions as the 

selection method for a single eTAP or a group of eTAPs. The JTAG instruction selects the 

appropriate ScanMuxes and gates the eTMS signal to place non-active eTAPs into a parking 

state such as the run-test-idle or RTI states of the IEEE 1149.1 FSM that does not drive any 

access network items (TDRs) with Capture, Shift or Update. The basic IEEE 1687 IJTAG rule 

is that a non-selected item where its select signal has been de-asserted will freeze, which 

the IEEE 1687 IJTAG standard defines as a ‘hold state’ wherein the state of the TDR remains 

unchanged until a select signal is asserted or a reset is conducted. This requires that the 

eTAPs’ TAP controllers are placed in a parking state. If there has been an assertion of Reset, 

such as a TLR from a main TAP, a TRST* or a Local-Reset, then the eTAP state should 

resolve to eTLR, the embedded TAP controller FSM’s TLR state. 

 

Figure 19:  Multiple eTAPs enabled by IEEE 1149.1 instructions 

Yet another allowed architecture (Figure 20) could use a configuration register. 
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Figure 20:  IJTAG architecture with multiple eTAPs and a configuration register 

Plug-and-Play Interface for Portability 

As noted previously, one of the main differentiators between IEEE 1149.1 JTAG and IEEE 1687 

IJTAG (and IEEE 1500 ECT in this case) is the signal interface. In general, most of today’s 

complex chips are not designed entirely by any one organization. Design of a complex chip may 

begin in one organization, but later the design will be integrated with intellectual property (IP) 

from other sources such as EDA tools, third-party IP suppliers or previous generations of the 

same or a similar design. To this end, an embedded instrument might come in several forms, 

including as a single reusable standalone IP, as a soft component within a larger IP core or as one 

of many embedded instruments. Additionally, an access network could be included within an IP 

core. In each of these cases, the IP should be reusable without requiring manual modifications by 

an engineer. This would imply that if a portion of an IEEE 1687 IJTAG network has already 

been designed, it should be easily integrated with or into another IEEE 1687 network. Work 

should not be required to remove a TAP controller or to modify the network for inclusion in 

another network. 

IEEE 1687 IJTAG accommodates this scenario by defining a network interface distinct from the 

instrument interface. This separable interface is very similar to the interface defined by IEEE 

1500 ECT. Essentially, the interface definition specifies all of the signals necessary to operate a 
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network that does not have its own controller. In the case of IEEE 1687 IJTAG, this interface is 

composed of the following signals: 

• TCK (the serial clock) 

• ScanIn (the TDI or serial test data input) 

• ScanOut (the TDO or serial test data output) 

• ShiftEn (the shift enable for the serial Test Data Registers [TDR]) 

• CaptureEn (the capture enable for the serial TDRs) 

• UpdateEn (the update enable for the serial TDRs) 

• Reset (the reset signal that puts a default value in update cells of the TDRs) 

• Select (a signal that enables the Shift, Capture, Update operations of the TDRs) 

Any IEEE 1687 IJTAG network, no matter how simple or complex, should be terminated with 

this interface. This allows any standalone network, sub-network or completely contained 

network within an IP core to be easily integrated into another IJTAG network by simply 

connecting one network’s ScanIn with the second network’s ScanOut to the serial scan path 

directly or through a SIB and to deliver the clock and control signals. 

 

Figure 21:  A portion of an IEEE 1687 network with IEEE 1687 interface 
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Figure 21 shows a portable portion of an IEEE 1687 IJTAG network that can be considered plug-

and-play in that it can be connected either to an IEEE 1149.1 JTAG TAP Controller or to another 

IEEE 1687 network by serially connecting one network’s TDI to the other’s TDO, and 

connecting the control signals. An alternate connection is to place a SIB in front of the TDI-TDO 

connection and to allow the SIB to generate the select signal. The remainder of the control 

signals may be sourced from the signals that drive the other network as well. 

Portability is critical for reducing a design’s time-to-market and for reusing IP without 

modification to avoid design mistakes. The IEEE 1687 IJTAG standard ensures this level of 

portability. For example, if the embedded instruments in Figure 21 already have vectors defined 

by IEEE 1687 IJTAG’s Procedure Description Language (PDL) associated with them, then these 

vectors should be reusable without modification whenever the IEEE 1687 IJTAG network shown 

in Figure 21 is integrated into another design. 

Note that in contrast to the IEEE 1687 method, if the IP were an IEEE 1149.1 network to be 

merged with an existing IEEE 1149.1 network and if the IEEE 1149.1 JTAG TAP Controller had 

defined instructions to access embedded instrument, but the IP JTAG TAP Controller is removed 

during integration and the instructions or embedded instruments are merged into a different chip 

with a different IEEE 1149.1 JTAG network and different chip-level TAP Controller, then the 

architecture, vectors and access mechanism to the instruments will have changed and the vectors 

will need to be re-simulated, re-worked or regenerated to be used. In contrast to this, IEEE 1687 

IJTAG allows multiple embedded TAPs, so the IJTAG plug-and-play interface can be expanded 

to include the optional TMS signal, which would allow the entire IEEE 1149.1 JTAG access 

mechanism to be reused without any rework. 

The most basic item in an IEEE 1687 IJTAG network is the embedded instrument (Figure 22). A 

particular instrument does not have the IJTAG separable interface. Rather, it has an interface that 

represents its functional interface. The IEEE 1687 IJTAG working group did not require any 

specific type of interface or protocol for instrument developers or providers. The working group 

wanted to allow the instrument to drive whatever protocol and signals were required to make the 

instrument optimal. (Note that the instrument may not be exclusively accessed by the IEEE 1687 

network, but may also have shared access with other controllers.) This would allow the 
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integrator, EDA tool or access network creator to include the correct configuration of the TDR to 

address the instrument’s specific needs. For example, the instrument might require a slave 

protocol, a master handshake protocol or full-duplex handshake protocol. (For more information 

on this issue, please see ASSET’s IJTAG Tutorial. It can be downloaded for free here. 

 

Figure 22:  Embedded memory BIST instrument with targeted memory array 

Engineers will expect that embedded instruments will be delivered with operation vectors or, in 

the terms of the IEEE 1687 IJTAG standard, with Procedure Description Language (PDL) files 

(Figure 23). The embedded instrument and its vectors are portable because they can be placed 

anywhere in the network and retargeted since the location of the instrument is described in IEEE 

1687 IJTAG’s Instrument Connectivity Language (ICL). ICL has two main parts: Instrument 

ICL (IICL), which describes the instrument signal interface, and Network ICL (NICL), which 

describes the location and operations of the TDR or TDRs that interface to the instrument’s 

signal interface. 

http://www.asset-intertech.com/Products/IJTAG-Test/IJTAG-Test-Software/Tutorial-IEEE-1687-IJTAG-Embedded-Instruments-ICL-PDL
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Figure 23:  Embedded instrument with associated PDL vectors 

In summary, there are several key differences between the IEEE 1149.1 JTAG and IEEE 1687 

IJTAG methodologies. Most notably, IEEE 1149.1 contains a centralized instruction register that 

requires individual selection of various test features as well as individual control lines if power 

consumption and activity management is important. In contrast, IEEE 1687 IJTAG specifies 

portable on-chip networks and embedded instruments, both with a separable interface that 

accepts control signals. 

Modifying a IEEE 1149.1 JTAG architecture requires the development of new or different 

instructions, which means rework and re-documentation. IEEE 1687 IJTAG is meant to 

accommodate bare instruments, sub-networks and even whole networks within IP cores. These 

entities can contain just the IJTAG control interface or JTAG TAPs. In both cases, the 

instrument or network segment can be portably incorporated into another IEEE 1687 IJTAG 

network and reused just by including the ICL file. The only alterations required are additions to 

the target’s ICL, which will identify where the newly added embedded instrument or network 

segment is within the target network. (The added ICL will define the new connections when 

networks are merged.) Note that this portability aspect of IJTAG instruments also provides 

physical tradeoffs with JTAG insofar as the decode logic associated with each JTAG instruction 

takes place only within the TAP controller and this can create route congestion and growth in the 

logic required within the TAP controller. Conversely, IEEE 1687 IJTAG allows decode or 
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selection of the instrument to be local to the instrument, avoiding the centralized decode, routing 

congestion and logic growth associated with adherence to the IEEE 1149.1 JTAG standard. 

Description Language and Operational Protocols for JTAG and IJTAG 

Although the IEEE 1687 IJTAG standard currently follows the operational protocols of the 

JTAG finite state machine (FSM) defined in the IEEE 1149.1 JTAG standard, other protocols 

can be integrated into the IEEE 1687 standard in the future. The IEEE 1149.1 protocol 

established by the FSM employs both a data-side and an instruction-side to operate IEEE 1149.1 

Data Registers and Instruction Registers separately. Ultimately, both the IEEE 1500 ECT and 

IEEE 1687 IJTAG access networks can be operated by applying vectors to the IEEE 1149.1 

JTAG TAP pins. When the correct instructions are installed after an IR-Scan, the serial scan 

access to instruments is enabled and, in a very similar manner to IEEE 1149.1 operations, data is 

captured in TDRs when the FSM is in the CaptureDR state. Likewise, data is shifted through the 

TDRs while the FSM remains in the ShiftDR state and data is applied to the network 

configuration bits and/or to the embedded instruments when the FSM is in the UpdateDR state. 

Depending on the method of operation, the point-of-application source for the generation of the 

vectors will be different. IEEE 1149.1 vectors are generated at the TAP pins; IEEE 1500 vectors 

are generated at the wrapper interface (Wrapper Serial Port (WSP) or the Wrapper Parallel Port 

(WPP)); and IEEE 1687 vectors are generated at the embedded instrument interface. As a result, 

each of the three IEEE standards has its own different language(s) to: 1) describe the serial scan 

network and 2) to represent the vectors. Table 3 lists the description and vector languages 

associated with each standard. 

Table 3:  Standard Languages 
Deliverable  IEEE 1687 

IJTAG 
IEEE 1149.1-2013 
JTAG 

IEEE 1500 ECT 

Test Data Register-based vectors Optional Yes Yes 
Portable instrument vectors supported Yes No No  
Architecture description language ICL BSDL CTL  
Vector description language PDL SVF, PDL STIL 
Where are vectors applied? At instrument At TAP Pins or in TDR At WSP or WPP pins 

Table 3 shows that each access standard supports a different description language (ICL, BSDL, 

and CTL) and a different vector language (PDL, SVF/PDL, and STIL). The reasons for this 

mostly stem from the fact that each of these three standards were developed for different use 
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cases which required different description languages. Consider the following differences in the 

standards: 

• The prevailing perception in the industry is that IEEE 1149.1 JTAG adds logic to an IC to 

assist with circuit board test procedures. For example, boundary scan (JTAG) performs 

board-level interconnect testing and reads the chip’s ID Code to ensure that the correct chip 

has been placed on the board and it is connected to other chips in a correct manner with no 

shorts or opens in the chip-to-chip connections. 

• IEEE 1500 ECT is perceived to involve the addition of logic to a portable IP core to assist 

with core test. For example, this might involve integrating portable test features into a core 

and mapping these as instructions in the IEEE 1500 Wrapper Instruction Register (WIR). A 

specific example of this would be to include a wrapper boundary register and configuring 

instructions to enable simple core interconnect testing without involving the functional 

operations of the entire internal core logic. 

• The perception of IEEE 1687 IJTAG is that it specifies a scalable access network to assist 

with managing, operating and reusing embedded instruments within chips or IP cores. For 

example, IJTAG will allow multiple different embedded instruments, such as those dedicated 

to debug and trace, test, configuration and environmental monitoring, to be added into or 

subtracted from the active on-chip scan path without the use of an instruction register (only 

DR-Scans). In addition, IJTAG is able to configure and modify the size and operations of 

portions of a scan path with bits that represent the source for active inclusion, deny-capture, 

deny-update, deny-reset and local-reset. 

In conclusion, each standard was developed to perform a different job and those jobs were 

problems that were not addressed prior to the development of each standard. That is to say that 

each standard was developed to address its specific set of problems. These different use cases 

resulted in the different languages being defined by each standard. 
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IEEE 1687 ICL/PDL versus IEEE 1149.1 BSDL/SVF versus IEEE 1500 
CTL/STIL 

Clearly, the main drivers of the various languages defined by these three standards were the use 

cases that were driving the development of the standards. The IEEE 1149.1 JTAG standard was 

conceived as a board test standard; IEEE 1500 ECT was conceived as a core test standard; and 

IEEE 1687 IJTAG was conceived as a scalable solution for managing, operating and reusing 

embedded instruments, which can be portable IP. These different use cases required different 

user environments and tasks. Therefore, the use cases drove the development of the different 

languages so that each language was applied at the appropriate level or interfaced with the 

correct hardware test equipment. There was never any intention for all three standards to have 

the same language simply because all three standards dealt with ‘test.’ Instead, each standard was 

applied at a different location in association with a chip. So, the various support languages for 

each standard were more driven by ‘where’ they were applied. 

IEEE 1149.1 JTAG (Boundary Scan) 

Because the IEEE 1149.1 JTAG or Boundary-Scan Standard specified its own controller, chip 

test port and an architecture made up of internal registers with specific functions such as 

Instruction, Bypass, ID Code and Boundary, the IEEE 1149.1 working group decided that BSDL 

(Boundary Scan Description Language) was needed to fulfill the purposes of the standard. Note 

that BSDL was not defined in the first ratified version of the standard. It was only added in a 

subsequent version. BSDL was based on VHDL because of the influence of the defense industry 

and European members of the working group. The language basically describes the TAP pins, 

the instruction encodings (instructions) included within the Instruction Register, the length of 

each defined public register or TDR, and a complete description of the cells that make up the 

boundary scan register and their connection order. 

At the time of IEEE 1149.1 JTAG’s development, the working group decided that the easiest 

method for operating the IEEE 1149.1 architecture was to operate the TAP Controller at the TAP 

pins since the protocol was so well defined and implemented in hardware as a finite state 

machine. As a result, Serial Vector Format (SVF) was defined by Texas Instruments as a simple 

method for telling a TAP Controller to conduct either a Data-Register Scan operation (DR-Scan) 
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or an Instruction-Register Scan operation (IR-Scan) and to provide the serial data as a stream 

definition to be applied in the Shift-DR/IR states. Note that SVF is not a formal standardized 

language directly associated with IEEE 1149.1, but rather a de facto standard adopted throughout 

the industry. It is maintained by ASSET InterTech and can be downloaded here. 

IEEE 1500 Embedded Core Test 

The IEEE 1500 ECT standard had similar needs to those of IEEE 1149.1 JTAG, but IEEE 1500 

needed to describe operating signal ports at the edge of an IP core, not at the pins of a part. So, 

instead of IEEE 1149.1 JTAG’s TMS, TCK, TDI, TDO, and optional TRST*, the IEEE 1500 

standard describes the operation signals ShiftWR, CaptureWR, UpdateWR, SelectWIR, and 

ResetN, as well as WRCK, WSI, and WSO, which effectively correspond to the IEEE 1149.1 

standard’s TCK, TDI, and TDO, respectively. However, one of the major differences between 

IEEE 1500 and IEEE 1149.1 was IEEE 1500 did not include defined boundary-scan cells, such 

as a BC_1, BC_2, etc. Instead, IEEE 1500 created a description language for the operation of any 

number of boundary register configurations, because IEEE 1500 allowed functional interface 

registers to be used as boundary scan cells in addition to more JTAG-like configurations. In 

addition, IEEE 1500 also supported a new Transfer operation to move the captured data from a 

functional register to the scan shift register associated with the serial scan path. This fact drove 

some of the requirements for a more descriptive language and hence, the IEEE 1500’s Core Test 

Language (CTL) was created. 

The IEEE 1500 standard also defined a parallel port (WPP) to allow manufacturing scan vectors 

to be applied to the internal functional registers of an IP Core. Since manufacturing scan vectors 

are usually created by EDA tools and printed in an IEEE 1450 (STIL) format, a parallel port 

vector format was a natural choice. 

IEEE 1687 IJTAG (Embedded Instrumentation) 

The objectives of IEEE 1687 IJTAG are unique and quite different from IEEE 1149.1 JTAG and 

IEEE 1500 ECT. Specifically, IEEE 1687 IJTAG was developed to access and manage portable 

embedded instruments that may come with vectors. Relative to embedded instruments, the IEEE 

1687 IJTAG standard only defines the operation of the interface of the embedded instrument and 

http://www.asset-intertech.com/eresources/svf-serial-vector-format-specification-jtag-boundary-scan
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the operation of the control interface to the IEEE 1687 network, not any controller or controller 

protocol. At the time of IEEE 1687 IJTAG’s creation, however, the BSDL description language, 

which was defined to support the IEEE 1149.1 JTAG standards, did not include the ability to 

describe items which are essential to IJTAG, such as SIBs, variable-length scan paths that 

changed on UpdateDR as opposed to UpdateIR; embedded network bits that could change scan 

path operations such as Deny-Capture, Deny-Update, Deny-Reset, and Local-Reset; entire 

embedded TAPs, which may be connected to entire IEEE 1149.1-compliant TAPs and TAP 

controllers, or partial non-compliant TAP Controllers; and the interface to embedded 

instruments. 

Instead of BSDL, the Verilog design language was briefly considered for the IEEE 1687 IJTAG 

standard, but it is a very large language and the developers of the IJTAG standard feared that 

embedded instruments would simply be delivered as the RTL models that were used for design. 

This would provide too much information and an RTL model could not protect proprietary IP. 

Also at the time of IEEE 1687 IJTAG’s development, the IEEE 1500 ECT standard’s CTL was 

considered for the IEEE 1687 IJTAG standard, but it too was considered overkill since all that 

was required in the IJTAG standard was the ability to describe the scan path (TDRs), 

multiplexors in the scan path (Table 2) and any logic between the TDR and the embedded 

instrument, not the entire predefined register architecture. A simpler language that was 

descriptive of only the scan path and the instrument interface was envisioned by the IEEE 1687 

IJTAG working group. 

Because one of the goals for IEEE 1687 IJTAG was to describe the connections and pathways 

between the controller, which was the source of the AccessLink instruction, and the embedded 

instruments, ICL (Instrument Connectivity Language) was developed. ICL can be viewed as 

being composed of two segments: instrument ICL and network ICL. Instrument ICL describes 

the wrapped or unwrapped signal interface of an instrument. Instrument ICL would be the 

portable embedded instrument information delivered with a bare or unwrapped (no TDR) 

embedded instrument. Not all IJTAG instrument signals are necessarily solely connected to an 

IJTAG network. Some functional signals may be connected to other logic or left unconnected. 
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Network ICL describes the scan paths, multiplexors and control signals associated with the 

connections to the access network that links the controller and embedded instruments. 

As for the vectors associated with an IEEE 1687 IJTAG instrument, the basic task of the working 

group was to describe the operations associated with an instrument. The resulting language was 

the Procedure Description Language (PDL). Instrument vectors are typically developed in 

Verilog during the design of a chip to support simulation. Verilog, however, is a huge language. 

Describing an instrument in Verilog would include a lot of information about the instrument, its 

connections and even its operations. To provide some protection of proprietary interests, a 

simpler language was developed that viewed the instrument interface as a port that needed to be 

read from and written to. In addition, some embedded instruments will already have a TDR and 

be considered secret or private. These types of instruments are generally known as black box 

instruments. Only scan vector data can be provided with them in a scan-to and scan-from set of 

operations. All of this went into the development of IEEE 1687 IJTAG’s PDL. 

In summary, the working groups for each of these three standards developed a language, or 

languages in the case of IEEE 1687 IJTAG, that was needed to serve the particular use case of 

the standard at the time of its development. The languages are clearly the limiting factors for the 

use cases of each standard. For example, using IEEE 1149.1 JTAG to describe an embedded IP 

core such as a microprocessor would require that the core boundary be designed and described 

with only BC_# cells. By limiting the choice of the processor core’s interface register, this might 

limit the core’s targeted performance. This would also create a problem with the IEEE 1149.1 

JTAG standard, since the preferred configuration would be to support a TAP Controller in the 

core architecture. Essentially, each core would look like a true virtual chip because it would 

support the entire IEEE 1149.1 JTAG architecture. However, since the IEEE 1149.1 JTAG 

standard stipulates that any one chip should only contain one TAP Controller, there would be 

five TAPs on a four-core chip where each core had its own TAP. This would be in conflict with 

the IEEE 1149.1 JTAG standard. 

Similarly, using BSDL or CTL for IEEE 1687 would require IEEE 1687 to support centralized 

instructions and defined controller registers such as Instruction, Bypass, ID Code, Boundary and 

others. This would have limited the IJTAG standard’s ability to describe the scan path 
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management functions. In short, BSDL or CTL would only have allowed architectures that could 

be described by IEEE 1149.1 JTAG or IEEE 1500 ECT. Furthermore, PDL for embedded 

instruments would only have been allowed if the PDL vectors had been re-written to the TAP or 

the TDR, because neither BSDL nor CTL formally support descriptions of embedded 

instruments. 

IEEE 1687 IJTAG’s PDL versus IEEE 1149.1-2013 JTAG’s PDL 

The newest update to the IEEE 1149.1 JTAG standard (1149.1-2013) added several features that 

overlap with IEEE 1687 IJTAG. For example, IEEE 1149.1 JTAG now includes its own PDL, 

although JTAG’s PDL stands for Procedural Description Language and IEEE 1687 IJTAG’s 

PDL stands for Procedure Description Language. In addition to its own PDL, IEEE 1149.1-2013 

now is able to incorporate variable length scan paths with the SegSelect concept. (Table 3) Also, 

some instructions are now ‘sticky,’ meaning their configuration or actions remain in place even 

when other instructions are selected. In other words, IEEE 1149.1-2013 added instruction 

persistence to the standard. For example, a persistent EXTEST instruction can be applied to force 

the output pins on the chip to assume a default safe state, but then a different instruction that 

selects a Memory BIST or an IEEE 1500 Wrapper, for example, can be installed while the safe 

state remains on the chip pins. In effect, this allows a CLAMP function to select a different 

register than Bypass. This new functionality required additions to BSDL. One of the tasks 

undertaken by the IEEE 1149.1-2013 JTAG working group was to incorporate an initialization 

procedure associated with the power-on and power-off domains that impacted the boundary scan 

register. A sequence of events is required to apply power-on to quiescent chip pins before using 

them in a test. Similarly, a graceful power-down sequence is required as well. This power-on and 

power-off sequence was known as init-setup and it required certain procedural functions 

associated with portions of the boundary scan register. Therefore, an IEEE 1149.1 version of 

PDL was required to describe this sequence. 

Once the concept of a PDL language was introduced into the IEEE 1149.1 JTAG standard during 

the 2013 update cycle, many of IEEE 1687 IJTAG’s PDL functions (commands) were adopted 

by the IEEE 1149.1 JTAG working group since IJTAG’s PDL had already been developed. 

However, the hardware differences between IEEE 1149.1-2013 JTAG and IEEE 1687 IJTAG 
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required several PDL commands that were supported by one standard but not the other. This led 

to the two PDLs diverging. 

Table 4:  Comparison of IEEE 1687 vs IEEE 1149.1-2013 PDL Commands 
 IEEE 1687 PDL 

Command 
IEEE 1149.1-
2013 
PDL Command 

PDL Command Description 

1  iSource All PDL procedures must be defined before they are called 
2 iPDLLevel iPDLLevel Identify PDL level and version 
3 iPrefix iPrefex Specify hierarchical prefix 
4 iReset  Reset the 1687 Network 
5 iRead iRead Queue data to be compared with what is read 
6 iWrite iWrite Queue data to be written 
7 iScan iScan Queue data to be scanned for a Black-Box 
8 

iOverrideScanInterface  
Indicate the capture, update, and broadcast behavior to be imposed on a list of 
scan interfaces 

9 iApply iApply Execute queued operations 
10 iClock iClock Define the System Clock (not the serial TCK) 
11 

iClockOverride iClockOverride 
Override definition of system clock when it is generated on-chip: Define on-
chip clock multipliers 

12 iRunLoop iRunLoop Issue a number of clocks: or wait an absolute time. 
13 iProc iProc Wrapper for a PDL procedure: a PDL procedure 
14 iProcsForModule  Identify the module in the ICL with which subsequent iProcs are associated 
15 

 iProcGroup 
Identify the object or instance with which the following PDL iProc procedures 
are associated. 

16 iUseProcNameSpace  Use namespace for subsequent iCalls 
17 iCall iCall Invoke a PDL procedure 
18 iNote iNote Send text to runtime; Creates a tool identifiable comment 
19 

iMerge iMerge 
Allow merging (concurrent evaluation) of iCalls; Provides guidance on where 
tools can optimize multiple PDL procedures. 

20 
iTake iTake 

Disallow other merge threads from modifying a model resource: Tag an object 
to be ‘in-use’ to provide guidance where tools can optimize PDL. 

21 
iRelease iRelease 

Re-allow other merge threads to modify a model resource: Release an object 
from ‘in-use’ to provide guidance where tools can optimize PDL. 

22 iState  Document the current state of the network (e.g. change HW) 
23  iSetInstruction Select instruction for a register accessed by multiple instructions. 
24  iLoop Mark the beginning of a conditional loop. 
25 

 iUntil 
Loop until any iApply -nofail in the loop meets the specified condition or the 
maximum loop count is reached. 

26  ifTrue Execute commands based on last iApply –nofail. 
27  ifFalse Execute commands based on last iApply –nofail. 
28  ifEnd End of conditional execution. 
29 

 iSetFail 
Set the status to “FAIL”; stop the test if the -quit parameter is specified, and 
output the <text>. 

30  
iTRST 

Assert or de-assert the TAP TRST* pin, and remain in TLR state after TRST* is 
off. Only executed at the top level of the current unit under test. 

31  
iTMSreset 

Enter TLR state via TMS. Only executed at the top level of the current unit 
under test. 

32  iTMSidle Enter RTI state via TMS. 

It might be easier to designate JTAG’s PDL as JPDL, since it uses the IEEE 1149.1 JTAG TAP 

controller and is based on JTAG instructions and some specific JTAG test features such as 

EXTEST and BYPASS. Then, IEEE 1687 IJTAG’s PDL might be designated IPDL, since it 

operates IEEE 1687 IJTAG networks of embedded instruments. The two PDLs are overlapping 
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but different languages. In fact, each is engaged at different times. In general, when IEEE 1149.1 

JTAG is conducting IEEE 1149.1 JTAG functions, IEEE 1687 IJTAG is not active, but when 

IEEE 1687 IJTAG is active, it requires that the IEEE 1149.1 controller service the IEEE 1687 

IJTAG network and not IEEE 1149.1 JTAG functions. 

One can see from the above table that each standard’s basic or Level-0 PDL has several unique 

commands, indicated by a red empty space in the other standard’s column. IEEE 1149.1-2013 

JTAG’s PDL (JPDL) has 12 unique commands, several of which are related to the JTAG 

hardware architecture, TAP and IR since IEEE 1149.1 JTAG defines a controller but IEEE 1687 

IJTAG does not. Unique IEEE 1149.1 JTAG commands are: iTMSidle, iTMSreset, iTRST, and 

iSetInstruction. Several other unique IEEE 1149.1 JTAG PDL commands came about because 

the IEEE 1149.1-2013 JTAG working group wanted the updated standard to support flow-

control in its base-level or Level-0 language. So, the following commands were added: iLoop, 

iUntil, ifTrue, ifFalse, ifEnd. The two remaining unique JTAG commands are: iProcGroup and 

iSource. These organize and apply PDL commands as a software language associated with the 

IEEE 1149.1-2013 standard. 

There are only five unique commands in IEEE 1687 IJTAG’s PDL. Two of these involve unique 

features of the IEEE 1687 IJTAG scan architecture: iReset and iOverrideScanInterface. These 

commands represent the global and local resets, and the Deny-Capture/Update/Reset functions. 

Two other PDL commands address how to organize PDL commands: iProcForModule and 

iUseProcNameSpace. The remaining unique IEEE 1687 PDL command, iState, addresses the 

situation where multiple different external hardware controllers are operating on the same 

network during test, debug, characterization and initialization operations. When this is the case, 

information about the IEEE 1687 network must be passed from one controller to the others after 

a physical hardware swap. When a hot-swap occurs, iState logs the current state of the network. 

Another 15 PDL base level commands in the two different standards are identical in name and 

are very similar in function. In use, these commands that seem to overlap won’t interfere with 

each other or create conflicts because the IEEE 1149.1-2013 JTAG PDL commands are typically 

active when JTAG operations like EXTEST, INTEST, BYPASS, HIGHZ, SAMPLE, 

PRELOAD, IDCODE, etc. are active, while IEEE 1687 IJTAG PDL commands are only 
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operational when its AccessLink instruction is active. In essence, the two PDLs could be treated 

as two distinct languages. As mentioned previously, they could be designated differently as iPDL 

for IJTAG PDL and jPDL for JTAG PDL to clearly distinguish between them. 

Any hardware system or software tools that must operate a chip that includes features, 

operations, and embedded instruments that span all three IEEE test standards should take each of 

the various delivered files (BSDL, CTL, ICL, SVF, STIL, PDL) and should apply them when 

applicable. The effort to try to normalize the files to some minimum common denominator by 

processing the various files is not an efficient process and does not represent the use case for the 

various standards. For example, attempting to convert CTL and STIL to BSDL and SVF to 

minimize deliverables does not maintain the intent and efficiency of the IEEE 1500 standard. 

The Practical Usage of IEEE 1149.1, IEEE 1500, and IEEE 1687 

In reality, the integrator that assembles the overall chip will most probably use all three of these 

IEEE test standards. IEEE 1149.1 will still be needed to implement the boundary scan and ID 

code portion of the chip as IEEE 1687 and IEEE 1500 are not specifically suited for this purpose; 

and the IEEE 1149.1 will be needed to provide the chip interface and controller signals for IEEE 

1500 and IEEE 1687. The 1149.1 portion of the design may come from design-ware from a 

previous design, from an EDA tool that generates HDL/RTL, or may be a modifiable IP core. 

If complex cores are delivered, such as embedded microprocessor cores or complex memory 

architectures, then to ensure the portability of the IP, its provider must also include self-

contained test and debug capabilities and routines, as well as core-based boundary scan. This 

functionality must be specified or delivered with an IEEE 1500 architecture and documentation. 

The core can then be tested and verified in a standalone manner, multiple cores in an architecture 

can also be verified through wrapper-to-wrapper interconnect tests.  

In addition, any embedded instruments or groups of embedded instruments or even whole 

complete architectures with embedded TAPs and TAP controllers may be delivered as IP with 

IEEE 1687 documentation and possibly IEEE 1687 network segments. These test, debug, 

monitoring and configuration instruments and instrument architectures may be integrated within 

a chip or included within IEEE 1500 architectures. 
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The integrator of the chip has the task of taking what has been delivered and making it into a 

complete architecture. From a basic point of view, the integrator is at the mercy of the 

deliverables. For instance, if three different pieces of the delivered IP are IEEE 1500 wrapped, 

IEEE 1687 compliant and IEEE 1149.1-2013 compliant, then the task at hand is to correctly 

integrate these pieces together. On the surface, this means traversing the landscape of different 

architecture components, functions and documentation. If an integrator wants to normalize or 

simplify the integration task, then two basic methods are available. First, the integrator could 

define or mandate the deliverables from the IP provider. So, for example, the integrator might 

require that all embedded instruments must be IEEE 1687 compatible and must have IEEE 1687 

ICL and PDL; or, that all embedded instruments must be IEEE 1149.1-2013 compliant and must 

have IEEE 1149.1-2013 BSDL and PDL; or, that all monitor instruments must be delivered with 

IEEE 1687 ICL and PDL. The second alternative would be for the integrator to perform 

development or conversion functions from one standard’s documentation to another. For 

example, he might convert IEEE 1500 CTL and STIL vectors to IEEE 1687 ICL and PDL.  
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Conclusions 

This eBook has shown that the IEEE 1687 IJTAG, IEEE 1500 ECT and IEEE 1149.1 JTAG 

standards are in fact different, even though this eBook has not covered every difference between 

the standards, but just the major ones. For the most part, IEEE 1149.1 JTAG specifies the 

controller, which generates the signals necessary to operate both IEEE 1500 and IEEE 1687. 

Both IEEE 1149.1 JTAG and IEEE 1500 ECT are instruction-based standards that support a 

formal instruction register. They are largely focused on the TDR and how to build a compliant 

network, not on the portable embedded instrument. A great portion of the IEEE 1149.1 JTAG 

standard describes instruction features, such as EXTEST, HIGHZ, CLAMP, IDCODE, 

SAMPLE, PRELOAD, etc. This approach has met the requirements of the use space of IEEE 

1149.1, which is providing a controller within the IC to implement board test features to be 

operated by engineers. The IEEE 1500 ECT standard took this same concept and applied it to 

complex embedded cores that could be viewed as virtual chips to be embedded within FPGAs, 

ASICs and SoCs. The virtual chip concept provided the same sorts of capabilities as IEEE 

1149.1 JTAG, such as IDCODE, EXTEST, INTEST, etc., but IEEE 1500 ECT is specific to 

entire, portable and complex cores within chips. 

The basic purpose of IEEE 1687 IJTAG is to add scalability to the growing adoption of 

embedded instruments and to enable the retargeting of delivered embedded instrument vectors. 

IEEE 1687 IJTAG was developed with several optimizations in mind and it was created to solve 

several perceived weaknesses in the IEEE 1149.1 JTAG and IEEE 1500 ECT paradigms. Among 

these weaknesses are an absence of scalability and tradeoff-driven design options. IEEE 1687 

IJTAG is focused solely on the portable embedded instrument and provides for embedded 

instrument documentation. Furthermore, it provides a simpler interface that would not require an 

entire formal Instruction Register and other related registers for just one instrument. Another 

objective of IEEE 1687 IJTAG was to enable engineering, scheduling and budget tradeoffs 

during development and operation by moving the logic decode and selection of embedded 

instruments to be physically within close proximity of the embedded instrument interface. In 

addition, IEEE 1687 IJTAG also sought to focus on instruments and instrument vectors without 

diminishing or complicating the role of IEEE 1149.1 JTAG or IEEE 1500 ECT. In effect, IEEE 

1687 IJTAG was developed in such a way so that it would not add complexity to the BSDL used 
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by board test organizations, not increase the size of the Instruction Register, and not include 

delivered functions with no value to board test organizations. This effort led to the development 

of IEEE 1687 IJTAG’s AccessLink instruction for accessing an IEEE 1687 network and a new 

documentation system comprised of the ICL and PDL languages. 

All three of these standards were meant to work together. Since the user space has clearly 

become segmented, no single standard should be expected to address the whole user space. In 

fact, it would not be efficient for any one standard to address the whole space. Each user space 

has unique requirements and so each standard has associated solutions for those unique issues. 

The IEEE 1149.1 JTAG standard, even with the additions of new features in IEEE 1149.1-2013, 

is still the best solution for board integration and test capabilities. IEEE 1500 ECT is still the best 

solution for embedding whole complex cores that need similar core integration capabilities. And 

IEEE 1687 IJTAG is the best solution for managing and operating a chip’s embedded 

instruments, which can be subsumed as part of both IEEE 1149.1 TDR and IEEE 1500 

WDR/CDR architectures. 
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Appendix 

Introduction to IEEE 1149.1 

The IEEE 1149.1 Boundary-Scan Standard, which is also referred to as JTAG for the Joint Test 

Action Group that initiated its development, was first developed in the 1980s and became a 

ratified standard in 1990. (A tutorial on the IEEE 1149.1 Boundary-Scan Standard can be 

downloaded here). The standard’s documentation language, Boundary-Scan Description 

Language (BSDL), was added when the IEEE 1149.1 JTAG standard was updated in 1994. This 

standard provided the definition of a port (package pins), a controller with a finite state machine 

(FSM), a parallel register architecture that was extensible and selectable by instructions, and a 

method for accessing on-chip logic  

The motivation for the JTAG standard’s development was mainly to solve board test problems. 

The industry was struggling with its inability to use probes on external leads of a packaged die 

since cutting-edge chips at that time were surface mount packages with solder balls hidden 

underneath the silicon die in a semiconductor package. IEEE 1149.1 JTAG solved this problem 

by creating an on-chip boundary scan register along with various features and modes. However, 

IEEE 1149.1 JTAG also defined other functions or test operations based on instructions to assist 

with board test. 

Scanning the boundary scan registers and other features were standardized as instructions that 

selected JTAG’s Test Data Registers (TDRs). Some of the other instructions in the standard are: 

BYPASS – converts a chip’s scan path into a single shift bit so multiple chips on a board 

could be represented by a minimal scan path; 

IDCODE – provides a register that includes an identifier for the chip during test or after it 

has been placed on a board; 

HIGHZ – places all bidirectional and three-state package pins in a high-impedance state; 

EXTEST – allows the boundary scan register to take over the output or drive pins of a 

chip’s package to effectively freeze a chip’s output pin values so that internal chip 

activity would not disturb other chips on the board and also so that an interconnect test 

could be done by just scanning data values into a boundary scan register; 

http://www.asset-intertech.com/Products/Boundary-Scan-Test/eBook-JTAG-Tutorial
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INTEST – allows input chip pins to be driven from the boundary scan register and to 

ignore the data on the normal functional input pins and a handful of other pins. 

PRELOAD – allows a known value to be shifted into the boundary scan register prior to 

applying an EXTEST or INTEST instruction. 

SAMPLE – allows the boundary scan register to capture data and shift the captured data 

out for viewing. 

As can be seen, these instructions and capabilities can be viewed, and are perceived by many, to 

carry a board or system test purpose. All of the boundary scan instructions deal with the data 

driven or sampled on the package signal pins so that interconnect testing or safe configurations 

can be established when the chip is on a printed circuit board. The BYPASS instruction 

represents an efficiency and safety configuration when the chip is placed in a board-level scan 

chain. IDCODE can be used to identify if the correct chip is in the correct socket on the board. 

The IEEE 1149.1 Boundary-Scan (JTAG) standard was re-opened, updated and ratified in 2001 

and again in 2013. The 2013 update added significant capability to the original purpose of the 

standard and generated some of the overlap with the other standards, such as IEEE 1687 Internal 

JTAG (IJTAG). Some of the new capabilities in IEEE 1149.1-2013 are: 

Persistence: A Test Mode Persistence (TMP) controller state machine allows instructions 

that have been identified as persistent, such as INTEST and EXTEST, to remain ‘sticky;’ 

that is, their configuration or actions remain in place when other instructions are selected 

and even when the IEEE 1149.1 FSM parks into or passes through the Test Logic Reset 

(TLR) state. TMP was meant to enable a CLAMP instruction without requiring that a 

bypass register function as the selected active scan path. 

Init-Setup: This method or procedure deals with the particular sequence of events needed 

to energize or ‘wake up’ a boundary scan register that includes or crosses power-off 

domains. This capability includes the addition of a vector/procedure language 

(Procedural Description Language or PDL) and selectable segmentation of the boundary 

scan register. (NOTE: the procedure language defined by IEEE 1687 IJTAG is Procedure 

Description Language or PDL as well.) 
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SegSelect: Enables the segmentation of TDRs, including the boundary scan register, so 

that different portions may be active at any given time. 

These features can be viewed as helpful to board test, but, at the same time, they enable IC Test 

capabilities that are similar to the capabilities provided by IEEE 1687. 

Introduction to IEEE 1500 

The IEEE 1500 Embedded Core Test (ECT) Standard was ratified in 2005. (Download it here). It 

was created to deal with problems associated with third-party portable embedded cores, 

consisting of either ‘hard’ layouts of cores or ‘soft’ HDL/RTL models. Prior to the development 

of the IEEE 1500 standard, these types of cores were increasingly being incorporated into new 

types of ASICs (application specific integrated circuits) known as systems-on-a-chip (SoC). The 

goal of the standard’s development was to enable a situation where cores could be delivered by 

an intellectual property (IP) provider, either a group inside the company or an independent 

external IP provider, and that these cores could be integrated into a chip with other logic units, 

glue-logic and other IP cores. A 1500-compliant core would represent a virtual component. This 

trend toward embedded cores meant that IC layouts could be treated as if they were a virtual 

circuit board or system design. An IP core could then be treated as a component on this virtual 

chip-level circuit board, which could represent a SoC. If a core were to be treated as a portable 

self-contained single unit and tested like a virtual component, then the IP provider could design 

and build the IP core in such a way as to provide those tests or test modes. In addition, the core 

provider might include some sort of boundary-scan register so the core could actually represent a 

complete testable component (Figure 24). The problem with this was that the IEEE 1149.1 

Boundary-Scan Standard (JTAG) standard stipulates that only one JTAG TAP controller may be 

present on a chip. If each core included a TAP, integrating multiple cores into one chip would 

violate the JTAG standard. 

http://grouper.ieee.org/groups/1500/
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Figure 24:  IP cores with IEEE 1500 wrappers controlled by JTAG TAP Controller 

The limitation of single TAP Controller per physical chip led IP core designers to incorporate a 

JTAG-like architecture with each core. Such an architecture would be similar to a component 

with JTAG insofar as the core would need to support its own ID Register, Bypass Register, 

Boundary Register and even its own Instruction Register, but not a JTAG TAP or a JTAG finite 

state machine (FSM), since the host IC would have its own TAP and TAP Controller. 

All of this meant that an IEEE 1500 core wrapper and test architecture would need to be 

integrated into the chip as an instruction under the chip-level TAP Controller, but the IEEE 1500 

wrapper would also need to include and support its own instructions. This led to the development 

of something very similar to the IEEE 1149.1 JTAG register architecture and included a number 

of defined registers and IEEE 1500’s own Wrapper Instruction Register (WIR). The industry’s 

perception of the IEEE 1500 ECT standard at the time of its ratification was that it was the IEEE 

1149.1 Boundary-Scan Standard (JTAG) without the TAP controller’s FSM. 

However, the IEEE 1500 ECT standard does not define the actual connection between an 

embedded core and the IEEE 1149.1 TAP Controller. This has led to many different connection 

architectures. One method is to integrate all IEEE 1500 wrappers as direct extensions of the 

single TAP Controller on the chip by including one IEEE 1149.1 JTAG IR instruction that would 

select which IEEE 1500 wrapper data registers to connect to the JTAG scan path. This method 



IJTAG vs JTAG vs IEEE 1500 ECT | Technical Tutorial – Second Edition 

 
62 

would automatically concatenate the IEEE 1500 WIR to the IEEE 1149.1 IR scan path when the 

JTAG FSM is on the IR-side. 

Another popular architecture would be to create two independent IEEE 1149.1 IR instructions. 

The first IEEE 1149.1 instruction would select the WIR and put it into the active scan path so an 

IEEE 1500 instruction encoding can be scanned into the WIR and updated. The second IEEE 

1149.1 instruction would select the data register side of an IEEE 1500 wrapper architecture and 

place the active and selected IEEE 1500 data register into the active scan path. However, these 

two instructions enable the operation of both the IEEE 1500 data registers and the IEEE 1500 

WIR as DR-side IEEE 1149.1 operations, not as separate DR-Side and IR-Side operations 

respectively. 

Other architectures might involve single IP cores with full IEEE 1500 ECT feature sets that 

could be accessed individually by IEEE 1149.1 instructions or multiple IEEE 1500 wrapped IP 

cores daisy-chained together and selected by just one set of IEEE 1149.1 instructions. 

Because a core can be thought of as a virtual portable device, the developers of the IEEE 1500 

ECT standard included a few non-IEEE 1149.1 JTAG features such as a Wrapper Parallel Port 

(WPP) to allow manufacturing scan testing, since this is usually based on the system clock, not 

IEEE 1149.1 JTAG’s test clock (TCK). IEEE 1500 manufacturing scan testing could be done 

using a Scan Enable (SE) signal rather than JTAG’s Capture/Shift/Update protocol. Other IEEE 

1500 features not found in IEEE 1149.1 included several types of boundary cells, which required 

a different architecture documentation language and the inclusion of portable vectors for 

manufacturing test that use signals other than the IEEE 1149.1 TAP. This led to the creation of 

IEEE 1500 ECT’s Core Test Language (CTL), which migrated later into the IEEE 1450 

standard. CTL’s vectors were also represented in IEEE 1450.1, the Standard Test Interface 

Language (STIL). These languages differ from IEEE 1149.1 JTAG’s BSDL and the original de 

facto standard vector language associated with IEEE 1149.1 JTAG, Serial Vector Format (SVF). 

Introduction to IEEE 1687 Internal JTAG (IJTAG) 

Development of the most recent of these three standards, the IEEE 1687 Embedded 

Instrumentation Standard (Internal JTAG or IJTAG), started in 2005 and passed ballot in 2014. 
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(Download an introductory tutorial on IEEE 1687 IJTAG here). IEEE 1687 IJTAG was 

developed by a group of industry experts representing the silicon design-for-test (DFT), IC test, 

IC ATE and board test communities who had come together at the International Test Conference 

to discuss the shortcomings of current standards. Each of these experts brought different issues 

and perspectives to the discussion. 

The IEEE 1687 IJTAG working group quickly focused its work on providing support and 

documentation for embedded instruments. In addition, the standard that was developed focused 

on the retargeting of vectors associated with embedded instruments. This was a different starting 

point than IEEE 1149.1 JTAG had adopted, which was aimed at fully describing and 

documenting an on-chip controller and test access features by defining registers and instructions. 

The approach of IEEE 1687 IJTAG also differed from IEEE 1500 ECT, which had used a 

description language to assist or drive the access mechanism synthesis process. 

The initial thinking of the IEEE 1687 IJTAG working group was that the board test and system 

test community neither needed nor cared about embedded instruments for chip test. Moreover, 

the working group believed that board test engineers wanted a simple instruction register and not 

thousands of instructions. In addition, the working group believed that board test engineers were 

interested in keeping IEEE 1149.1 JTAG’s BSDL files as simple as possible, avoiding the 

possibility that BSDL files could become bloated with information on possibly thousands of 

embedded instruments.  

So, the IEEE 1687 IJTAG working group defined an instrument access and operational network 

that had minimal impact on board/system test organizations and would allow tradeoffs, budgets, 

and design engineering issues to be addressed during the development of the access network and 

later during its use. Achieving these objectives meant limiting to one or a few the IEEE 1687 

IJTAG instructions placed in the IEEE 1149.1 JTAG TAP Controller and restricting IJTAG’s 

input to the JTAG BSDL file to little or nothing by defining a separate documentation file for the 

embedded instruments and their related access network. In addition, the focus of the IEEE 1687 

IJTAG working group was more on how to facilitate the use and re-use of portable embedded 

instruments and not as much on how to configure and operate the access network. One of the 

working group’s objectives was that the embedded instrument network should almost be 

http://www.asset-intertech.com/Products/IJTAG-Test/IJTAG-Test-Software/Tutorial-IEEE-1687-IJTAG-Embedded-Instruments-ICL-PDL
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invisible to end users so that all that would be required would be for the user to select an 

embedded instrument, hit run on the operational tool and then simply monitor the instrument, its 

operation and the collected data. Manually monitoring the access network by the user would not 

be necessary. Hence, IJTAG was developed as a loose set of rules for making an access network 

and a way to describe that network. This is to say that IJTAG is more descriptive than it is 

prescriptive. IJTAG tools would manage the defined operations of the portable instruments 

through vectors applied to the instruments’ signal pins. These vectors would be retargeted to the 

TAP pin on the edge of the chip (Figure 25). 

With these goals in mind, IEEE 1687 IJTAG was developed as a serial network or a collection of 

daisy-chained TDRs and embedded TAP Controllers similar to IEEE 1149.1 and IEEE 1500 

serial scan paths, but with network management and plug-and-play options. 

For example, the IJTAG standard addressed how embedded instruments and complete sub-

networks could be treated as portable bolt-together items (Figure 26). But, the main purpose of 

IJTAG was to define an access method for embedded instruments. The purposes of such access 

could be IC test/debug/diagnosis or board/system test. In other words, the focus of the standard 

was more on providing ease-of-re-use of portable instruments than it was on the creation of a 

new infrastructure with all of the overhead within which those instruments would reside. 

 

Figure 25:  An IJTAG architecture showing network, instrument interface and vectors 
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Figure 26:  Embedded instrument connections to TAP described in ICL 

To make embedded instruments portable would require that their command and data interfaces, 

as well as the operations and data applied to their interfaces must be fully described. Embedded 

instruments could then be attached to simple TDRs (Figure 27), as opposed to being wrapped in 

a complete register architecture including instruction registers as defined by IEEE 1149.1 JTAG 

or IEEE 1500 ECT. The operation of these TDRs requires only DR-Scans using the data side of 

the IEEE 1149.1 JTAG FSM (Figure 28). All embedded instrument operations and the 

configuration of the network can be fully utilized without repeatedly installing instructions in the 

IEEE 1149.1 instruction register. 
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Figure 27:  IJTAG architecture with SIBs and NIBs 

 

 

Figure 28:  The active portion of the JTAG FSM for IJTAG operations 

The portable IJTAG instrument, once associated with a TDR, can be incorporated into an overall 

IEEE 1687 IJTAG network through a daisy-chain connection with other TDRs and the plug-and-

play network interface. To support plug-and-play, the TDR must support a data and control 

interface of the following signals: ShiftEn, CaptureEn, UpdateEn, ResetN, Select, TCK, TDI and 

TDO. 
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However, the TDRs don’t necessarily need to be connected in an ever-lengthening daisy-chain, 

but can be connected through special network instruction bits (NIBs) known as segment insertion 

bits (SIBs), which allow an in-line bypass of the portable instrument TDR with an associated 

SIB. In addition, modifications to the access network itself may be incorporated in or near a TDR 

associated with an instrument by incorporating other NIBs that would allow the reset, capture 

and update operations to be enabled or blocked locally. These network management capabilities 

and the configuration of the network are described in IEEE 1687 IJTAG’s Instrument 

Connectivity Language (ICL). ICL also allows the description of legacy architectures such as a 

plain TDR or even a whole and complete IEEE 1149.1 JTAG or IEEE 1500 ECT architecture. 

IJTAG instrument operations would be described in the standard’s Procedure Description 

Language (PDL). 

Ultimately, this IJTAG access network would be very flexible so that it might incorporate legacy 

methods such as IEEE 1149.1 JTAG and IEEE 1500 ECT, as well as newly defined IEEE 1687 

IJTAG efficiencies. The IEEE 1687 IJTAG standard allows many different access network 

configurations while describing the embedded instrumentation operations in PDL and the 

network connections to access the embedded instruments in ICL. This solves one of the main 

concerns with IEEE 1149.1 JTAG and IEEE 1500 ECT; namely, the need for scalability to 

accommodate the growing number of embedded instruments on ASICs and SoCs. 
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Engineers working with embedded instrumentation – which is defined as intellectual property (IP) embedded within chips to support test and measurement applications – may find themselves using the capabilities of several IEEE standards, including IEEE 1687-2014 Internal JTAG (IJTAG), IEEE 1149.1 Boundary Scan (often simply referred to as JTAG) and the IEEE 1500-2005 Embedded Core Test (ECT) standard. Contrary to any confusion in the industry, each of these three standards was developed for distinct and specific purposes. In fact, each standard has capabilities that the others do not, even though some of their capabilities may be similar. (Figure 1)
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[bookmark: _Ref399314289][bookmark: _Toc442085734][bookmark: _Toc442865735]Figure 1: Capabilities of IEEE 1687 IJTAG, IEEE 1149.1 JTAG and IEEE 1500 ECT

Moreover, standards change over time. Since its first ratification in 1990, the oldest of these three standards, IEEE 1149.1 JTAG, has evolved to include features that are far removed from its original purpose of non-intrusive (probe-less) structural circuit board test. Since the 1990s, embedded instrumentation has exploded, bringing with it many requirements that were totally unforeseen when the original IEEE 1149.1 JTAG standard was developed. Several standards, including IEEE 1687 IJTAG, IEEE 1500 ECT and several others have used the JTAG standard’s Test Access Port (TAP) and controller because these have been widely deployed in chips and they provide non-intrusive physical access to the internal operations of semiconductors. Generally speaking, IEEE 1687 IJTAG is able to manage, coordinate and schedule embedded instruments while IEEE 1500 is able to access and manipulate complex embedded cores through the access provided by IEEE 1149.1 JTAG’s TAP and controller.

Recent changes in the IEEE 1149.1 JTAG standard (IEEE 1149.1-2013) seem to suggest that it is evolving away from its original purpose in circuit board test and migrating toward other applications, such as chip test. This may or may not be a good thing for circuit board test. One can question whether the original intent of a standard such as IEEE 1149.1 JTAG is being compromised when it evolves into areas that have very different requirements from those that led to its development in the first place.

This eBook compares and contrasts the capabilities of these three standards to illustrate how the unique capabilities of each can be applied to achieve engineering goals in development, manufacturing and field support. In particular, some of the confusion that has arisen around the IJTAG and JTAG standards will be dispelled by explaining how the seminal objectives upon which these standards were developed actually limit their growth and applicability to new use cases and that these new use cases are beyond the scope of the standards’ original objectives as well as applications. In addition, the strengths of each standard will also be described. In fact, understanding where each standard should not be used is as important as understanding where they should be applied. In addition, it should be noted that any one chip or circuit board may require the capabilities of all three standards because each one has certain capabilities not found in the others. In addition, the adoption of any one standard may be driven by the IP provider since the standards supported by any IP may be limited. Moreover, the ease of integrating IP may require the support for all three standards at the IC level.

[bookmark: _Toc442085708][bookmark: _Toc442865709]Introduction

A cursory understanding of the objectives that drove the original development of the IEEE 1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 IJTAG standards will indicate the use cases, strengths and weaknesses of each.

When the development of the IEEE 1149.1 Boundary-Scan Standard (JTAG) began in the late 1980s followed by its first IEEE ratification in 1990 (IEEE 1149.1-1990), its goal was to provide a more effective circuit board test methodology that would verify the connectivity of chips to boards. At the time, new chip packaging technologies, such as surface mount ball grid arrays (BGA), were making the pins on chips inaccessible to probe-based validation, test and debug methods because the pins were hidden under the silicon die. Test and measurement equipment such as oscilloscopes, in-circuit testers (ICT) and others have traditionally relied on probe-based access to chips and circuit boards. In essence, surface mount chips began to erode the economical probe access that the industry previously had available. In reaction to this situation, chips conforming to the IEEE 1149.1 JTAG standard added limited logic to support the boundary-scan test methodology, which eliminated the need for probe access. The IEEE 1149.1 standard has been updated several times since it was first ratified. The last such update in 2013 (IEEE 1149.1-2013) introduced several features that overlap certain functionalities included within the IEEE 1687 and IEEE 1500 standards. For additional background information on the IEEE 1149.1 Boundary-Scan Standard, see the Appendix.Examples of Embedded Instruments:

· Memory BIST

· Scan

· Scan Compression

· Logic BIST

· PLL BIST

· Debug trace

· Capture triggers

· Assertions

· Voltage monitors

· Temperature monitors

· Frequency monitors

· Power mode settings

· Bus configurations



The IEEE 1500 Embedded Core Test (ECT) standard was ratified in 2005. Prior to IEEE 1500’s ratification, multiple IP cores were being integrated on-chip, but these cores typically numbered in the tens of cores. These cores could be hard cores (physical layout macros) or soft cores (synthesizable HDL or RTL). IEEE 1500 ECT provided a methodology for validating that the cores embedded in a chip could interact as specified by including self-contained tests and by supporting a core boundary wrapper. Today, IP cores in a typical system-on-a-chip (SoC) may number well over 100. For additional background information on the IEEE 1500 Embedded Core Test Standard, see the Appendix.

Development of the IEEE 1687 Embedded Instrumentation (IJTAG) Standard began in 2005 when the number and types of embedded instruments inside chips began to proliferate dramatically. Chip designers had discovered that embedded instrumentation was one of the most cost-effective and efficient means of testing, validating, characterizing and debugging their ICs. (It was more cost-effective to use features on-silicon instead of using external equipment such as a multi-million-dollar ATE system.) Additionally, the capabilities of the embedded instruments within chips were being applied to additional applications, including the debug, validation and test of circuit boards. An example of these wider applications would be applying a SerDes built-in-self-test (BIST) instrument to verify the high-speed low-voltage differential signaling (LVDS) traces on a circuit board.

There was little or no consistency among embedded instruments with regards to management and coordination procedures, access ports and usage protocols, on-chip access architectures and other aspects of their operations. For instance, certain types of instruments were used in different environments and, therefore, supported different access mechanisms. Wafer probe, for example, accessed embedded process monitors (ring oscillators) through probe pads; chip test accessed manufacturing scan and scan compression through a custom pin interface; and debug/yield-analysis accessed debug and trace logic through the JTAG port. IEEE 1687 IJTAG was developed to ensure the inherent portability of embedded instruments and to make the application of embedded instruments more effective and efficient without disturbing the purposes of other standards, such as IEEE 1149.1 JTAG. For additional background information on the IEEE 1687 Embedded Instrumentation Standard, see the Appendix.

[bookmark: _Toc442085709][bookmark: _Toc442865710]Differences among the three standards

On the surface, these three standards may seem somewhat similar, but in reality there are significant differences among them. Since IEEE 1149.1 JTAG is the oldest and most established of these standards (IEEE 1149.1-1990), it established the definition of the register configurations and the state machine-based protocol that were adopted as a foundation for the other two standards. As a result, one could easily believe that all three standards have similar hardware architecture. However, since the use cases for each standard are quite different, the nature of their hardware architectures is also different. The biggest differences, however, are in their methods of documentation; that is, their architectures and vector descriptions. Therefore, the differences among the three standard can be found in both the hardware architectures and their description languages.

As mentioned previously, since its first ratification in 1990, IEEE 1149.1 JTAG has been deployed in circuit board test and validation applications, and its on-chip Test Access Port (TAP) and TAP Controller have become de facto methods for accessing embedded on-chip resources. IEEE 1149.1 JTAG’s original use case was to provide on-chip logic to support board interconnect testing. The JTAG TAP, which is defined as four mandatory (TCK, TMS, TDI, TDO) and one optional (TRST*) package pins for accessing JTAG’s internal functionality, is simply referred to as the JTAG port and IEEE 1149.1’s mandatory and optional data registers are the vehicles for accessing or implementing the standard’s functionality.

JTAG’s board test purposes are executed through a centralized instruction register that is operated by a dedicated portion of the JTAG state machine. This results in the separation of instruction selection from data operations. The original intent of the IEEE 1149.1 JTAG standard was to define and describe registers that had operational purposes narrowly defined by the standard so that the selection of an instruction mapped onto a known test operation. Here are a few examples:  1) updating an EXTEST instruction (encoding) into the JTAG Instruction Register (IR) results in the Boundary Scan Register (BSR) taking on a particular configuration to statically set the output logic values of the output pins of the chip;  2) the use of the IDCODE instruction results in the access and reading of a 32-bit register that contains a defined value established by the chip provider, the chip family and a JEDEC standard; and  3) the use of the BYPASS instruction resolves the entire chip’s contribution to the board’s overall scan path to a single bit.

The IEEE 1500 ECT standard has a similar use case and functionality to IEEE 1149.1 JTAG but IEEE 1500 ECT specifies a means for wrapping embedded cores so they can contain test modes for validating the core’s operations and for conducting an interconnect test when the core is embedded on a particular chip. An IEEE 1500 core wrapper is similar to an IEEE 1149.1 JTAG register architecture, but the IEEE 1500 standard does not specify that a state machine must be part of the architecture. The IEEE 1500 architecture is meant to be operated and synchronized at the test controller level of the SoC by the IEEE 1149.1 TAP Controller state machine. An IEEE 1500 core might house multiple test and debug functions that parrot how IEEE 1149.1 provides test functions for a chip, but these functions are applied to the embedded core. In this respect, one could think of an IEEE 1500 wrapper as IEEE 1149.1 JTAG and boundary scan for a core. In this sense, the core might represent a “virtual chip.” (That is, a core is a design unit without the chip package pins. In other words, a core is to a SoC as a chip is to a circuit board.) The test functions or instruments housed inside an IEEE 1500 core wrapper are accessed by an IEEE 1500 Core Data Register (CDR) or Wrapper Data Register (WDR), which are equivalent to an IEEE 1149.1 TDR. The IEEE 1500 Wrapper Architecture allows a wrapped core to be delivered with tests already included, thereby adding a measure of portability to core test. It must be noted that a core provider has the option of delivering the core with an IEEE 1500 wrapper and predefined tests or just the core itself. If only a core is delivered, the chip integrator will have to wrap the core and add tests that meet the needs and purposes of the specific SoC.

IEEE 1687 IJTAG’s use case has always been to provide access to embedded instruments so they could be operated for test, debug, environmental monitoring, process monitoring, and functional configuration, thereby bringing multiple use environments under one standard access mechanism. The stated purpose of the IJTAG standard is to “facilitate vector retargeting” from embedded instruments to the chip or board level. Retargeting is accomplished by providing instrument vectors written at the instrument interface and by providing a minimal description of the access architecture that delivers the vectors, thereby making embedded instruments portable and independent of the access architecture.

Since IEEE 1687 IJTAG was the last of these three standards to be developed, one can better understand what its strengths and use cases are by examining those of the other two, IEEE 1149.1 JTAG and IEEE 1500 ECT. Although IEEE 1687 IJTAG was developed so that it would not overtly duplicate the capabilities of IEEE 1149.1 JTAG and IEEE 1500 ECT, the IEEE 1687 IJTAG working group had no control over the working groups overseeing the further development of these other two standards.

The IEEE 1687 IJAG working group started with the belief that there were shortcomings with both IEEE 1149.1 JTAG and IEEE 1500 ECT. For example, IEEE 1149.1 JTAG’s centralized instruction register architecture was seen as a physical hindrance to scalability as the number of embedded instruments grew. In addition, the fixed and somewhat rigid aspects of the JTAG architecture, such as selected instructions accessing only a fixed-length TDR, limited an engineer’s ability to design access networks with engineering tradeoffs in mind, like power, area, routing, non-centralized decode and others. In addition, the operational tradeoffs engineers could incorporate, such as flexible instrument scheduling, instrument concurrence of operation and scan path length management, were also limited under the JTAG standard. The IEEE 1687 IJTAG working group believed JTAG or ECT involved too much overhead for individual simple instruments. (Compliance to the IEEE 1149.1 JTAG standard requires support of the boundary register, bypass register, IDCode register, instruction register and some mandatory instructions.) Also, the JTAG standard could not efficiently handle concurrent and flexible instrument scheduling. The IEEE 1687 IJTAG working group concluded that something simpler than IEEE 1149.1 JTAG and IEEE 1500 ECT was needed.

Some of the other objectives of the IEEE 1687 IJTAG working group were to avoid affecting the IEEE 1149.1 JTAG and IEEE 1500 ECT standards to the extent that their use cases would be compromised or that using them would be made more difficult. This meant that the board test community, which expected to use the defined IEEE 1149.1 JTAG instructions of EXTEST, BYPASS, IDCODE, and a handful of other defined instructions, should not be burdened with the hundreds or thousands of instructions that might be associated with IC test and their documentation within JTAG’s Boundary-Scan Description Language (BSDL) file. The IEEE 1687 IJTAG working group concluded that the content accessed for IC test should somehow be accessed by just a few instructions and that the documentation of these instructions should not bloat a chip’s BSDL file. (Similar considerations were made for the IEEE 1500 Wrapper-IR (WIR) and CTL files.) This led to the development of a different description language for the IEEE 1687 IJTAG architecture. In addition, the purpose of IEEE 1687 IJTAG was to allow portable instruments to be delivered with their vectors and for those vectors to be reused or retargeted with automation tools instead of manually modifying vectors followed by chip-level re-simulation. So, a vector language with an application focus different from IEEE 1149.1 JTAG’s, which is restricted to its TAP and access network, was needed. This language would be focused on the internal embedded instrument, not the IC or an SoC’s TAP package pins.

In short, the three standards, IEEE 1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 IJTAG may all be based on the same basic operations (Reset - Shift – Capture – Update), but their particular use cases result in significant applied differences as well as different sets of pros and cons for each standard.
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		Feature

		IEEE 1687 IJTAG

		IEEE 1149.1-2013 JTAG

		IEEE 1500 ECT



		Includes Hardware FSM Controller

		No

		Yes

		No



		Includes an Instruction Register

		No

		Yes

		Yes



		Includes Mandated Defined Instructions

		No

		Yes

		Yes



		Supports Persistent Instructions

		No3

		Yes

		No



		Separation of Instruction and Data

		No

		Yes 

		Yes



		Includes Defined Connection to Controller

		Yes

		Yes

		No



		Data-based operations only

		Yes

		No 

		No1 



		Mandates a Boundary Register

		No

		Yes 

		Yes



		Mandates a Bypass Register

		No

		Yes 

		Yes



		Mandates an ID Register

		No

		Yes

		Yes



		Support of a Test Data Register (TDR)

		Yes

		Yes

		Yes



		Support of Network Instruction Bits

		Yes

		No

		No



		Support of Network Configuration Bits

		Yes

		Yes

		No



		Portable instruments supported

		Yes

		Yes2

		No



		Embedded TAP Controller supported

		Yes

		No

		No



		Architecture description language

		ICL

		BSDL

		CTL 



		Test Data Register based vectors

		No

		Yes

		Yes



		Portable instrument vectors supported

		Yes

		No

		No 



		Vector description language

		PDL

		SVF, PDL

		STIL





1. An IEEE 1500 Wrapper may be operated from only the DR-side of the IEEE 1149.1 state machine, but the wrapper itself still separates instruction operations from data operations.

2. IEEE 1149.1 JTAG supports instruments if they are designed and delivered with a Test Data Register attached and the vectors are written to the TDR. IEEE 1687 IJTAG allows and supports true portable instruments and vectors with no required TDR.

3. IEEE 1687 IJTAG has embedded instruction bits in the data scan path that are used mainly to configure the scan path, conduct local resets, and apply action limitations such as “deny capture.” These instructions are written on each DR-Scan and are not persistent through reset.

Table 1 above summarizes some of the more prominent capabilities of the three standards. It shows that both IEEE 1500 ECT and IEEE 1687 IJTAG are controller-less standards, which rely on IEEE 1149.1 JTAG and its TAP Controller to provide operational signals and sequences. Of the three standards, only IEEE 1149.1 JTAG specifies a controller. Both IEEE 1149.1 JTAG and IEEE 1500 ECT mandate a register architecture that includes boundary registers, ID registers, bypass registers and a formal instruction register. In contrast, IEEE 1687 IJTAG only mandates TDR registers and optionally allows embedded instruction and configuration bits in the data-side scan path. IEEE 1149.1 JTAG and IEEE 1500 ECT both define instructions such as BYPASS and IDCODE since each of these standards set aside a fixed portion of their architectures to support these instruction-based features. Only the most recent revision of the JTAG standard, IEEE 1149.1-2013, supports reset-independent persistent instructions. IEEE 1687 IJTAG is the only standard to support multiple embedded TAPs and TAP Controllers. IEEE 1149.1-2013 JTAG and IEEE 1687 IJTAG support variable-length scan paths by allowing the inclusion of Segment-Select or Segment-Insertion Bits. And each of the three standards mandates different description languages.

[bookmark: _Toc442085710][bookmark: _Toc442865711]Creeping Overlap

The confusion over the respective functionality of IEEE 1149.1 JTAG and IEEE 1687 IJTAG began in 2011 when the IEEE 1149.1 JTAG working group opened an IEEE Project Authorization Request (PAR) to update the IEEE 1149.1 JTAG standard. The IEEE 1687 IJTAG working group had begun developing its standard in 2005. IEEE 1149.1-2013 JTAG was ratified in 2013, while IEEE 1687 IJTAG passed ballot in 2014. Some companies and individuals participated on both committees.

IEEE 1149.1-2013 JTAG added several new features to the standard but it steadfastly maintained a dual register separation architecture which separated data and instruction operations and was made up of centralized instructions and multiple parallel data registers. Although some of the new features of IEEE 1149.1 JTAG by definition overlap the features of both IEEE 1687 IJTAG and IEEE 1500 ECT on a purely functional level, in real-world implementations some of these same capabilities could be accomplished more effectively and efficiently with either IEEE 1687 IJTAG or IEEE 1500 ECT. In addition, both IEEE 1687 IJTAG and IEEE 1500 ECT include capabilities not found in IEEE 1149.1-2013 JTAG at all.

[bookmark: _Toc442085711][bookmark: _Toc442865712]Understanding and Comparing Hardware Architectures
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The hardware architectures specified by IEEE 1149.1 JTAG, IEEE 1500 ECT and IEEE 1687 IJTAG (Figure 2) have a major effect on the scalability, portability and use cases for each standard.

As mentioned previously, IEEE 1149.1 JTAG defines a controller. This controller consists of a four-bit finite state machine (FSM), which generates 16 states that control the operating sequences defined in the standard. The inputs to the IEEE 1149.1 JTAG FSM (Figure 3) are two of the four signals defined in the standard, the Test Mode Select (TMS) and Test Clock (TCK). The states in the FSM that are used to generate the key operational signals are:  Test-Logic-Reset (TLR), which may generate the Reset Signal; Shift-IR/DR, which may generate the Shift-Enable signals; Capture-IR/DR, which may generate the Capture-Enable signals; and Update-IR/DR, which may generate the Update-Enable signals. The definition of the controller and its operations is unique to the IEEE 1149.1 JTAG standard. For the IEEE 1687 IJTAG standard, only the data-side operations of the controller are important. IEEE 1500 ECT may be connected to the IEEE 1149.1 JTAG TAP Controller in such a way that it may be operated with only data-side operations or it may require both data-side and instruction-side operations.
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No physical controller is specified in the IEEE 1687 IJTAG or IEEE 1500 ECT standards. IEEE 1500 and IEEE 1687 have been designed with a separable (plug-and-play) signal interface that makes use of the signals generated and the protocol established by the IEEE 1149.1 JTAG controller. IEEE 1500 ECT may connect to an IEEE 1149.1 JTAG FSM on both the data-side and instruction-side because both IEEE 1149.1 and IEEE 1500 have formal instruction registers. Alternatively, IEEE 1500 may connect to only the data-side operations of the state machine. In contrast, IEEE 1687 IJTAG only makes use of the data-side of the JTAG FSM since IEEE 1687 IJTAG supports no formalized instruction register, but does allow data-side embedded instruction or embedded configuration bits.

One of the development goals of IEEE 1687 IJTAG was to maintain flexibility and re-configurability. As a result, IEEE 1687 could utilize other controllers in the future if warranted by industry demand. This could be accomplished by connecting the IEEE 1687 separable interface to a different controller that would generate the Shift-Enable, Capture-Enable, Update-Enable, and Reset signals. At the time of this writing, the IEEE 1687 IJTAG standard specifies and includes only the IEEE 1149.1 JTAG Controller as the preferred implementation, but the standard also provides a generic description of an AccessLink, which shows how alternative controllers could be associated with an IEEE 1687 IJTAG serial network. A formal IEEE P1687.1 effort will update and define alternate controller access for 1687 networks in the future.

To a certain extent, the hardware architectures defined by IEEE 1149.1 JTAG and IEEE 1500 ECT share many characteristics. In general, the IEEE 1149.1/1500 architecture is comprised of a collection of fixed-length registers that are included in an active scan path through the placement of an instruction in an associated instruction register. This differs decidedly from the flexible hardware architecture of an IEEE 1687 IJTAG on-chip network of embedded instruments. A single IEEE 1687 AccessLink instruction selects the network. Then, single-bit in-line embedded instructions configure the network. In a sense, these single-bit instructions act as switches or traffic lights to direct traffic over the various segments of the on-chip network of embedded instruments. One of the changes in IEEE 1149.1-2013 JTAG is the addition of “segment-select bits,” which incorporate some of this functionality into the IEEE 1149.1 JTAG standard. IEEE 1687 IJTAG, unlike the IEEE 1149.1/1500 hardware architectures, makes no distinction between data and instructions in its network.

IEEE 1500 ECT also has its own unique capabilities that are not supported in IEEE 1149.1 JTAG or IEEE 1687 IJTAG. These include the Wrapper Parallel Port (WPP) and the Transfer operation. These are defined hardware configurations that are optimized for core-based test and the reuse of functional interface or boundary registers in the boundary wrapper.

Another unique characteristic of IEEE 1687 IJTAG is the inclusion of embedded Network Instruction Bits (NIBs). In general, NIBs are in-line data bits in the scan path that can modify other portions of the scan path, which comprises the IEEE 1687 IJTAG on-chip network of embedded instruments. These bits may be used to gate the Capture-Enable, Update-Enable and Reset signals to provide a Deny-Capture, Deny-Update, and Deny-Reset functionality. In addition, these bits may enable a capability known as Local-Reset, which resets a TDR or scan path segment and which is initiated by a NIB in the scan path. These capabilities are very useful during scan chain debug when, for example, a hold-time violation through a scan path flip-flop must be debugged or diagnosed.

Perhaps one of the most significant capabilities of IEEE 1687 IJTAG that is not supported by IEEE 1149.1 JTAG or IEEE 1500 ECT is multiple embedded TAP Controllers. This became a problem when IEEE 1500 ECT adoption began in the industry. Some IP providers would deliver a core with an IEEE 1500 wrapper that also included the IEEE 1149.1 TAP state machine. Instead of the 1500 plug-and-play interface defined in the standard, the delivered IP would instead support an IEEE 1149.1 TAP signal interface. In effect, such a core would include a complete IEEE 1149.1 architecture that would function as a secondary JTAG architecture to the primary JTAG architecture of an IC or SoC. The question of how to incorporate multiple cores each with its own TAP and TAP Controller into one SoC is not dealt with in a cost-effective manner in the IEEE 1149.1 JTAG or IEEE 1500 ECT standards. So, IEEE 1687 IJTAG took on the task of defining how multiple embedded JTAG TAPs could be incorporated within an IEEE 1687 IJTAG network and how these multiple TAPs would be described. However, an embedded TAP should more properly be viewed as either an instrument or a scan path reconfiguration element within the IJTAG network.

It must be noted that all three standards support fixed-length TDRs, but each standard has a different method of documenting these registers.

[bookmark: _Toc442085712][bookmark: _Toc442865713]Comparing the IEEE 1149.1 and IEEE 1500 Hardware Architectures 

The two following graphics (Figure 4 and Figure 5) point out the similarities between the IEEE 1149.1 JTAG and IEEE 1500 ECT hardware architectures.

Figure 4 shows the IEEE 1149.1 JTAG architecture with its parallel set of Data Registers, Instruction Register (1149.1-IR), the FSM and the instruction decode for generating Register Control Signals. Several of the registers are required (mandated) functions, including the bypass register (BYP), the ID code register (IDCode) and the Boundary Scan Register (BSR). (Note that the BSR can only be constructed from cells defined in the IEEE 1149.1 and 1149.6 JTAG standards.) One or more generic Test Data Registers (TDR) are optional for accessing embedded instruments.
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[bookmark: _Toc442085737][bookmark: _Toc442865738]Figure 4: The IEEE 1149.1 TAP (left) with register architecture and protocol FSM

When the FSM is on the data-side (Figure 3), the active instruction in the Instruction Register selects which register is active and, as a result, it is included in the active scan path. However, when the FSM is on the instruction-side (Figure 3), only the Instruction Register is included in the active scan path. This architecture is documented with the IEEE 1149.1 standard’s BSDL.
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[bookmark: _Ref399319682][bookmark: _Ref399324599][bookmark: _Toc442085738][bookmark: _Toc442865739]Figure 5: The IEEE 1500 Wrapper Serial Port (right) and register architecture

The IEEE 1500 ECT architecture shown in Figure 5 is extremely similar to the IEEE 1149.1 JTAG architecture in Figure 4. The register structure is practically identical except the registers are renamed as wrappers. The IEEE 1500 Wrapper Bypass Register (WBY) performs the function of IEEE 1149.1’s BYP; IEEE 1500’s Wrapper ID Code (WID) register corresponds to IEEE 1149.1’s IDCode; and IEEE 1500’s Wrapper Boundary-Scan Register (WBR) mirrors IEEE 1149.1’s BSR; and IEEE 1500’s Wrapper Instruction Register (WIR) represents the same function as IEEE 1149.1’s IR. In IEEE 1500, one or more generic Core Data Registers (CDR) or Wrapper Data Registers (WDR) are optional for accessing embedded instruments in a manner similar to the IEEE 1149.1 TDR.

The main difference between the IEEE 1149.1 JTAG and IEEE 1500 ECT architectures is not that the registers have been renamed, but that the IEEE 1149.1 FSM is not included as part of the IEEE 1500 architecture. As a result, the IEEE 1149.1 TMS signal that operates the FSM is replaced in IEEE 1500 by the control signals that are normally produced by the IEEE 1149.1 FSM: ShiftWR, CaptureWR, UpdateWR, and ResetN (where the WR represents the word Wrapper on signals normally named ShiftDR or ShiftEn, for example). These signals must be included as inputs to the wrapper architecture instead of the IEEE 1149.1 TAP TMS signal. The IEEE 1149.1 TDI, TDO and TCK signals are included and are represented in IEEE 1500 as WSI, WSO and WRCK, respectively. In addition, a separate IEEE 1500 signal, SelectWIR, selects the Wrapper Instruction Register (WIR) to make the wrapped core part of an active scan path when instructions need to be installed or changed. The SelectWIR signal may be generated when the IEEE 1149.1 FSM is on the instruction-side (as the Select-IR signal is created for IEEE 1149.1) or this signal may be generated on the data-side when a SelectWIR type of instruction is installed in the IEEE 1149.1 IR. Where SelectWIR is generated depends on how the IEEE 1500 wrapper unit is connected to the 1149.1 TAP controller. The entire IEEE 1500 architecture is documented in that standard’s Core Test Language (CTL), which is its own standard, IEEE 1450.6.

The IEEE 1500 ECT standard does not specify a connection to the IEEE 1149.1 JTAG TAP. Some implementations can connect one or more IEEE 1500 wrappers to the IEEE 1149.1 TAP with a single instruction. The WIR is operated in concatenation to the IR when the FSM is on the instruction-side and the IEEE 1500 Instruction is installed. (Essentially, this means that the IR can change length depending on the active instruction.) More often though, the favored implementation requires two instructions per IEEE 1500 wrapper unit: one IEEE 1149.1 instruction selects the IEEE 1500 wrapper WIR as the active scan path and the second IEEE 1149.1 instruction selects the IEEE 1500 Data Registers as the active scan path. The specific active IEEE 1500 Data Register depends on the IEEE 1500 instruction contained within the WIR. In this case, all IEEE 1500 operations are on the DR-Side of the IEEE 1149.1 FSM. This type of connection is shown in Figure 6 where a complete IEEE 1500 Wrapper is subsumed within the TDR-space of an IEEE 1149.1 JTAG architecture. Note that multiple IEEE 1500 wrappers may be selected by individual instructions or the wrappers may be daisy-chained (Figure 7) and treated similarly to a board test architecture. (Those wrappers not active may be placed in bypass to reduce the length added to the daisy-chain scan path to one bit for that particular bypassed IEEE 1500 wrapper.)



[bookmark: _Ref399319749][bookmark: _Toc442085739][bookmark: _Toc442865740]Figure 6: Where IEEE 1500 fits within IEEE 1149.1
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In summary, the intent of the IEEE 1149.1 JTAG and IEEE 1500 ECT hardware architectures is to provide well defined test operations while maintaining a separation between the instructions that configure the architecture as well as activate the test operations and the data that can be used for test and debug purposes.

It should be noted that IEEE 1500 wrapper units sometimes cause malfunctions in 1149.1 JTAG/boundary-scan board test tools because the IEEE 1500 WIR instructions are invisible to JTAG’s BSDL description of the 1149.1 architecture.

[bookmark: _Toc442085713][bookmark: _Toc442865714]Scalability Problems with IEEE 1149.1 and IEEE 1500 Instruction-Based Architectures

The differences in hardware architectures between IEEE 1149.1/1500 and IEEE 1687 IJTAG are critical with regards to issues of scalability. Over the upcoming decades as more and more instruments are embedded on-chip or in multiple levels on complex multi-die packages, it will be essential that the network connecting them must be extremely scalable and flexible so that it will allow for engineering and operational tradeoffs, and take into consideration clock and power domains as well as security instruments. The hardware architecture defined in the IEEE 1687 IJAG standard enables a scalable on-chip environment while the IEEE 1149.1/1500 architecture is limited in scalability because the IEEE 1149.1/1500 architecture is based on centralized instructions.

While the IEEE 1149.1 JTAG FSM that drives the IEEE 1149.1/1500 hardware architecture has a dual instruction/data structure, the IEEE 1149.1/1500 hardware architecture itself is instruction-based insofar as instructions configure the scan path and activate the operations of any associated embedded instruments. This exclusive instruction orientation of the IEEE 1149.1/1500 architecture has inherent failings involving efficiency of operations and management of resources.

[bookmark: _Toc442085714][bookmark: _Toc442865715]The Daisy-Chained TDR Configuration

When instructions select or activate the scan paths for embedded instruments, one implementation can result in a lengthy single TDR architecture. Referred to as a daisy-chain configuration, the embedded instrument TDRs on the long active scan path will be daisy-chained together (Figure 8). When a long scan path such as this is selected, everything on the scan path, including all of the embedded instruments are active and consuming power. And, because of the length of the scan path, access times for any given embedded instrument interface will be relatively long.

Consider this example: 10 embedded instruments each with a 32-bit interface comprise the scan path. To access all 10 instruments, the single daisy-chained scan path would be 320 bits long. An access to any single embedded instrument would require the entire 320 bits to be shifted into the register chain and subsequently updated. In addition, all 320 scan flip-flops would be turned on, active and using power even though only one 32-bit instrument interface was being accessed.Deficiencies of daisy-chained scan path in the IEEE 1149.1/1500 architecture:

· Long instruction lengths

· Excessive power consumption

· High risk of failure

· Absence of instrument documentation



This architecture also features high risk. If only one bit is broken (stuck-at, open, hold-time problems, slow clock, slow data etc.), the entire scan path will not shift correctly, possibly disabling all of the embedded instruments on the chain. And lastly, there is no way to document in IEEE 1149.1 JTAG’s BSDL all of the separate instruments on the path because features connected to the access TDR are not officially part of the BSDL description. Generally, an embedded instrument scan path is listed as private in IEEE 1149.1 and only the length of the selected TDR is required to be documented in the BSDL.
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[bookmark: _Toc442085741][bookmark: _Toc442865742]Figure 8: Inefficient instrument access with long daisy-chained scan paths

This daisy-chained type of architecture is also not scalable because adding more embedded instruments just makes matters worse. A scan path of 100 32-bit instruments results in a scan path 3,200 bits long and 1,000 instruments resolves to a scan path 32,000 bits long. And, of course, more power is consumed, access times get longer and the risk increases since a longer scan path will include a greater number of possible points of potential failure.

[bookmark: _Toc442085715][bookmark: _Toc442865716]The Single-Instruction Per Instrument Configuration

Another IEEE 1149.1 JTAG architecture would be to include a TDR for each embedded instrument (Figure 9). In this structure, each instrument could be selected by its own unique instruction. This type of configuration is sometimes referred to as a one-at-a-time access architecture.

This configuration mitigates the risk of failure somewhat since a broken data scan chain only disables access to one instrument. The power problem is mitigated because instruments could be selected and activated individually through each instrument’s TDR while other non-active instructions may have quiescent TDRs by not receiving clocks or active control signals. Unfortunately, this individualization may result in routing congestion since each separate TDR will require uniquely selected control signals. Lengthy access times can be avoided since the scan path could contain only the instrument or instruments that are required.Deficiencies of one-at-a-time scan path configuration:

· Potentially many unique instructions (one for each instrument)

· Poor efficiency

· Multiple instruments cannot be scheduled and operated at same time

· Central decode leads to long instruction registers, test execution times and on-chip route congestion

· Bloated BSDL file with many unique instructions (one per instrument)



In addition, this one-at-a-time architecture also has efficiency and scalability problems. Each instrument must have its own unique access instruction. Adding more embedded instruments quickly escalates the number of instructions. Moreover, it is impossible to effectively schedule and operate multiple instruments simultaneously. In addition, this is essentially a centralized decode structure since all instructions are decoded in the chip’s IEEE 1149.1 JTAG TAP Controller. Thousands of unique instructions could be routed from the TAP to all of the embedded instruments located throughout the chip. This could lead to long instruction registers, long test execution cycle times and possibly routing congestion problems. (Routing congestion is one of the more significant scalability problems.) Furthermore, the BSDL file describing the device could become bloated with all of the required unique instruction descriptions for each instrument.
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[bookmark: _Ref399323004][bookmark: _Toc442085742][bookmark: _Toc442865743]Figure 9: Inefficiency in one-instrument-at-a-time/one-instruction architecture

The two methods explained above could be combined in an architecture featuring unique instructions for groups of instruments so that each instrument would not need its own individual instruction. The drawback for this configuration is it lacks flexibility. It would be hardened in the chip during design and could only be altered through a re-design, a time-consuming and expensive process. To overcome this deficiency and ensure a flexible configuration, many multiplexors could be inserted into the architecture, but this would require massive amounts of decode within the TAP Controller and lead to excessive on-chip logic processing and routing congestion. Ultimately, the operating frequency of the IEEE 1149.1 architecture would be slowed down.

The following example illustrates the difficulties with this type of architecture. The architecture is a fully selectable centralized instruction architecture with just 50 instruments. Allowing any six instruments to be combined would require decoding and multiplexing to create 15 million instructions. The problem is not that 15 million instructions would require a large instruction register. In fact, only a 24-bit Instruction Register would be needed to store all 15 million instructions. However, a chip designer or test engineer would need to manually examine and select the one instruction from among the 15 million possible instructions that would operate the configuration he wanted to deploy. Clearly, this would not be feasible. A more flexible architecture would allow 50 instruments to be represented as 50 items and a selection of each item would include it within the scan path. This is what the IEEE 1687 IJTAG architecture accomplishes.

[bookmark: _Toc442085716][bookmark: _Toc442865717]Comparing the IEEE 1149.1/1500 and IEEE 1687 Hardware Architectures

The IEEE 1687 IJTAG architecture does not rely on several hardware architecture and operational aspects that are essential in both IEEE 1149.1 JTAG and IEEE 1500; namely, a centralized instruction architecture and a separation of data and instructions. The IEEE 1687 IJTAG architecture does not include its own controller or its own centralized instruction register, and it does not mandate any defined instructions. The IJTAG hardware architecture is based on a signal interface designed to be plug-and-play portable and to be operated by a controller that is external to the IEEE 1687 IJTAG architecture itself. The separable interface and external controller is very similar to the IEEE 1500 ECT standard, but without the mandated multiple register architecture with Bypass, Boundary, ID, and other features, for example. Currently, the IEEE 1687 IJTAG standard describes only the IEEE 1149.1 TAP Controller as the default generator of the operational protocol to the IEEE 1687 IJTAG plug-and-play signal interface, but the standard does allow for different chip interfaces and controllers and describes a generic AccessLink instruction. Note that a formal effort to investigate other interfaces and controllers is under way as IEEE P1687.1.

Because the IEEE 1687 IJTAG architecture does not feature one centralized instruction register, it allows a greater degree of flexibility by supporting data-side scan path bits that may be viewed as Network-Instruction-Bits (NIBs). That is, the concept of a NIB allows bits in the data scan path to act as instruction bits when they are written and asserted. For example, the update cells associated with scan shift cells in the scan path become a distributed instruction register mingled with scan path data bits and are operated on the DR-side of the IEEE 1149.1 FSM. These embedded instructions can reconfigure the scan path or modify the behavior of the scan path on any Update-DR assertion. One of IEEE 1687 IJTAG’s primary configuration NIBs is the Segment Insertion Bit (SIB), which is a normal IEEE 1149.1 JTAG-type scan path TDR cell with a shift-side and an update-side. However, the SIB’s update-cell holds a value that operates a ScanMux multiplexor, which can reconfigure the scan path. In other words, whereas the IEEE 1149.1/1500 architecture performs a register-swap, the IEEE 1687 IJTAG SIB add or subtract a segment (Figure 10). This means that the SIB itself can be viewed as an embedded scan path bypass register. IEEE 1687 supports the IEEE 1500 scan path configuration mechanism as well. This is similar to the SIB. It uses a construct known as a Segment Swap Bit (SSB) that swaps one mutually-exclusive scan path segment for another (Figure 11) instead of adding or subtracting a scan path segment to/from the active scan path as an IJTAG SIB would.
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[bookmark: _Toc442085743][bookmark: _Toc442865744]Figure 10:  The Segment Insertion Bit (SIB) adds a scan path
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[bookmark: _Toc442085744][bookmark: _Toc442865745]Figure 11:  The Segment Swap Bit (SSB) selects a mutually-exclusive active scan segment

Figure 10 shows a SIB that can add a scan path (SP) segment (SP #1) to an existing scan path (SP #3) and can expand the active scan path from 13 bits (SP #3’s 12 bits plus the SIB’s 1 bit) to 45 bits (Scan Path #1’s 32 bits plus the existing 13 bits). On any given DR-Scan, the SIB can be opened to add SP #3 or include the segment, or the SIB can be closed to subtract or dis-include the segment. When the SIB is closed, the TDR segment is no longer in the active scan path, but by IEEE 1687 IJTAG’s rules of operation, the TDR segment is frozen (holds state) and does not process any ShiftEn/CaptureEn/UpdateEn when the Select generated by the SIB is de-asserted.

Figure 11 shows an example of the IEEE 1500 type of scan path configuration mechanism and its IEEE 1687 architecture method. Instead of having the register selection coming from a formalized centralized instruction register such as the IEEE 1500 WIR, a single in-line NIB can be used to generate a Select signal as a SIB would. This type of NIB could be called a Segment Swap Bit (SSB). In the example in figure 11, the constant scan path segment would be the 12-bit SP #3 plus the 1-bit SSB. The variable portion would be one of either the 32-bit Scan Path #1 or the 40-bit Scan Path #2. As with the SIB, the IEEE 1687 rules would be that the de-selected scan path would freeze and hold state.

Freezing and holding state the de-selected segments of the scan path allows for the flexible scheduling of embedded instruments. A scan segment can be activated and written to, which will configure and start an instrument on the scan segment. Then, the scan segment can be de-selected, but the instrument will continue to operate. This allows the rest of the scan path to continue to be used without disturbing the embedded instrument, which eliminates the need for the common IEEE 1149.1 method of forcing the state machine to stay in the Run-Test-Idle (RTI) state until the instrument has completed its operations.    

Figure 12 shows how any single SIB, which represents a scan path of just one bit, can add a scan path (TDR) that accesses an embedded instrument or multiple instruments on the same daisy-chain scan sub-path. However, a more efficient architecture would be to have a daisy-chain of multiple SIBs. For example, the path might contain 10 SIBs. The overall normal scan path would only be the number of SIBs or 10 in this hypothetical example. Each SIB can then be opened one at a time or concurrently, as needed. The resulting scan path becomes only the basic SIB architecture plus the scan path segment(s) behind each opened SIB. For example, a SIB for an instrument with a 32-bit interface would represent itself (1 bit) and the 32 TDR bits of the instrument as a 33-bit scan path when the SIB was opened. When closed, the SIB would represent a scan path of 1 bit. Simultaneously opening 10 SIBs each with a 32-bit TDR instrument interface would create a scan path of 330 bits. When all SIBs are closed, the scan path would be only 10 bits long. Opening just one of these 10 SIBs results in a scan path of 42 bits. Figure 12 shows this concept with three SIBs. Note the IEEE 1687 IJTAG network interface is very similar to the IEEE 1500 wrapper interface. The only difference is a Select signal, which 1687 uses to activate the Shift/Capture/Update enable signals) instead of a SelectWIR signal, which is used by 1500 to select a centralized instruction register.
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[bookmark: _Toc442085745][bookmark: _Toc442865746]Figure 12:  An IJTAG architecture with three instruments and three SIBs

In addition, the IJTAG standard specifies that when a SIB is open, it must further propagate or provide a Select signal that enables the operation of the segment elements (such as TDRs or hierarchical SIBs) on the segment of the scan path added by the SIB. This Select signal further enables the ShiftEn, CaptureEn, and UpdateEn signals or may enable the TCK to the target scan path. Either method is allowed. Conversely, when a SIB is closed, the IJTAG standard states that the Select signal must be de-asserted, which may gate-off the aforementioned ShiftEn, CaptureEn, UpdateEn, or TCK, rendering the scan path elements behind the SIB inaccessible since it will be off of the active scan path and frozen in its current state. This means that if an embedded instrument is operating and it doesn’t require repeated inputs of data to operate, it will simply continue operating. If an embedded instrument is not operating, it will maintain its quiescent state. The Select signal is used to enable or disable the TDR, not the embedded instrument itself. This freezing of the de-selected segment, while allowing the SIB portion of the scan path to operate, eliminates the Run-Test-Idle (RTI) requirement of most embedded instruments. For example, instead of a Memory BIST sitting in the RTI state for hundreds of thousands of TCK cycles until it is completed, the IJTAG scan paths can continue to be actively used while the Memory BIST simultaneously operates behind a closed SIB.

The state of the scan and update path behind a closed SIB can only be changed by either opening the SIB and shifting new data into the scan path followed by an UpdateDR or by asserting the global (TAP-based) or the local (NIB-based) reset signal known as Local-Reset.

Furthermore, multiple SIBs may be nested in a hierarchical arrangement (Figure 13). In the previous example of an IEEE 1687 IJTAG architecture with 10 SIBs, one of the 10 SIBs may open a 32-bit register made up of 32 SIBs and each of those SIBs may open into a 32-bit instrument interface. This provides many different mathematical possibilities for creating an access architecture that can be adjusted to meet engineering budgets in terms of area, gates and power, and operating budgets in terms of access times, instrument scheduling and instrument concurrence.
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[bookmark: _Toc442085746][bookmark: _Toc442865747]Figure 13:  Hierarchical IJTAG architecture; SIBs and nested SIBs opening multiple scan paths

As stated previously, the Select signal allows a segment of the network to be operated. A Select may be provided from the IEEE 1149.1 TAP Controller through an AccessLink instruction, which would select the IEEE 1687 network, or the Select may be passed along or propagated by a SIB or NIB. The Select signal can then gate the ShiftEn, CaptureEn or UpdateEn signals to allow a portion of the scan path to operate. However, embedded NIBs may also generate signals that can be used to gate the CaptureEn or UpdateEn signals associated with the active scan path to provide what is known as a Deny-Capture, Deny-Update or Deny-Reset. These types of functions are especially helpful for debug and diagnosis of scan path problems such as hold times or blocked (stuck-at) scan path bits.

Another type of NIB is the Local Reset function that allows a bit in the scan path to apply a reset to a portion of the scan path. The basic rule is that the Local Reset (LR bit) is applied on the falling edge of TCK in the UpdateDR state (while the UpdateEn signal to the network is asserted) and that the LR bit must self-clear itself before the CaptureEn signal is asserted, which is at least 1.5 TCK cycles in the IEEE 1149.1 JTAG TAP FSM. In addition, a NIB may also generate a blocking function of either a Global Reset or Local Reset. This is known as a Deny-Reset function. Figure 14 shows NIBs used for configuration (SIBs), the deny functions (NIB) and Local Reset (LR). See Table 2 for a description of scan path objects.
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[bookmark: _Toc442085747][bookmark: _Toc442865748]Figure 14:  IJTAG architecture with SIBs and NIBs configuring the scan path configuration

[bookmark: _Ref442865647][bookmark: _Toc442085763][bookmark: _Toc442865764]Table 2:  A summary of IEEE 1687 Scan Path Elements

		1687 Network Scan Path Element

		Purpose or Action



		Test Data Register (TDR)

		Scan Path bits that interface to instrument signals



		

		Shift-Update

		Write-only cell that interfaces to an instrument input signal



		

		Shift-Capture

		 Read-only cell that interfaces to an instrument output signal



		

		Shift-Capture-Update

		Read-Write cell that interfaces to both an instrument input & output



		

		Shift-Only

		Dummy bit used for timing purposes or neg-edge adjustment



		Network-Instruction-Bit (NIB)

		Scan Path bits that generate network control signals



		

		Disable-NIB

		Generates disable signals (e.g. deny-update, deny-reset, etc.)



		

		Enable-NIB

		Generates enable signals (e.g. Select for a ScanMux)



		

		Local-Reset

		Generates a reset pulse to set targeted scan cells to a default value



		

		SIB

		Self-contained cell and ScanMux to add-subtract scan segments



		

		SSB

		Self-contained cell and ScanMux to select between scan segments



		ScanMux

		A multiplexor that allows Scan Segment configuration





In summary, Section 2 of this eBook showed that the IEEE 1687 IJTAG hardware architecture is made up of the data scan path known as the network and that this network may include both data bits that may be organized into test data registers (TDRs) as well as embedded instruction bits (NIBs) that may configure the network or manage the operations of the network with both deny and enable functions. Because the IEEE 1687 IJTAG network interface like the IEEE 1500 ECT interface is defined separately from the network itself, the network may be assembled from plug-and-play portable network sub-sections. Moreover, the IEEE 1687 IJTAG network will reside within a selected TDR space in the IEEE 1149.1 JTAG TAP Controller (Figure 15) just as the IEEE 1500 ECT wrapper does.
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[bookmark: _Toc442865749]Figure 15:  Where IEEE 1687 IJTAG fits within an IEEE 1149.1 JTAG architecture

[bookmark: _Toc442085717][bookmark: _Toc442865718]Key Differences supported by IEEE 1687 IJTAG Hardware Architecture

As noted previously, IEEE 1149.1 JTAG and IEEE 1500 ECT both share a defined register structure that includes mandated registers, an instruction register and mandated instructions. These two standards concern themselves with how to create a hardware architecture that is compliant to the standards. That means that IEEE 1149.1/1500 compliance addresses questions such as: does the architecture have a boundary scan register, a bypass register, an instruction register, an EXTEST instruction etc.? In contrast, IEEE 1687 IJTAG does not define or mandate a multi-register structure or a formal instruction register. The IEEE 1687 IJTAG standard is more concerned with providing options, embedded configuration capabilities and operations management for the scan path network. These IJTAG capabilities allow more flexibility and engineering tradeoffs. This eBook also explained that both the IEEE 1500 ECT and IEEE 1687 IJTAG architectures were defined to be included within a TDR space of an IEEE 1149.1 TAP Register Architecture, since neither the IEEE 1687 IJTAG nor the IEEE 1500 ECT standard define their own controllers.

Fundamentally, the different architectures implemented by IEEE 1687 IJTAG and IEEE 1149.1 JTAG provide physical hardware differences, which represent design tradeoffs. When the IEEE 1687 AccessLink instruction is selected, the rest of the IEEE 1149.1 architecture becomes irrelevant and all IEEE 1687 IJTAG actions can be accomplished only with DR-Scans. This method of only one AccessLink Instruction for accessing one or more instruments by way of a network of NIBs and SIBs is more efficient in terms of IC physical placement and routing. The ShiftEn, CaptureEn, UpdateEn, and Reset can be distributed as a tree, grid or system bus, which may be generated only once and directly sourced from the JTAG state machine with no further decode within the TAP Controller. This enables a higher operating frequency and reduces routing congestion. The SIBs (labeled “S” in Figure 16) can be daisy-chained to provide one TDI-TDO scan chain. In the example illustrated below, the top-level scan chain selected by the AccessLink would be 10 bits long. When a SIB is opened (UpdateDR with a logic-1), the associated TDR is added to the scan path and enabled when a locally generated Select signal gates the ShiftEn, CaptureEn, UpdateEn distributed to the target TDR. The decoding of the control signals is done local to the physical location of the SIB. In addition, local resets can be generated from NIB bits in the scan path. This means that instruction decode for scan path configuration happens locally near the TDR and only one single decode operation (the first Select signal generated by the AccessLink instruction) is performed within the TAP Controller.
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[bookmark: _Toc442085749][bookmark: _Toc442865750]Figure 17:  SIBs daisy-chained to TDI-TDO scan chain

When IEEE 1149.1 JTAG provides individual instructions to access individual instruments (Figure 17), then all of the decode to generate unique ShiftEn, CaptureEn, UpdateEn, Reset, and to provide a TDI-TDO pathway is accomplished within the TAP Controller. As a result, all of the unique signals for each instrument must pass through the TAP Controller boundary. The IEEE 1500 hardware architecture may alleviate this problem somewhat because instructions relating to an IEEE 1500 WIR can be grouped together so that only one or two instructions from the IEEE 1149.1 JTAG TAP Controller are needed to select the IEEE 1500 wrapper and the wrapper and its WIR can be physically located with a core. A side-by-side comparison of IEEE 1149.1 JTAG’s method of one-instruction-per-instrument vs IEEE 1687 IJTAG’s single AccessLink method is shown below in Figure 17.
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[bookmark: _Toc442085750][bookmark: _Toc442865751]Figure 18:  Side-by-side comparison of IEEE 1149.1 JTAG and IEEE 1687 IJTAG routing

It is important to note that IEEE 1687 IJTAG’s ability to configure and manage the network from inside the network by providing control functions like Deny-Capture, Deny-Update, Deny-Reset and Local-Reset further allow the distribution of operations and decode to points physically near the instrument, as opposed to supporting multiple TAP controller IR encodings that select the same scan path, but configure the operations and actions differently. The IJTAG method contrasts significantly with that of IEEE 1149.1 JTAG where all of this functionality is contained within one centralized area, the JTAG TAP Controller. Figure 17 highlights the fact that the IEEE 1149.1 ’instruction(s)-per-instrument’ method requires extensive TAP controller decode operations and dense routing, whereas the IEEE 1687 ‘instrument network’ method reduces both the routing and decode in the TAP controller, by moving much of the selection decode to the SIBs that are physically located close to the target TDR.

[bookmark: _Toc442085718][bookmark: _Toc442865719]Separating Hardware Control from Instrument Interface

Like the IEEE 1500 ECT standard, IEEE 1687 IJTAG does not specify a hardware controller; instead, IEEE 1687 defines a signal interface for operating the network. As a result, compliance to the IJTAG standard is measured by being interface-able and operable by an IEEE 1149.1 state machine, which may or may not be within a IEEE 1149.1-compliant TAP controller. This means that an entire IJTAG on-chip network may be delivered as intellectual property (IP) that can be integrated with other IEEE 1687 IJTAG network components in a plug-and-play manner. The IJTAG network interface is the ShiftEn, CaptureEn, UpdateEn, ResetN, TCK, TDI, TDO and Select signals. A distinct interface allows the IJTAG network to be operated directly by a piece of test equipment, such as an IC ATE tester, and it allows controllers other than the IEEE 1149.1 JTAG TAP Controller to be designed and used with IJTAG network components. For example, SPI, I2C or a CPU memory mapped bus could be designed to operate an IJTAG network by creating the correct sequence of ShiftEn, CaptureEn, UpdateEn, and ResetN signals. It must be noted that the current draft of the IEEE 1687 IJTAG standard does not describe controllers defined in any other standards besides the IEEE 1149.1 JTAG standard, but this is an option that can be investigated in future extensions of the IJTAG standard.

[bookmark: _Toc442085719][bookmark: _Toc442865720]One Chip: One TAP Controller

Another major difference between all versions of the IEEE 1149.1 JTAG standard (1990, 2001 and 2013) and the IEEE 1687 IJTAG standard is the restriction that IEEE 1149.1 JTAG mandates by limiting to only one1 the number of TAPs and TAP Controllers which can be implemented on any one chip. However, many ICs now have architectures with multiple TAPs and/or TAP controllers. This happens because many IP cores are delivered with either IEEE 1500 Wrappers and, at a minimum, the IEEE 1149.1 JTAG FSM, which is needed to generate the distinct IEEE 1500 ShiftWR, CaptureWR, UpdateWR, ResetN and SelectWIR interface signals; or the IP core features a full IEEE 1149.1 architecture. Including the IEEE 1149.1 JTAG FSM with an IEEE 1500-wrapped instrument IP produces a self-contained virtual component with its own JTAG-like interface that can be integrated directly into an IC. When this is done, the most popular connection schemes for accessing all of the embedded TAPs (eTAPs) involve treating the IC as if it were a circuit board with either a star or daisy-chain architecture for the on-chip IEEE 1500 instruments or 1149.1 embedded architectures. However, this is not sanctioned in the IEEE 1149.1 JTAG standard and produces an architecture that is not power-domain friendly. The sanctioned method is to use IEEE 1149.1-defined compliance enable package pins to map different TAP controllers to the same TAP pins and to activate these individually one at a time.

(Note: More than one TAP controller is allowed and is handled in the 1149.1 standard by the use of compliance enable package pins that allow only one TAP controller to be mapped to the JTAG TAP pins and to be active and in control of the chip for any given encoding on the compliance enable pins. Adding package pins to a device is not cost effective or scalable.)

The IEEE 1687 IJTAG standard was developed to support this sort of multiple TAP and embedded TAP (eTAP) architecture (Figure 18). So, IEEE 1687 IJTAG does accommodate the notion of eTAPs. In fact, several possible methods are supported by the standard for deploying multiple eTAPs. To accomplish this, the IEEE 1687 IJTAG rules were kept to a minimum while properly documenting the architecture so it will be understood.

The first of the following three diagrams (Figure 18) shows an eTAP with an in-line ScanMux select register. The important aspect of this architecture is that the TMS signal from the primary TAP on the chip must be brought into the chip to operate embedded TAPs inside the chip and to maintain synchronization with the primary TAP. Once inside the chip, the signal is referred to as eTMS (embedded TMS). It can be gated so that eTAP Controllers (eTAPCs) can be put to sleep to conserve power. When asleep, an eTAP is removed from the active scan path. Similar to the definition of an IEEE 1687 Scan Segment, the eTAP must not process ShiftEn, CaptureEn, or UpdateEn operations when it is not selected.
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[bookmark: _Toc442085751][bookmark: _Toc442865752]Figure 19:  IJTAG architecture with multiple eTAPs

A second possible IJTAG architecture (Figure 19) deploys IEEE 1149.1 JTAG instructions as the selection method for a single eTAP or a group of eTAPs. The JTAG instruction selects the appropriate ScanMuxes and gates the eTMS signal to place non-active eTAPs into a parking state such as the run-test-idle or RTI states of the IEEE 1149.1 FSM that does not drive any access network items (TDRs) with Capture, Shift or Update. The basic IEEE 1687 IJTAG rule is that a non-selected item where its select signal has been de-asserted will freeze, which the IEEE 1687 IJTAG standard defines as a ‘hold state’ wherein the state of the TDR remains unchanged until a select signal is asserted or a reset is conducted. This requires that the eTAPs’ TAP controllers are placed in a parking state. If there has been an assertion of Reset, such as a TLR from a main TAP, a TRST* or a Local-Reset, then the eTAP state should resolve to eTLR, the embedded TAP controller FSM’s TLR state.
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[bookmark: _Toc442085752][bookmark: _Toc442865753]Figure 20:  Multiple eTAPs enabled by IEEE 1149.1 instructions

Yet another allowed architecture (Figure 20) could use a configuration register.
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[bookmark: _Toc442085753][bookmark: _Toc442865754]Figure 21:  IJTAG architecture with multiple eTAPs and a configuration register

[bookmark: _Toc442085720][bookmark: _Toc442865721]Plug-and-Play Interface for Portability

As noted previously, one of the main differentiators between IEEE 1149.1 JTAG and IEEE 1687 IJTAG (and IEEE 1500 ECT in this case) is the signal interface. In general, most of today’s complex chips are not designed entirely by any one organization. Design of a complex chip may begin in one organization, but later the design will be integrated with intellectual property (IP) from other sources such as EDA tools, third-party IP suppliers or previous generations of the same or a similar design. To this end, an embedded instrument might come in several forms, including as a single reusable standalone IP, as a soft component within a larger IP core or as one of many embedded instruments. Additionally, an access network could be included within an IP core. In each of these cases, the IP should be reusable without requiring manual modifications by an engineer. This would imply that if a portion of an IEEE 1687 IJTAG network has already been designed, it should be easily integrated with or into another IEEE 1687 network. Work should not be required to remove a TAP controller or to modify the network for inclusion in another network.

IEEE 1687 IJTAG accommodates this scenario by defining a network interface distinct from the instrument interface. This separable interface is very similar to the interface defined by IEEE 1500 ECT. Essentially, the interface definition specifies all of the signals necessary to operate a network that does not have its own controller. In the case of IEEE 1687 IJTAG, this interface is composed of the following signals:

· TCK (the serial clock)

· ScanIn (the TDI or serial test data input)

· ScanOut (the TDO or serial test data output)

· ShiftEn (the shift enable for the serial Test Data Registers [TDR])

· CaptureEn (the capture enable for the serial TDRs)

· UpdateEn (the update enable for the serial TDRs)

· Reset (the reset signal that puts a default value in update cells of the TDRs)

· Select (a signal that enables the Shift, Capture, Update operations of the TDRs)

Any IEEE 1687 IJTAG network, no matter how simple or complex, should be terminated with this interface. This allows any standalone network, sub-network or completely contained network within an IP core to be easily integrated into another IJTAG network by simply connecting one network’s ScanIn with the second network’s ScanOut to the serial scan path directly or through a SIB and to deliver the clock and control signals.
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[bookmark: _Toc442085754][bookmark: _Toc442865755]Figure 22:  A portion of an IEEE 1687 network with IEEE 1687 interface

Figure 21 shows a portable portion of an IEEE 1687 IJTAG network that can be considered plug-and-play in that it can be connected either to an IEEE 1149.1 JTAG TAP Controller or to another IEEE 1687 network by serially connecting one network’s TDI to the other’s TDO, and connecting the control signals. An alternate connection is to place a SIB in front of the TDI-TDO connection and to allow the SIB to generate the select signal. The remainder of the control signals may be sourced from the signals that drive the other network as well.

Portability is critical for reducing a design’s time-to-market and for reusing IP without modification to avoid design mistakes. The IEEE 1687 IJTAG standard ensures this level of portability. For example, if the embedded instruments in Figure 21 already have vectors defined by IEEE 1687 IJTAG’s Procedure Description Language (PDL) associated with them, then these vectors should be reusable without modification whenever the IEEE 1687 IJTAG network shown in Figure 21 is integrated into another design.

Note that in contrast to the IEEE 1687 method, if the IP were an IEEE 1149.1 network to be merged with an existing IEEE 1149.1 network and if the IEEE 1149.1 JTAG TAP Controller had defined instructions to access embedded instrument, but the IP JTAG TAP Controller is removed during integration and the instructions or embedded instruments are merged into a different chip with a different IEEE 1149.1 JTAG network and different chip-level TAP Controller, then the architecture, vectors and access mechanism to the instruments will have changed and the vectors will need to be re-simulated, re-worked or regenerated to be used. In contrast to this, IEEE 1687 IJTAG allows multiple embedded TAPs, so the IJTAG plug-and-play interface can be expanded to include the optional TMS signal, which would allow the entire IEEE 1149.1 JTAG access mechanism to be reused without any rework.

The most basic item in an IEEE 1687 IJTAG network is the embedded instrument (Figure 22). A particular instrument does not have the IJTAG separable interface. Rather, it has an interface that represents its functional interface. The IEEE 1687 IJTAG working group did not require any specific type of interface or protocol for instrument developers or providers. The working group wanted to allow the instrument to drive whatever protocol and signals were required to make the instrument optimal. (Note that the instrument may not be exclusively accessed by the IEEE 1687 network, but may also have shared access with other controllers.) This would allow the integrator, EDA tool or access network creator to include the correct configuration of the TDR to address the instrument’s specific needs. For example, the instrument might require a slave protocol, a master handshake protocol or full-duplex handshake protocol. (For more information on this issue, please see ASSET’s IJTAG Tutorial. It can be downloaded for free here.
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[bookmark: _Toc442085755][bookmark: _Toc442865756]Figure 23:  Embedded memory BIST instrument with targeted memory array

Engineers will expect that embedded instruments will be delivered with operation vectors or, in the terms of the IEEE 1687 IJTAG standard, with Procedure Description Language (PDL) files (Figure 23). The embedded instrument and its vectors are portable because they can be placed anywhere in the network and retargeted since the location of the instrument is described in IEEE 1687 IJTAG’s Instrument Connectivity Language (ICL). ICL has two main parts: Instrument ICL (IICL), which describes the instrument signal interface, and Network ICL (NICL), which describes the location and operations of the TDR or TDRs that interface to the instrument’s signal interface.
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[bookmark: _Toc442085756][bookmark: _Toc442865757]Figure 24:  Embedded instrument with associated PDL vectors

In summary, there are several key differences between the IEEE 1149.1 JTAG and IEEE 1687 IJTAG methodologies. Most notably, IEEE 1149.1 contains a centralized instruction register that requires individual selection of various test features as well as individual control lines if power consumption and activity management is important. In contrast, IEEE 1687 IJTAG specifies portable on-chip networks and embedded instruments, both with a separable interface that accepts control signals.

Modifying a IEEE 1149.1 JTAG architecture requires the development of new or different instructions, which means rework and re-documentation. IEEE 1687 IJTAG is meant to accommodate bare instruments, sub-networks and even whole networks within IP cores. These entities can contain just the IJTAG control interface or JTAG TAPs. In both cases, the instrument or network segment can be portably incorporated into another IEEE 1687 IJTAG network and reused just by including the ICL file. The only alterations required are additions to the target’s ICL, which will identify where the newly added embedded instrument or network segment is within the target network. (The added ICL will define the new connections when networks are merged.) Note that this portability aspect of IJTAG instruments also provides physical tradeoffs with JTAG insofar as the decode logic associated with each JTAG instruction takes place only within the TAP controller and this can create route congestion and growth in the logic required within the TAP controller. Conversely, IEEE 1687 IJTAG allows decode or selection of the instrument to be local to the instrument, avoiding the centralized decode, routing congestion and logic growth associated with adherence to the IEEE 1149.1 JTAG standard.

[bookmark: _Toc442085721][bookmark: _Toc442865722]Description Language and Operational Protocols for JTAG and IJTAG

Although the IEEE 1687 IJTAG standard currently follows the operational protocols of the JTAG finite state machine (FSM) defined in the IEEE 1149.1 JTAG standard, other protocols can be integrated into the IEEE 1687 standard in the future. The IEEE 1149.1 protocol established by the FSM employs both a data-side and an instruction-side to operate IEEE 1149.1 Data Registers and Instruction Registers separately. Ultimately, both the IEEE 1500 ECT and IEEE 1687 IJTAG access networks can be operated by applying vectors to the IEEE 1149.1 JTAG TAP pins. When the correct instructions are installed after an IR-Scan, the serial scan access to instruments is enabled and, in a very similar manner to IEEE 1149.1 operations, data is captured in TDRs when the FSM is in the CaptureDR state. Likewise, data is shifted through the TDRs while the FSM remains in the ShiftDR state and data is applied to the network configuration bits and/or to the embedded instruments when the FSM is in the UpdateDR state. Depending on the method of operation, the point-of-application source for the generation of the vectors will be different. IEEE 1149.1 vectors are generated at the TAP pins; IEEE 1500 vectors are generated at the wrapper interface (Wrapper Serial Port (WSP) or the Wrapper Parallel Port (WPP)); and IEEE 1687 vectors are generated at the embedded instrument interface. As a result, each of the three IEEE standards has its own different language(s) to: 1) describe the serial scan network and 2) to represent the vectors. Table 3 lists the description and vector languages associated with each standard.

[bookmark: _Ref442714396][bookmark: _Toc442085764][bookmark: _Toc442865765]Table 3:  Standard Languages

		Deliverable 

		IEEE 1687 IJTAG

		IEEE 1149.1-2013 JTAG

		IEEE 1500 ECT



		Test Data Register-based vectors

		Optional

		Yes

		Yes



		Portable instrument vectors supported

		Yes

		No

		No 



		Architecture description language

		ICL

		BSDL

		CTL 



		Vector description language

		PDL

		SVF, PDL

		STIL



		Where are vectors applied?

		At instrument

		At TAP Pins or in TDR

		At WSP or WPP pins





Table 3 shows that each access standard supports a different description language (ICL, BSDL, and CTL) and a different vector language (PDL, SVF/PDL, and STIL). The reasons for this mostly stem from the fact that each of these three standards were developed for different use cases which required different description languages. Consider the following differences in the standards:

· The prevailing perception in the industry is that IEEE 1149.1 JTAG adds logic to an IC to assist with circuit board test procedures. For example, boundary scan (JTAG) performs board-level interconnect testing and reads the chip’s ID Code to ensure that the correct chip has been placed on the board and it is connected to other chips in a correct manner with no shorts or opens in the chip-to-chip connections.

· IEEE 1500 ECT is perceived to involve the addition of logic to a portable IP core to assist with core test. For example, this might involve integrating portable test features into a core and mapping these as instructions in the IEEE 1500 Wrapper Instruction Register (WIR). A specific example of this would be to include a wrapper boundary register and configuring instructions to enable simple core interconnect testing without involving the functional operations of the entire internal core logic.

· The perception of IEEE 1687 IJTAG is that it specifies a scalable access network to assist with managing, operating and reusing embedded instruments within chips or IP cores. For example, IJTAG will allow multiple different embedded instruments, such as those dedicated to debug and trace, test, configuration and environmental monitoring, to be added into or subtracted from the active on-chip scan path without the use of an instruction register (only DR-Scans). In addition, IJTAG is able to configure and modify the size and operations of portions of a scan path with bits that represent the source for active inclusion, deny-capture, deny-update, deny-reset and local-reset.

In conclusion, each standard was developed to perform a different job and those jobs were problems that were not addressed prior to the development of each standard. That is to say that each standard was developed to address its specific set of problems. These different use cases resulted in the different languages being defined by each standard.

[bookmark: _Toc442085722][bookmark: _Toc442865723]IEEE 1687 ICL/PDL versus IEEE 1149.1 BSDL/SVF versus IEEE 1500 CTL/STIL

Clearly, the main drivers of the various languages defined by these three standards were the use cases that were driving the development of the standards. The IEEE 1149.1 JTAG standard was conceived as a board test standard; IEEE 1500 ECT was conceived as a core test standard; and IEEE 1687 IJTAG was conceived as a scalable solution for managing, operating and reusing embedded instruments, which can be portable IP. These different use cases required different user environments and tasks. Therefore, the use cases drove the development of the different languages so that each language was applied at the appropriate level or interfaced with the correct hardware test equipment. There was never any intention for all three standards to have the same language simply because all three standards dealt with ‘test.’ Instead, each standard was applied at a different location in association with a chip. So, the various support languages for each standard were more driven by ‘where’ they were applied.

[bookmark: _Toc442085723][bookmark: _Toc442865724]IEEE 1149.1 JTAG (Boundary Scan)

Because the IEEE 1149.1 JTAG or Boundary-Scan Standard specified its own controller, chip test port and an architecture made up of internal registers with specific functions such as Instruction, Bypass, ID Code and Boundary, the IEEE 1149.1 working group decided that BSDL (Boundary Scan Description Language) was needed to fulfill the purposes of the standard. Note that BSDL was not defined in the first ratified version of the standard. It was only added in a subsequent version. BSDL was based on VHDL because of the influence of the defense industry and European members of the working group. The language basically describes the TAP pins, the instruction encodings (instructions) included within the Instruction Register, the length of each defined public register or TDR, and a complete description of the cells that make up the boundary scan register and their connection order.

At the time of IEEE 1149.1 JTAG’s development, the working group decided that the easiest method for operating the IEEE 1149.1 architecture was to operate the TAP Controller at the TAP pins since the protocol was so well defined and implemented in hardware as a finite state machine. As a result, Serial Vector Format (SVF) was defined by Texas Instruments as a simple method for telling a TAP Controller to conduct either a Data-Register Scan operation (DR-Scan) or an Instruction-Register Scan operation (IR-Scan) and to provide the serial data as a stream definition to be applied in the Shift-DR/IR states. Note that SVF is not a formal standardized language directly associated with IEEE 1149.1, but rather a de facto standard adopted throughout the industry. It is maintained by ASSET InterTech and can be downloaded here.

[bookmark: _Toc442085724][bookmark: _Toc442865725]IEEE 1500 Embedded Core Test

The IEEE 1500 ECT standard had similar needs to those of IEEE 1149.1 JTAG, but IEEE 1500 needed to describe operating signal ports at the edge of an IP core, not at the pins of a part. So, instead of IEEE 1149.1 JTAG’s TMS, TCK, TDI, TDO, and optional TRST*, the IEEE 1500 standard describes the operation signals ShiftWR, CaptureWR, UpdateWR, SelectWIR, and ResetN, as well as WRCK, WSI, and WSO, which effectively correspond to the IEEE 1149.1 standard’s TCK, TDI, and TDO, respectively. However, one of the major differences between IEEE 1500 and IEEE 1149.1 was IEEE 1500 did not include defined boundary-scan cells, such as a BC_1, BC_2, etc. Instead, IEEE 1500 created a description language for the operation of any number of boundary register configurations, because IEEE 1500 allowed functional interface registers to be used as boundary scan cells in addition to more JTAG-like configurations. In addition, IEEE 1500 also supported a new Transfer operation to move the captured data from a functional register to the scan shift register associated with the serial scan path. This fact drove some of the requirements for a more descriptive language and hence, the IEEE 1500’s Core Test Language (CTL) was created.

The IEEE 1500 standard also defined a parallel port (WPP) to allow manufacturing scan vectors to be applied to the internal functional registers of an IP Core. Since manufacturing scan vectors are usually created by EDA tools and printed in an IEEE 1450 (STIL) format, a parallel port vector format was a natural choice.

[bookmark: _Toc442085725][bookmark: _Toc442865726]IEEE 1687 IJTAG (Embedded Instrumentation)

The objectives of IEEE 1687 IJTAG are unique and quite different from IEEE 1149.1 JTAG and IEEE 1500 ECT. Specifically, IEEE 1687 IJTAG was developed to access and manage portable embedded instruments that may come with vectors. Relative to embedded instruments, the IEEE 1687 IJTAG standard only defines the operation of the interface of the embedded instrument and the operation of the control interface to the IEEE 1687 network, not any controller or controller protocol. At the time of IEEE 1687 IJTAG’s creation, however, the BSDL description language, which was defined to support the IEEE 1149.1 JTAG standards, did not include the ability to describe items which are essential to IJTAG, such as SIBs, variable-length scan paths that changed on UpdateDR as opposed to UpdateIR; embedded network bits that could change scan path operations such as Deny-Capture, Deny-Update, Deny-Reset, and Local-Reset; entire embedded TAPs, which may be connected to entire IEEE 1149.1-compliant TAPs and TAP controllers, or partial non-compliant TAP Controllers; and the interface to embedded instruments.

Instead of BSDL, the Verilog design language was briefly considered for the IEEE 1687 IJTAG standard, but it is a very large language and the developers of the IJTAG standard feared that embedded instruments would simply be delivered as the RTL models that were used for design. This would provide too much information and an RTL model could not protect proprietary IP.

Also at the time of IEEE 1687 IJTAG’s development, the IEEE 1500 ECT standard’s CTL was considered for the IEEE 1687 IJTAG standard, but it too was considered overkill since all that was required in the IJTAG standard was the ability to describe the scan path (TDRs), multiplexors in the scan path (Table 2) and any logic between the TDR and the embedded instrument, not the entire predefined register architecture. A simpler language that was descriptive of only the scan path and the instrument interface was envisioned by the IEEE 1687 IJTAG working group.

Because one of the goals for IEEE 1687 IJTAG was to describe the connections and pathways between the controller, which was the source of the AccessLink instruction, and the embedded instruments, ICL (Instrument Connectivity Language) was developed. ICL can be viewed as being composed of two segments: instrument ICL and network ICL. Instrument ICL describes the wrapped or unwrapped signal interface of an instrument. Instrument ICL would be the portable embedded instrument information delivered with a bare or unwrapped (no TDR) embedded instrument. Not all IJTAG instrument signals are necessarily solely connected to an IJTAG network. Some functional signals may be connected to other logic or left unconnected. Network ICL describes the scan paths, multiplexors and control signals associated with the connections to the access network that links the controller and embedded instruments.

As for the vectors associated with an IEEE 1687 IJTAG instrument, the basic task of the working group was to describe the operations associated with an instrument. The resulting language was the Procedure Description Language (PDL). Instrument vectors are typically developed in Verilog during the design of a chip to support simulation. Verilog, however, is a huge language. Describing an instrument in Verilog would include a lot of information about the instrument, its connections and even its operations. To provide some protection of proprietary interests, a simpler language was developed that viewed the instrument interface as a port that needed to be read from and written to. In addition, some embedded instruments will already have a TDR and be considered secret or private. These types of instruments are generally known as black box instruments. Only scan vector data can be provided with them in a scan-to and scan-from set of operations. All of this went into the development of IEEE 1687 IJTAG’s PDL.

In summary, the working groups for each of these three standards developed a language, or languages in the case of IEEE 1687 IJTAG, that was needed to serve the particular use case of the standard at the time of its development. The languages are clearly the limiting factors for the use cases of each standard. For example, using IEEE 1149.1 JTAG to describe an embedded IP core such as a microprocessor would require that the core boundary be designed and described with only BC_# cells. By limiting the choice of the processor core’s interface register, this might limit the core’s targeted performance. This would also create a problem with the IEEE 1149.1 JTAG standard, since the preferred configuration would be to support a TAP Controller in the core architecture. Essentially, each core would look like a true virtual chip because it would support the entire IEEE 1149.1 JTAG architecture. However, since the IEEE 1149.1 JTAG standard stipulates that any one chip should only contain one TAP Controller, there would be five TAPs on a four-core chip where each core had its own TAP. This would be in conflict with the IEEE 1149.1 JTAG standard.

Similarly, using BSDL or CTL for IEEE 1687 would require IEEE 1687 to support centralized instructions and defined controller registers such as Instruction, Bypass, ID Code, Boundary and others. This would have limited the IJTAG standard’s ability to describe the scan path management functions. In short, BSDL or CTL would only have allowed architectures that could be described by IEEE 1149.1 JTAG or IEEE 1500 ECT. Furthermore, PDL for embedded instruments would only have been allowed if the PDL vectors had been re-written to the TAP or the TDR, because neither BSDL nor CTL formally support descriptions of embedded instruments.

[bookmark: _Toc442085726][bookmark: _Toc442865727]IEEE 1687 IJTAG’s PDL versus IEEE 1149.1-2013 JTAG’s PDL

[bookmark: _Ref399324198]The newest update to the IEEE 1149.1 JTAG standard (1149.1-2013) added several features that overlap with IEEE 1687 IJTAG. For example, IEEE 1149.1 JTAG now includes its own PDL, although JTAG’s PDL stands for Procedural Description Language and IEEE 1687 IJTAG’s PDL stands for Procedure Description Language. In addition to its own PDL, IEEE 1149.1-2013 now is able to incorporate variable length scan paths with the SegSelect concept. (Table 3) Also, some instructions are now ‘sticky,’ meaning their configuration or actions remain in place even when other instructions are selected. In other words, IEEE 1149.1-2013 added instruction persistence to the standard. For example, a persistent EXTEST instruction can be applied to force the output pins on the chip to assume a default safe state, but then a different instruction that selects a Memory BIST or an IEEE 1500 Wrapper, for example, can be installed while the safe state remains on the chip pins. In effect, this allows a CLAMP function to select a different register than Bypass. This new functionality required additions to BSDL. One of the tasks undertaken by the IEEE 1149.1-2013 JTAG working group was to incorporate an initialization procedure associated with the power-on and power-off domains that impacted the boundary scan register. A sequence of events is required to apply power-on to quiescent chip pins before using them in a test. Similarly, a graceful power-down sequence is required as well. This power-on and power-off sequence was known as init-setup and it required certain procedural functions associated with portions of the boundary scan register. Therefore, an IEEE 1149.1 version of PDL was required to describe this sequence.

Once the concept of a PDL language was introduced into the IEEE 1149.1 JTAG standard during the 2013 update cycle, many of IEEE 1687 IJTAG’s PDL functions (commands) were adopted by the IEEE 1149.1 JTAG working group since IJTAG’s PDL had already been developed. However, the hardware differences between IEEE 1149.1-2013 JTAG and IEEE 1687 IJTAG required several PDL commands that were supported by one standard but not the other. This led to the two PDLs diverging.

[bookmark: _Toc442085765][bookmark: _Toc442865766]Table 4:  Comparison of IEEE 1687 vs IEEE 1149.1-2013 PDL Commands

		

		IEEE 1687 PDL Command

		IEEE 1149.1-2013
PDL Command

		PDL Command Description



		1

		

		iSource

		All PDL procedures must be defined before they are called



		2

		iPDLLevel

		iPDLLevel

		Identify PDL level and version



		3

		iPrefix

		iPrefex

		Specify hierarchical prefix



		4

		iReset

		

		Reset the 1687 Network



		5

		iRead

		iRead

		Queue data to be compared with what is read



		6

		iWrite

		iWrite

		Queue data to be written



		7

		iScan

		iScan

		Queue data to be scanned for a Black-Box



		8

		iOverrideScanInterface

		

		Indicate the capture, update, and broadcast behavior to be imposed on a list of scan interfaces



		9

		iApply

		iApply

		Execute queued operations



		10

		iClock

		iClock

		Define the System Clock (not the serial TCK)



		11

		iClockOverride

		iClockOverride

		Override definition of system clock when it is generated on-chip: Define on-chip clock multipliers



		12

		iRunLoop

		iRunLoop

		Issue a number of clocks: or wait an absolute time.



		13

		iProc

		iProc

		Wrapper for a PDL procedure: a PDL procedure



		14

		iProcsForModule

		

		Identify the module in the ICL with which subsequent iProcs are associated



		15

		

		iProcGroup

		Identify the object or instance with which the following PDL iProc procedures are associated.



		16

		iUseProcNameSpace

		

		Use namespace for subsequent iCalls



		17

		iCall

		iCall

		Invoke a PDL procedure



		18

		iNote

		iNote

		Send text to runtime; Creates a tool identifiable comment



		19

		iMerge

		iMerge

		Allow merging (concurrent evaluation) of iCalls; Provides guidance on where tools can optimize multiple PDL procedures.



		20

		iTake

		iTake

		Disallow other merge threads from modifying a model resource: Tag an object to be ‘in-use’ to provide guidance where tools can optimize PDL.



		21

		iRelease

		iRelease

		Re-allow other merge threads to modify a model resource: Release an object from ‘in-use’ to provide guidance where tools can optimize PDL.



		22

		iState

		

		Document the current state of the network (e.g. change HW)



		23

		

		iSetInstruction

		Select instruction for a register accessed by multiple instructions.



		24

		

		iLoop

		Mark the beginning of a conditional loop.



		25

		

		iUntil

		Loop until any iApply -nofail in the loop meets the specified condition or the maximum loop count is reached.



		26

		

		ifTrue

		Execute commands based on last iApply –nofail.



		27

		

		ifFalse

		Execute commands based on last iApply –nofail.



		28

		

		ifEnd

		End of conditional execution.



		29

		

		iSetFail

		Set the status to “FAIL”; stop the test if the -quit parameter is specified, and output the <text>.



		30

		

		iTRST

		Assert or de-assert the TAP TRST* pin, and remain in TLR state after TRST* is off. Only executed at the top level of the current unit under test.



		31

		

		iTMSreset

		Enter TLR state via TMS. Only executed at the top level of the current unit under test.



		32

		

		iTMSidle

		Enter RTI state via TMS.





It might be easier to designate JTAG’s PDL as JPDL, since it uses the IEEE 1149.1 JTAG TAP controller and is based on JTAG instructions and some specific JTAG test features such as EXTEST and BYPASS. Then, IEEE 1687 IJTAG’s PDL might be designated IPDL, since it operates IEEE 1687 IJTAG networks of embedded instruments. The two PDLs are overlapping but different languages. In fact, each is engaged at different times. In general, when IEEE 1149.1 JTAG is conducting IEEE 1149.1 JTAG functions, IEEE 1687 IJTAG is not active, but when IEEE 1687 IJTAG is active, it requires that the IEEE 1149.1 controller service the IEEE 1687 IJTAG network and not IEEE 1149.1 JTAG functions.

One can see from the above table that each standard’s basic or Level-0 PDL has several unique commands, indicated by a red empty space in the other standard’s column. IEEE 1149.1-2013 JTAG’s PDL (JPDL) has 12 unique commands, several of which are related to the JTAG hardware architecture, TAP and IR since IEEE 1149.1 JTAG defines a controller but IEEE 1687 IJTAG does not. Unique IEEE 1149.1 JTAG commands are: iTMSidle, iTMSreset, iTRST, and iSetInstruction. Several other unique IEEE 1149.1 JTAG PDL commands came about because the IEEE 1149.1-2013 JTAG working group wanted the updated standard to support flow-control in its base-level or Level-0 language. So, the following commands were added: iLoop, iUntil, ifTrue, ifFalse, ifEnd. The two remaining unique JTAG commands are: iProcGroup and iSource. These organize and apply PDL commands as a software language associated with the IEEE 1149.1-2013 standard.

There are only five unique commands in IEEE 1687 IJTAG’s PDL. Two of these involve unique features of the IEEE 1687 IJTAG scan architecture: iReset and iOverrideScanInterface. These commands represent the global and local resets, and the Deny-Capture/Update/Reset functions. Two other PDL commands address how to organize PDL commands: iProcForModule and iUseProcNameSpace. The remaining unique IEEE 1687 PDL command, iState, addresses the situation where multiple different external hardware controllers are operating on the same network during test, debug, characterization and initialization operations. When this is the case, information about the IEEE 1687 network must be passed from one controller to the others after a physical hardware swap. When a hot-swap occurs, iState logs the current state of the network.

Another 15 PDL base level commands in the two different standards are identical in name and are very similar in function. In use, these commands that seem to overlap won’t interfere with each other or create conflicts because the IEEE 1149.1-2013 JTAG PDL commands are typically active when JTAG operations like EXTEST, INTEST, BYPASS, HIGHZ, SAMPLE, PRELOAD, IDCODE, etc. are active, while IEEE 1687 IJTAG PDL commands are only operational when its AccessLink instruction is active. In essence, the two PDLs could be treated as two distinct languages. As mentioned previously, they could be designated differently as iPDL for IJTAG PDL and jPDL for JTAG PDL to clearly distinguish between them.

Any hardware system or software tools that must operate a chip that includes features, operations, and embedded instruments that span all three IEEE test standards should take each of the various delivered files (BSDL, CTL, ICL, SVF, STIL, PDL) and should apply them when applicable. The effort to try to normalize the files to some minimum common denominator by processing the various files is not an efficient process and does not represent the use case for the various standards. For example, attempting to convert CTL and STIL to BSDL and SVF to minimize deliverables does not maintain the intent and efficiency of the IEEE 1500 standard.

[bookmark: _Toc442085727][bookmark: _Toc442865728]The Practical Usage of IEEE 1149.1, IEEE 1500, and IEEE 1687

In reality, the integrator that assembles the overall chip will most probably use all three of these IEEE test standards. IEEE 1149.1 will still be needed to implement the boundary scan and ID code portion of the chip as IEEE 1687 and IEEE 1500 are not specifically suited for this purpose; and the IEEE 1149.1 will be needed to provide the chip interface and controller signals for IEEE 1500 and IEEE 1687. The 1149.1 portion of the design may come from design-ware from a previous design, from an EDA tool that generates HDL/RTL, or may be a modifiable IP core.

If complex cores are delivered, such as embedded microprocessor cores or complex memory architectures, then to ensure the portability of the IP, its provider must also include self-contained test and debug capabilities and routines, as well as core-based boundary scan. This functionality must be specified or delivered with an IEEE 1500 architecture and documentation. The core can then be tested and verified in a standalone manner, multiple cores in an architecture can also be verified through wrapper-to-wrapper interconnect tests. 

In addition, any embedded instruments or groups of embedded instruments or even whole complete architectures with embedded TAPs and TAP controllers may be delivered as IP with IEEE 1687 documentation and possibly IEEE 1687 network segments. These test, debug, monitoring and configuration instruments and instrument architectures may be integrated within a chip or included within IEEE 1500 architectures.

The integrator of the chip has the task of taking what has been delivered and making it into a complete architecture. From a basic point of view, the integrator is at the mercy of the deliverables. For instance, if three different pieces of the delivered IP are IEEE 1500 wrapped, IEEE 1687 compliant and IEEE 1149.1-2013 compliant, then the task at hand is to correctly integrate these pieces together. On the surface, this means traversing the landscape of different architecture components, functions and documentation. If an integrator wants to normalize or simplify the integration task, then two basic methods are available. First, the integrator could define or mandate the deliverables from the IP provider. So, for example, the integrator might require that all embedded instruments must be IEEE 1687 compatible and must have IEEE 1687 ICL and PDL; or, that all embedded instruments must be IEEE 1149.1-2013 compliant and must have IEEE 1149.1-2013 BSDL and PDL; or, that all monitor instruments must be delivered with IEEE 1687 ICL and PDL. The second alternative would be for the integrator to perform development or conversion functions from one standard’s documentation to another. For example, he might convert IEEE 1500 CTL and STIL vectors to IEEE 1687 ICL and PDL. 

IEEE 1687 (IJTAG), IEEE 1149.1 (JTAG), IEEE 1500 ECT
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This eBook has shown that the IEEE 1687 IJTAG, IEEE 1500 ECT and IEEE 1149.1 JTAG standards are in fact different, even though this eBook has not covered every difference between the standards, but just the major ones. For the most part, IEEE 1149.1 JTAG specifies the controller, which generates the signals necessary to operate both IEEE 1500 and IEEE 1687. Both IEEE 1149.1 JTAG and IEEE 1500 ECT are instruction-based standards that support a formal instruction register. They are largely focused on the TDR and how to build a compliant network, not on the portable embedded instrument. A great portion of the IEEE 1149.1 JTAG standard describes instruction features, such as EXTEST, HIGHZ, CLAMP, IDCODE, SAMPLE, PRELOAD, etc. This approach has met the requirements of the use space of IEEE 1149.1, which is providing a controller within the IC to implement board test features to be operated by engineers. The IEEE 1500 ECT standard took this same concept and applied it to complex embedded cores that could be viewed as virtual chips to be embedded within FPGAs, ASICs and SoCs. The virtual chip concept provided the same sorts of capabilities as IEEE 1149.1 JTAG, such as IDCODE, EXTEST, INTEST, etc., but IEEE 1500 ECT is specific to entire, portable and complex cores within chips.

The basic purpose of IEEE 1687 IJTAG is to add scalability to the growing adoption of embedded instruments and to enable the retargeting of delivered embedded instrument vectors. IEEE 1687 IJTAG was developed with several optimizations in mind and it was created to solve several perceived weaknesses in the IEEE 1149.1 JTAG and IEEE 1500 ECT paradigms. Among these weaknesses are an absence of scalability and tradeoff-driven design options. IEEE 1687 IJTAG is focused solely on the portable embedded instrument and provides for embedded instrument documentation. Furthermore, it provides a simpler interface that would not require an entire formal Instruction Register and other related registers for just one instrument. Another objective of IEEE 1687 IJTAG was to enable engineering, scheduling and budget tradeoffs during development and operation by moving the logic decode and selection of embedded instruments to be physically within close proximity of the embedded instrument interface. In addition, IEEE 1687 IJTAG also sought to focus on instruments and instrument vectors without diminishing or complicating the role of IEEE 1149.1 JTAG or IEEE 1500 ECT. In effect, IEEE 1687 IJTAG was developed in such a way so that it would not add complexity to the BSDL used by board test organizations, not increase the size of the Instruction Register, and not include delivered functions with no value to board test organizations. This effort led to the development of IEEE 1687 IJTAG’s AccessLink instruction for accessing an IEEE 1687 network and a new documentation system comprised of the ICL and PDL languages.

All three of these standards were meant to work together. Since the user space has clearly become segmented, no single standard should be expected to address the whole user space. In fact, it would not be efficient for any one standard to address the whole space. Each user space has unique requirements and so each standard has associated solutions for those unique issues. The IEEE 1149.1 JTAG standard, even with the additions of new features in IEEE 1149.1-2013, is still the best solution for board integration and test capabilities. IEEE 1500 ECT is still the best solution for embedding whole complex cores that need similar core integration capabilities. And IEEE 1687 IJTAG is the best solution for managing and operating a chip’s embedded instruments, which can be subsumed as part of both IEEE 1149.1 TDR and IEEE 1500 WDR/CDR architectures.

Learn MoreDownload Today!
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The IEEE 1149.1 Boundary-Scan Standard, which is also referred to as JTAG for the Joint Test Action Group that initiated its development, was first developed in the 1980s and became a ratified standard in 1990. (A tutorial on the IEEE 1149.1 Boundary-Scan Standard can be downloaded here). The standard’s documentation language, Boundary-Scan Description Language (BSDL), was added when the IEEE 1149.1 JTAG standard was updated in 1994. This standard provided the definition of a port (package pins), a controller with a finite state machine (FSM), a parallel register architecture that was extensible and selectable by instructions, and a method for accessing on-chip logic 

The motivation for the JTAG standard’s development was mainly to solve board test problems. The industry was struggling with its inability to use probes on external leads of a packaged die since cutting-edge chips at that time were surface mount packages with solder balls hidden underneath the silicon die in a semiconductor package. IEEE 1149.1 JTAG solved this problem by creating an on-chip boundary scan register along with various features and modes. However, IEEE 1149.1 JTAG also defined other functions or test operations based on instructions to assist with board test.

Scanning the boundary scan registers and other features were standardized as instructions that selected JTAG’s Test Data Registers (TDRs). Some of the other instructions in the standard are:

BYPASS – converts a chip’s scan path into a single shift bit so multiple chips on a board could be represented by a minimal scan path;

IDCODE – provides a register that includes an identifier for the chip during test or after it has been placed on a board;

HIGHZ – places all bidirectional and three-state package pins in a high-impedance state;

EXTEST – allows the boundary scan register to take over the output or drive pins of a chip’s package to effectively freeze a chip’s output pin values so that internal chip activity would not disturb other chips on the board and also so that an interconnect test could be done by just scanning data values into a boundary scan register;

INTEST – allows input chip pins to be driven from the boundary scan register and to ignore the data on the normal functional input pins and a handful of other pins.

PRELOAD – allows a known value to be shifted into the boundary scan register prior to applying an EXTEST or INTEST instruction.

SAMPLE – allows the boundary scan register to capture data and shift the captured data out for viewing.

As can be seen, these instructions and capabilities can be viewed, and are perceived by many, to carry a board or system test purpose. All of the boundary scan instructions deal with the data driven or sampled on the package signal pins so that interconnect testing or safe configurations can be established when the chip is on a printed circuit board. The BYPASS instruction represents an efficiency and safety configuration when the chip is placed in a board-level scan chain. IDCODE can be used to identify if the correct chip is in the correct socket on the board.

The IEEE 1149.1 Boundary-Scan (JTAG) standard was re-opened, updated and ratified in 2001 and again in 2013. The 2013 update added significant capability to the original purpose of the standard and generated some of the overlap with the other standards, such as IEEE 1687 Internal JTAG (IJTAG). Some of the new capabilities in IEEE 1149.1-2013 are:

Persistence: A Test Mode Persistence (TMP) controller state machine allows instructions that have been identified as persistent, such as INTEST and EXTEST, to remain ‘sticky;’ that is, their configuration or actions remain in place when other instructions are selected and even when the IEEE 1149.1 FSM parks into or passes through the Test Logic Reset (TLR) state. TMP was meant to enable a CLAMP instruction without requiring that a bypass register function as the selected active scan path.

Init-Setup: This method or procedure deals with the particular sequence of events needed to energize or ‘wake up’ a boundary scan register that includes or crosses power-off domains. This capability includes the addition of a vector/procedure language (Procedural Description Language or PDL) and selectable segmentation of the boundary scan register. (NOTE: the procedure language defined by IEEE 1687 IJTAG is Procedure Description Language or PDL as well.)

SegSelect: Enables the segmentation of TDRs, including the boundary scan register, so that different portions may be active at any given time.

These features can be viewed as helpful to board test, but, at the same time, they enable IC Test capabilities that are similar to the capabilities provided by IEEE 1687.

[bookmark: _Toc442085732][bookmark: _Toc442865733]Introduction to IEEE 1500

The IEEE 1500 Embedded Core Test (ECT) Standard was ratified in 2005. (Download it here). It was created to deal with problems associated with third-party portable embedded cores, consisting of either ‘hard’ layouts of cores or ‘soft’ HDL/RTL models. Prior to the development of the IEEE 1500 standard, these types of cores were increasingly being incorporated into new types of ASICs (application specific integrated circuits) known as systems-on-a-chip (SoC). The goal of the standard’s development was to enable a situation where cores could be delivered by an intellectual property (IP) provider, either a group inside the company or an independent external IP provider, and that these cores could be integrated into a chip with other logic units, glue-logic and other IP cores. A 1500-compliant core would represent a virtual component. This trend toward embedded cores meant that IC layouts could be treated as if they were a virtual circuit board or system design. An IP core could then be treated as a component on this virtual chip-level circuit board, which could represent a SoC. If a core were to be treated as a portable self-contained single unit and tested like a virtual component, then the IP provider could design and build the IP core in such a way as to provide those tests or test modes. In addition, the core provider might include some sort of boundary-scan register so the core could actually represent a complete testable component (Figure 24). The problem with this was that the IEEE 1149.1 Boundary-Scan Standard (JTAG) standard stipulates that only one JTAG TAP controller may be present on a chip. If each core included a TAP, integrating multiple cores into one chip would violate the JTAG standard.
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[bookmark: _Toc442085757][bookmark: _Toc442865758]Figure 25:  IP cores with IEEE 1500 wrappers controlled by JTAG TAP Controller

The limitation of single TAP Controller per physical chip led IP core designers to incorporate a JTAG-like architecture with each core. Such an architecture would be similar to a component with JTAG insofar as the core would need to support its own ID Register, Bypass Register, Boundary Register and even its own Instruction Register, but not a JTAG TAP or a JTAG finite state machine (FSM), since the host IC would have its own TAP and TAP Controller.

All of this meant that an IEEE 1500 core wrapper and test architecture would need to be integrated into the chip as an instruction under the chip-level TAP Controller, but the IEEE 1500 wrapper would also need to include and support its own instructions. This led to the development of something very similar to the IEEE 1149.1 JTAG register architecture and included a number of defined registers and IEEE 1500’s own Wrapper Instruction Register (WIR). The industry’s perception of the IEEE 1500 ECT standard at the time of its ratification was that it was the IEEE 1149.1 Boundary-Scan Standard (JTAG) without the TAP controller’s FSM.

However, the IEEE 1500 ECT standard does not define the actual connection between an embedded core and the IEEE 1149.1 TAP Controller. This has led to many different connection architectures. One method is to integrate all IEEE 1500 wrappers as direct extensions of the single TAP Controller on the chip by including one IEEE 1149.1 JTAG IR instruction that would select which IEEE 1500 wrapper data registers to connect to the JTAG scan path. This method would automatically concatenate the IEEE 1500 WIR to the IEEE 1149.1 IR scan path when the JTAG FSM is on the IR-side.

Another popular architecture would be to create two independent IEEE 1149.1 IR instructions. The first IEEE 1149.1 instruction would select the WIR and put it into the active scan path so an IEEE 1500 instruction encoding can be scanned into the WIR and updated. The second IEEE 1149.1 instruction would select the data register side of an IEEE 1500 wrapper architecture and place the active and selected IEEE 1500 data register into the active scan path. However, these two instructions enable the operation of both the IEEE 1500 data registers and the IEEE 1500 WIR as DR-side IEEE 1149.1 operations, not as separate DR-Side and IR-Side operations respectively.

Other architectures might involve single IP cores with full IEEE 1500 ECT feature sets that could be accessed individually by IEEE 1149.1 instructions or multiple IEEE 1500 wrapped IP cores daisy-chained together and selected by just one set of IEEE 1149.1 instructions.

Because a core can be thought of as a virtual portable device, the developers of the IEEE 1500 ECT standard included a few non-IEEE 1149.1 JTAG features such as a Wrapper Parallel Port (WPP) to allow manufacturing scan testing, since this is usually based on the system clock, not IEEE 1149.1 JTAG’s test clock (TCK). IEEE 1500 manufacturing scan testing could be done using a Scan Enable (SE) signal rather than JTAG’s Capture/Shift/Update protocol. Other IEEE 1500 features not found in IEEE 1149.1 included several types of boundary cells, which required a different architecture documentation language and the inclusion of portable vectors for manufacturing test that use signals other than the IEEE 1149.1 TAP. This led to the creation of IEEE 1500 ECT’s Core Test Language (CTL), which migrated later into the IEEE 1450 standard. CTL’s vectors were also represented in IEEE 1450.1, the Standard Test Interface Language (STIL). These languages differ from IEEE 1149.1 JTAG’s BSDL and the original de facto standard vector language associated with IEEE 1149.1 JTAG, Serial Vector Format (SVF).

[bookmark: _Toc442085733][bookmark: _Toc442865734]Introduction to IEEE 1687 Internal JTAG (IJTAG)

Development of the most recent of these three standards, the IEEE 1687 Embedded Instrumentation Standard (Internal JTAG or IJTAG), started in 2005 and passed ballot in 2014. (Download an introductory tutorial on IEEE 1687 IJTAG here). IEEE 1687 IJTAG was developed by a group of industry experts representing the silicon design-for-test (DFT), IC test, IC ATE and board test communities who had come together at the International Test Conference to discuss the shortcomings of current standards. Each of these experts brought different issues and perspectives to the discussion.

The IEEE 1687 IJTAG working group quickly focused its work on providing support and documentation for embedded instruments. In addition, the standard that was developed focused on the retargeting of vectors associated with embedded instruments. This was a different starting point than IEEE 1149.1 JTAG had adopted, which was aimed at fully describing and documenting an on-chip controller and test access features by defining registers and instructions. The approach of IEEE 1687 IJTAG also differed from IEEE 1500 ECT, which had used a description language to assist or drive the access mechanism synthesis process.

The initial thinking of the IEEE 1687 IJTAG working group was that the board test and system test community neither needed nor cared about embedded instruments for chip test. Moreover, the working group believed that board test engineers wanted a simple instruction register and not thousands of instructions. In addition, the working group believed that board test engineers were interested in keeping IEEE 1149.1 JTAG’s BSDL files as simple as possible, avoiding the possibility that BSDL files could become bloated with information on possibly thousands of embedded instruments. 

So, the IEEE 1687 IJTAG working group defined an instrument access and operational network that had minimal impact on board/system test organizations and would allow tradeoffs, budgets, and design engineering issues to be addressed during the development of the access network and later during its use. Achieving these objectives meant limiting to one or a few the IEEE 1687 IJTAG instructions placed in the IEEE 1149.1 JTAG TAP Controller and restricting IJTAG’s input to the JTAG BSDL file to little or nothing by defining a separate documentation file for the embedded instruments and their related access network. In addition, the focus of the IEEE 1687 IJTAG working group was more on how to facilitate the use and re-use of portable embedded instruments and not as much on how to configure and operate the access network. One of the working group’s objectives was that the embedded instrument network should almost be invisible to end users so that all that would be required would be for the user to select an embedded instrument, hit run on the operational tool and then simply monitor the instrument, its operation and the collected data. Manually monitoring the access network by the user would not be necessary. Hence, IJTAG was developed as a loose set of rules for making an access network and a way to describe that network. This is to say that IJTAG is more descriptive than it is prescriptive. IJTAG tools would manage the defined operations of the portable instruments through vectors applied to the instruments’ signal pins. These vectors would be retargeted to the TAP pin on the edge of the chip (Figure 25).

With these goals in mind, IEEE 1687 IJTAG was developed as a serial network or a collection of daisy-chained TDRs and embedded TAP Controllers similar to IEEE 1149.1 and IEEE 1500 serial scan paths, but with network management and plug-and-play options.

For example, the IJTAG standard addressed how embedded instruments and complete sub-networks could be treated as portable bolt-together items (Figure 26). But, the main purpose of IJTAG was to define an access method for embedded instruments. The purposes of such access could be IC test/debug/diagnosis or board/system test. In other words, the focus of the standard was more on providing ease-of-re-use of portable instruments than it was on the creation of a new infrastructure with all of the overhead within which those instruments would reside.
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[bookmark: _Toc442085758][bookmark: _Toc442865759]Figure 26:  An IJTAG architecture showing network, instrument interface and vectors
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[bookmark: _Toc442085759][bookmark: _Toc442865760]Figure 27:  Embedded instrument connections to TAP described in ICL

To make embedded instruments portable would require that their command and data interfaces, as well as the operations and data applied to their interfaces must be fully described. Embedded instruments could then be attached to simple TDRs (Figure 27), as opposed to being wrapped in a complete register architecture including instruction registers as defined by IEEE 1149.1 JTAG or IEEE 1500 ECT. The operation of these TDRs requires only DR-Scans using the data side of the IEEE 1149.1 JTAG FSM (Figure 28). All embedded instrument operations and the configuration of the network can be fully utilized without repeatedly installing instructions in the IEEE 1149.1 instruction register.
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[bookmark: _Toc442085761][bookmark: _Toc442865762]Figure 29:  The active portion of the JTAG FSM for IJTAG operations

The portable IJTAG instrument, once associated with a TDR, can be incorporated into an overall IEEE 1687 IJTAG network through a daisy-chain connection with other TDRs and the plug-and-play network interface. To support plug-and-play, the TDR must support a data and control interface of the following signals: ShiftEn, CaptureEn, UpdateEn, ResetN, Select, TCK, TDI and TDO.

However, the TDRs don’t necessarily need to be connected in an ever-lengthening daisy-chain, but can be connected through special network instruction bits (NIBs) known as segment insertion bits (SIBs), which allow an in-line bypass of the portable instrument TDR with an associated SIB. In addition, modifications to the access network itself may be incorporated in or near a TDR associated with an instrument by incorporating other NIBs that would allow the reset, capture and update operations to be enabled or blocked locally. These network management capabilities and the configuration of the network are described in IEEE 1687 IJTAG’s Instrument Connectivity Language (ICL). ICL also allows the description of legacy architectures such as a plain TDR or even a whole and complete IEEE 1149.1 JTAG or IEEE 1500 ECT architecture. IJTAG instrument operations would be described in the standard’s Procedure Description Language (PDL).

Ultimately, this IJTAG access network would be very flexible so that it might incorporate legacy methods such as IEEE 1149.1 JTAG and IEEE 1500 ECT, as well as newly defined IEEE 1687 IJTAG efficiencies. The IEEE 1687 IJTAG standard allows many different access network configurations while describing the embedded instrumentation operations in PDL and the network connections to access the embedded instruments in ICL. This solves one of the main concerns with IEEE 1149.1 JTAG and IEEE 1500 ECT; namely, the need for scalability to accommodate the growing number of embedded instruments on ASICs and SoCs.
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