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Executive Summary  

This eBook provides a tutorial on the approved IEEE 1687 Standard for Access and Control of 

Instrumentation Embedded within a Semiconductor Device, which is commonly referred to as 

the Internal JTAG or IJTAG standard. The IJTAG standard specifies an efficient management 

methodology for embedded instruments and enables instrument portability and re-use from one 

integrated circuit (IC) design to another. At the device level, these instruments embedded in ICs, 

or simply called embedded instruments, may perform IC test and debug, on-going or operational 

monitoring of the device, functional configuration and other tasks. At the level of the circuit 

board where ICs have been deployed, embedded instruments are becoming essential for many 

board and system test and debug functions. 

The IEEE 1687 IJTAG standard is made up of three major sections: 

• Hardware architecture with a serial data transport mechanism that provides access to 
embedded instruments; 

• An access network description language; 
• An instrument procedure description language. 

Introduction and History 

The IEEE 1687 IJTAG study group first met to discuss a new embedded instrumentation 

standard at the International Test Conference (ITC) in 2005, following the ratification of the 

IEEE 1500 Embedded Core Test (ECT) standard. The initial study group was made up of 

representatives from semiconductor companies, test system suppliers, system manufacturers, 

JTAG tool providers and other interested parties. 

The impetus behind the study group’s first face-to-face meeting stemmed from the sudden 

increase in the number of embedded instruments. The group wanted to ensure the portability of 

these instruments by relieving them of the overhead associated with the IEEE 1500 ECT 

standard. In addition, the IJTAG working group intended to develop a standard so that embedded 

instruments would not need to be documented in the IEEE 1149.1 boundary-scan (JTAG) 

standard’s Boundary Scan Description Language (BSDL), because such a requirement could 

have slowed the proliferation of embedded instruments. Following this first meeting, the working 

group submitted a Project Authorization Request (PAR) with the IEEE to begin defining the 

IJTAG standard. 
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Overview 

The goal of IEEE 1687 Internal JTAG (IJTAG) is to streamline the use of instruments that have 

been embedded in chips. The intent is to facilitate the deployment of these embedded 

instruments in a wider array of chip-, board- and system-level validation, test and debug 

applications. Over the last decade, semiconductor manufacturers have designed embedded 

instruments into their chips to simplify the characterization, testing and debugging of these 

devices. Given an optimal standards-based tools environment, these same instruments can 

perform a much broader spectrum of chip-, board- and system-level validation, test and debug 

applications. 

Industry Drivers 

Several conditions in the electronics industry are motivating a trend toward embedded 

instruments and, thereby, have created a need for the IEEE 

1687 IJTAG standard. For circuit boards, the progress of 

advanced technologies such as complex microprocessors and 

very high speed buses has outstripped the capabilities of the 

older legacy validation and test equipment. By and large, this 

legacy equipment is intrusive in that it is external to the board 

being tested and it relies upon placing a physical probe on 

some sort of an access point on the board or in a chip on the 

board. For a number of reasons, the effective availability of 

these access points is rapidly diminishing and this is reducing the validation and test coverage 

that can be achieved with legacy intrusive testers, such as oscilloscopes and logic analyzers for 

validation, and in-circuit test (ICT) and manufacturing defect analyzers (MDA) for production 

test. In addition, the higher speeds associated with on-board communications channels has been 

reducing the effectiveness of intrusive test equipment for many years. As a result of these trends, 

the electronics industry has turned to test, debug, and characterization methods based on non-

intrusive software-driven embedded instruments, which can be accessed through a chip’s JTAG 

port and the circuit board’s JTAG connector. Because of the non-intrusive nature of embedded 

instrumentation, testing, debug, and characterization is not limited by the restrictions associated 

with the physical probes of legacy test equipment. 

Several Types of 
Embedded Instruments 
 
• Built-In Self-Test (BIST) 

instruments 
• Environmental monitors 
• Process monitors 
• Debug capabilities (chip and 

board) 
• Functional configuration 

controllers 
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At the chip level, several other factors have been driving the industry toward the adoption of 

embedded instruments. Keeping pace with Moore’s Law has meant that chips have become 

much denser in terms of the number of transistors per square millimeter. In addition, chip 

frequencies have gone up significantly and devices are much more complex. All of this means 

that chip characterization times are longer and more sophisticated test equipment is needed. 

Advanced chip packaging concepts, such as stacking multiple die in three-dimensional packages, 

also complicates chip-level characterization and debug. The time-to-market for electronic 

products is rapidly shrinking and this affects all aspects of a product’s development cycle, 

including the validation and test portions of these cycles. For example, the average production 

life of a cell phone IC today is approximately eight months. In the past, new test routines were 

developed separately for each phase of product development and manufacturing cycle. Now, the 

industry cannot afford the luxury of the extra time that is needed to re-develop tests for a product 

as it transitions from development to manufacturing to deployment in the marketplace. Portable 

tests and other routines that accompany chips and which can be re-applied in every phase of a 

product’s life cycle are becoming a necessity because of the shorter product life cycles and 

accelerated time-to-market. To achieve a level of portability, test methodologies must capitalize 

on embedded instrumentation. One way to do so is to take advantage of the capabilities of the 

IEEE 1687 IJTAG standard. 

Synergy of Standards 

The P1687 IJTAG standard is not meant to work in isolation from any other standard or to 

replace any standard that has already been adopted by the industry. Many of the activities 

associated with both IC test and debug, and board test and debug already involve the family of 

1149.1 Boundary-Scan Standards for board test, the 1500 ECT Standard for core test and the 

5001 Nexus Standard for software debug.  Now the P1687 embedded instrumentation standard 

has been added to optimize and manage the use of embedded instruments. 

Use Cases for IEEE 1687 IJTAG 

The IEEE 1687 IJTAG standard will be applied at the chip and board levels. Chip designers, for 

example, will find IJTAG useful during design verification when it will be used in conjunction 

with a simulator or emulator. IJTAG will also be deployed in ATE test and in system test 
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environments where it will become part of chip test, chip debug/diagnostics, chip 

characterization, and yield-analysis. 

At the circuit board level, the IEEE 1687 IJTAG standard will be used to access instruments that 

are embedded in chips to perform board-level test, debug/diagnostics,  characterization and 

possibly ongoing system monitoring. 

Finally, when a system is failing in the field, maintenance personnel can utilize the same tests 

based on embedded instruments to extract failure data from a system. This data, along with other 

environmental data, such as voltage and temperature, can be fed back to the organization’s 

failure analysis and continuing engineering teams where it can analyze the root causes of failures 

so corrective actions can be taken. This will allow the duplication of the failure conditions and as 

a consequence will reduce the amount of 'no trouble found' (NTF) cases. 

The IJTAG Ecosystem 

Adoption by the electronics industry of the P1687 IJTAG standard will depend on a viable 

IJTAG ecosystem of developers and vendors who will supply IP and tools, and otherwise 

support the development, integration and use of IJTAG instruments. Such an ecosystem implies 

support throughout the semiconductor-to-system cycle of creating IJTAG embedded instruments 

and on-chip instrument networks, integrating both of these into chips and onto boards, and 

operating the IJTAG-accessible instruments that comprise the on-chip instrument networks. This 

ecosystem (Figure 1) is characterized by three distinct functional areas: 

• Creation 
• Integration 
• Use 

The ‘creation’ phase generally involves IP providers and IC logic designers who will design or 

use EDA tools, such as Verilog generators. ‘Integration’ will encompass collecting the IJTAG 

Register-Transfer Level (RTL) data and intellectual property (IP) from IP creators and placing 

this IP into chips. IC integrators will then perform verification, power analysis, timing closure, 

layout optimization, and other tasks. Integration will also include bringing together all of the 

IJTAG Instrument Connectivity Language (ICL) and Procedure Description Language (PDL) 

files that will complete the bundle of embedded instrumentation IP and ensure its portability into 
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multiple chip designs. Once a chip including IJTAG IP is fabricated, IC test, debug and yield-

analysis processes will begin the ‘use’ phase at the chip level. However, another board-level use 

phase will also begin soon thereafter. IJTAG chips will be integrated into board designs where 

some of the capabilities of the IJTAG embedded IP can be employed to accelerate board test and 

debug processes. Accessing and operating embedded IJTAG instruments at the board level is 

also a part of the IJTAG ecosystem’s use phase. 

In summary, the IJTAG ecosystem must include a wide range of different types of organizations 

across the electronics industry, including chip and circuit board designers; EDA tools companies 

which generate embeddable IEEE 1149.1 JTAG, IEEE 1500 ECT, and IEEE 1687 IJTAG 

constructs and IP; and suppliers of IC and board testers and debuggers. An effective ecosystem 

will require that all members are able to work together to ensure information and files flow 

smoothly back and forth throughout the ecosystem. In other words, the tools that comprise the 

ecosystem must be interoperable. At the time of the IEEE 1687 Standard’s ratification, several 

cases of IJTAG interoperability including all elements of an ecosystem had been demonstrated 

publicly. 

 

Figure 1:  The IEEE 1687 IJTAG Ecosystem 

Three Deliverables 

The IEEE 1687 IJTAG standard states that an IJTAG-compatible chip, die or core must have 

three basic deliverables.  First, the most significant deliverable is access from the package pins of 
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the chip to the instruments and the instrument network that have been designed into the chip. 

Second, the IJTAG ICL file must describe the instrument access architecture in hardware so that 

a vector retargeting tool can operate the embedded instruments from the package pins of the part. 

And third, an IJTAG PDL file must exist and should represent or describe each embedded 

instrument’s operational vectors at its instrument interface. 

The Basic IEEE 1687 IJTAG On-Chip Architecture 

Figure 2 below illustrates an IEEE 1687 IJTAG architecture at the chip level. The right side of 

the drawing shows the IJTAG network interfacing to IJTAG-compliant embedded instruments. 

The IEEE 1149.1 boundary-scan (JTAG) standard’s Test Access Port (TAP) is on the left. The 

TAP functions as the interface for the embedded P1687 IJTAG architecture to the world outside 

of the chip. 

 

Figure 2:  IEEE 1687 IJTAG basic architecture 

Essentially, the boundary-scan TAP and its TAP Controller can access the embedded IJTAG 

instruments by accessing and operating the IJTAG network that connects the controller to the 
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instruments. Several other IJTAG concepts are shown in this illustration, including the Segment 

Insertion Bit (SIB), ICL and PDL. These are described in more detail below. 

Controller (AccessLink) 

The left side of Figure 2 above shows a JTAG controller that interfaces the IJTAG network with 

embedded instruments to the chip’s pins. This controller generates the operating protocol for the 

embedded instrument access network. The final approved version of the IEEE 1687 IJTAG 

standard does not define this controller, but it does describe how the IJTAG network is 

connected to any controller through a mechanism known as an AccessLink, which is defined in 

the standard. Currently, the only controller referenced in the P1687 IJTAG standard is the IEEE 

1149.1 boundary-scan (JTAG) standard’s Test Access Port (TAP) and TAP Controller. However, 

the IEEE 1687 IJTAG standard’s AccessLink would allow other controllers, such as a direct pin 

interface or another controllers besides the JTAG controller that is described in the 2014 version 

of the IEEE 1687 IJTAG standard. Other controllers in addition to the JTAG controller could be 

defined in future extensions to the IEEE 1687 IJTAG standard. 

Regardless of controller type, such as JTAG, direct chip pins, SPI, I2C or others, the controller 

must provide the driving control and data interface signals to enable the IEEE 1149.1 JTAG 

operations of Shift, Capture, Update, and Reset for the JTAG-like Test Data Registers (TDR) 

which comprise the IJTAG on-chip network. 

IJTAG Embedded Instruments  

On the right side of Figure 2 is an embedded instrument. The composition of these embedded 

instruments is not defined in the IEEE 1687 IJTAG standard because the framers of the standard 

did not want to limit how instruments should be made by incorporating instrument restrictions 

into the standard itself. The only portion of an instrument that is defined in the IEEE 1687 

IJTAG standard is the description of the signal interface connected to the instrument’s TDR on 

the IJTAG instrument access network. 

IJTAG embedded instruments are self-contained blocks of functionality (Figure 3). In addition to 

the interface to the IJTAG network, some instruments may also include the targets of their 

functionality. For example, a temperature monitoring instrument may also include a temperature 
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sensor. The instrument controls its target, which in this case is the temperature sensor. The other 

alternative (Figure 3) is for an IJTAG instrument to be composed of its interface to the 

instrument network (TDR) and the operational protocol for the target, but the target remains a 

separate standalone entity.  An example of such an instrument might be a memory test 

instrument (memory BIST in Figure 4) that is separate and independent from the memory itself. 

In addition to the memory test instrument, other instruments or other functionalities within the 

system could perform operations on the same memory. So, the IJTAG embedded instrument 

might be one of many units that would access and operate on the target. 

 

Figure 3:  An example embedded instrument with its instrument interface. 

 

Figure 4:  An example embedded instrument showing location of PDL which enables IP portability 
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To conform to the IEEE 1687 IJTAG standard, some portion of an embedded instrument’s signal 

interface must be described as defined in the IJTAG standard and must be accessible to an 

IJTAG network through a TDR. The operation of a particular instrument’s interface may support 

one of many possible protocols that are compatible with TDR operation and the IJTAG standard. 

Network  

An IJTAG network connects embedded instruments to the network controller. The goal of the 

architecture description in the IJTAG standard is to allow options, tradeoffs, and optimizations to 

be applied to the IJTAG network so the network may support operation and engineering 

tradeoffs, and so that network segments may have a measure of plug-and-play portability. The 

IJTAG network is made of serial scan path bits that can be organized as either of two different 

types of objects: 1) Test Data Registers (TDR); or 2) Network Instruction Bits (NIB). The TDRs 

and NIBs can perform the following basic functions: 

• Shift-Only bits to allow timing normalization; 
• Shift-Capture-Only bits to allow only read functionality; 
• Shift-Update-Only bits to allow only write functionality; 
• Shift-Capture-Update bits to allow both read and write functionality. 

Although the IEEE 1149.1 boundary-scan JTAG standard refers to an entire scan path within a 

chip as one TDR, within the context of the IEEE 1687 IJTAG standard the scan path connecting 

embedded instruments is more accurately described as a segment of the chip’s overall JTAG 

scan path which is made up of the individual TDRs that interface to each embedded instrument 

on the scan path. As a result, this IEEE 1687 on-chip IJTAG network is usually described as 

being comprised of tens or even hundreds of TDRs. TDRs are viewed as data bits associated 

with embedded instruments. 

On the other hand, IJTAG’s NIBs are individual bits or groups of bits that can be used to control 

and configure the length and/or behaviors of the serial IJTAG network of embedded instruments. 

From a strictly 1149.1 definition, NIBs are different from TDRs insofar as a TDR is usually 

defined as directly communicating with, controlling and configuring an instrument. The IEEE 

1149.1 JTAG standard does not really allow a construct like NIBs that will modify the operation 

of, and change the configuration of, the instrument access network itself. The 1149.1 JTAG 

standard specifically states that data and instructions are treated separately. That is, 1149.1 JTAG 
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mandates an instruction register and defines an operation protocol, which is sourced by the 

JTAG FSM. In essence, the 1149.1 JTAG standard has a separate data-side and instruction-side. 

An entire network or subsections of an IJTAG network of embedded instruments should always 

maintain a compliant separable signal interface. If a network is divided for some reason, the 

same separable interface should provide access to both subdivided segments of the original 

network. This separable P1687 IJTAG interface is what makes an IJTAG network portable. For 

example, an embeddable IP core might contain a whole and complete IEEE 1687 IJTAG 

embedded instrument access network with multiple embedded instruments. When this core is 

integrated into a chip, the core’s IJTAG network and connected instruments can be easily 

integrated within a larger IJTAG access network that already exists on the chip by connecting the 

core’s IJTAG separable network interface to the control signals provided by the chip’s TAP that 

operates the IJTAG network on the chip. The minimal defined separable P1687 signal interface 

is: 

Table 1:  The basic IJTAG separable signal interface 

Signals Definition Type of Signal 
TCK The serial clock Clock 
ScanIn The serial test data input Data 
ScanOut The serial test data output Data 
ShiftEn The TDR shift enable control signal Control 
CaptureEn The TDR capture enable control signal Control 
UpdateEn The TDR update enable control signal Control 
Reset The TDR reset assert control signal Control 
Select The TDR activate control signal Control 

It must be noted that ‘separable interface’ is the terminology employed in the approved 2014 

version of the IJTAG standard. In earlier versions of the standard as it was being developed and 

in public presentations concerning the preliminary versions of the standard, this was referred to 

as the IJTAG ‘gateway’. The term gateway is no longer valid. This separable network interface 

that connects directly to the TAP Controller is now referred to as IJTAG’s AccessLink. As 

mentioned previously, the P1687 IJTAG standard supports the portable transfer of IEEE 1687 

IJTAG networks as IP. Note that this is very similar to the IEEE 1500 ECT interface, except that 

IJTAG employs a ‘Select’ while 1500 defines a ‘SelectWIR’ because P1687 IJTAG does not 

require a formal Instruction Register (IR), but allows distributed network bits as pseudo-
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instructions. 

Figure 5 below illustrates how the IJTAG separable hardware interface (AccessLink) to the on-

chip network of instruments can interface to a standard IEEE 1149.1 boundary-scan TDR. 

Isolating the IEEE 1687 IJTAG architecture from the requirements of the chip controller and its 

interface leading off the chip ensures the portability of embedded instrument IP as well as any 

vector IP that may be associated with each instrument. In fact, an off-chip interface for an IJTAG 

network other than the IEEE 1149.1 boundary-scan TDR could emerge in the future and this 

would not affect the portability of IEEE 1687 IJTAG instruments, vectors or networks. 

 

Figure 5:  An example P1687 IJTAG network with separable interface highlighted 

Figure 5 shows the IJTAG separable interface, which enables plug-and-play functionality by 

making networks, partial networks and wrapped instruments portable. Note that the operation of 

the TDR using CaptureEn, ShiftEn and UpdateEn is locally gated by a Select generated by either 

the IJTAG AccessLink Instruction or an IJTAG SIB. 
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Management (SIBs, NIBs) 

One of the main purposes for IEEE 1687 IJTAG is to provide effective management processes 

and procedures for the wealth of embedded instruments that are being integrated into today’s 

semiconductor devices. This can mean enabling a variety of capabilities, including the following: 

• Modify the length of the scan path 

• Flexibly schedule instrument operations 

• Operate multiple instruments concurrently, reducing test execution times or  instrument 

operation times for multiple instruments 

• Coordinate instrument operations 

• Other types of instrument activities yet to be defined 

One of the key elements defined in the IEEE 1687 IJTAG standard is the SIB (Segment Insertion 

Bit). The composition of a SIB is shown in Figure 6 below. A SIB is similar to an IEEE 1149.1 

boundary-scan shift/update cell, but the SIB dynamically configures an on-chip P1687 IJTAG 

scan path to meet the requirements of a particular set of test vectors. ‘Selecting’ a certain SIB can 

activate a portion of the chip’s IJTAG scan path and consequently activate the instrument(s) on 

that segment of the scan path. Conversely, ‘de-selecting’ a SIB will deactivate a portion of the 

chip’s overall scan path and render the instruments on that segment inaccessible. Instruments on 

a deactivated segment of the scan path cannot be accessed as long as the scan path segment is 

deactivated, but they can still hold a state that operates an embedded instrument while their 

network segment is deselected (the rule is that a deselected scan segment must hold state for all 

operations except reset). This feature allows an instrument to be started, then sequestered away 

from other instruments while other operations are being conducted on the active scan path (as 

opposed to parking in the Run-Test-Idle state until the instrument has completed its function). 

The overall effect is that the length and composition of the scan path is dynamic. It becomes 

longer when SIBs open or activate segments of the path and shorter when SIBs close off or 

deactivate one or more segments of the scan path. As a consequence of this feature, access times 

for operating instruments can be adjusted by activating (opening) or deactivating (closing) 

segments of the network; and multiple instruments can be dealt with concurrently since 

deactivating a segment allows continued scan access of other segments while the deactivated 
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segment’s instrument(s) continues running. Effectively, this provides engineers operational 

tradeoffs for the implementation of a network of embedded instruments. 

 

Figure 6:  A scan path can be added before (pre-) or after (post-) the Shift Bit. 

Note that a pre-SIB (an inserted scan path before the shift-cell) such as the one shown in Figure 6 

or a post-SIB (an inserted scan path after the shift-cell) are not the only IJTAG scan path 

reconfiguration mechanism. In the P1687 IJTAG standard, control points are separate entities 

from insertion points. Therefore, an IJTAG serial scan architecture can be crafted with one or 

more control bits in one place or distributed throughout the instrument network while the actual 

multiplexor that performs  the insertion is actually located somewhere else on the network. To 

facilitate this, P1687 IJTAG describes separately the scan registers that are the source of the 

multiplexor enable, the multiplexor and any logic function needed to create the actual 

multiplexor select signal. Although this configuration is not explicitly named in the IJTAG 

standard, this type of scan path architecture could be viewed as a ’distributed SIB’ (Figure 7). 
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Figure 7:  A distributed SIB with logic function select signal 

In addition to the SIB, the other IJTAG network management item is the Network Instruction Bit 

(NIB). Since IEEE 1687 IJTAG does not require a centralized instruction register, as does IEEE 

1149.1 JTAG and IEEE 1500 ECT, IJTAG must have a mechanism to change the behavior of the 

serial access network without a JTAG IR or 1500 WIR. The P1687 IJTAG solution is to enable 

bits in the active scan path to configure and modify the behaviors of other bits in the active scan 

path. For example, an update bit associated with a scan shift cell could generate a signal to block 

the reset signal from operating on an identified group of bits in the active scan path. 

Tradeoffs 

One of the fundamental drivers of the IEEE 1687 IJTAG standard was to enable more 

engineering and operational tradeoffs with regards to embedded instruments. The IEEE 1149.1 

boundary-scan (JTAG) and IEEE 1500 ECT standards are based on a fairly rigid architecture that 

includes a centralized instruction register. IJTAG SIBs enable two kinds of tradeoffs involving 

an IJTAG on-chip network and the instruments that make it up. First, SIBs provide operational 

tradeoffs by enabling the addition or subtraction of scan path segments to the active scan path. 

Second, SIBs also provide engineering tradeoffs by generating the Select from a location that is 

physically close to the instrument. In contrast, centralized instruction architectures like those 

based on the 1149.1 JTAG or 1500 ECT standards, will require that the instruction decode be 

physically close to the instruction register, which is usually within the centralized TAP 

Controller module. In a distributed P1687 IJTAG architecture, distributed SIBs generate the 

Select signal, which in turn controls the operational status (active or inactive) of the targeted 

TDR that interfaces to an instrument. Good design practices call for a SIB to be physically 
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located close to its associated embedded instrument’s TDR. (See Figure 8 below.) As a result, 

the decode process in an IJTAG network will be distributed across much of the chip. 

Specifically, a SIB will provide access to an embedded instrument wherever on the chip an 

instrument is located. Distributed decode allows a chip design to be optimized according to 

critical engineering considerations such as silicon area, timing, routing, power consumption and 

even thermal impact. 

Another tradeoff that the IEEE 1687 IJTAG standard enables is the distribution of the ability to 

modify the scan network, as opposed to generating instrument interface modification instructions 

in the central instruction register before distributing these instructions throughout the network. 

IJTAG modifies scan network behaviors through bits in the active scan path. These bits fall into 

two categories: Local Reset and Deny Functions. These bits are typically located near to the 

TDR of the embedded instrument they support. 

 

Figure 8:  Distributing TDR control to SIBs 

Instrument Portability and Re-Use 

Figure 8 above not only shows physical tradeoffs, but illustrates several of the basic concepts of 

an IEEE 1687 IJTAG on-chip architecture. In the upper left corner is the TAP Controller (TAPC) 

as defined by the IEEE 1149.1 boundary-scan (JTAG) standard. As far as the P1687 IJTAG 
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network is concerned, the TAP provides two basic functions: 1) the TAP’s finite state machine 

(FSM) produces the control signals that operate the network; and 2) the TAP provides access 

from the outside world to the IJTAG architecture. The TAP’s Test Data In (TDI) and Test Data 

Out (TDO) pins are connected in a scan path to a set of Test Data Registers (TDRs) which acts 

as a read/write interface to an IEEE 1687 IJTAG embedded instrument located anywhere within 

the chip. 

Within the context of the P1687 IJTAG standard, there are several degrees of instrument 

portability. Wrapped instruments are more portable than unwrapped instruments. The term 

unwrapped or ‘naked’ instruments means that the instrument is provided only with its signal 

interface and nothing else. In contrast, a wrapped instrument already supports an IJTAG-

compliant TDR by including the TDR’s P1687 IJTAG separable interface signals with the 

instrument’s module. A further degree of portability is added when an embedded instrument is 

delivered with its TDR, its SIB and possibly a Local-Reset or other advanced functions. This can 

be seen as a best practice. So, as shown in Figure 9, an instrument/TDR/SIB combination as a 

selectable wrapped instrument can easily connect to an IJTAG network since only the control 

signals need to be connected and the Select is simply handled by the SIB. For portability 

IJTAG’s ICL language defines the TDR and the read/write signals that interface the TDR to the 

embedded instrument. And IJTAG’s PDL defines the actions, test vectors and other operations 

that the instrument executes. All of these are included with a wrapped instrument. This simplifies 

the integration of the instrument into the overall IEEE 1687 IJTAG network and lets the creator 

of an embedded instrument write its PDL with extended functions such as instrument selection 

and TDR reset, further simplifying the integration of a portable embedded instrument. 
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Figure 9:  A portable IJTAG instrument with TDR and SIB and Local Reset 

Metrics to Drive P1687 IJTAG Designs 

Given the previous discussions on tradeoffs and portability, the question arises: Can a set of 

metrics drive optimum IC design architectures? In reality, two sets of metrics can be applied; one 

represents operation requirements, while the second represents design budgets and requirements. 

Operation requirements are either the limitations that the instrument and its operations place on 

the access network or certain limitations imposed by the test equipment. For example, an ATE 

test system may operate the JTAG port during silicon test, wafer probe or package test. The ATE 

may have a scan-option memory depth limit of 128 megabits. This means that a scan chain one 

million bits in length could only be operated 128 times before the ATE test system would need to 

conduct a time-consuming reload. If the vector delivery required 10,000 scan vectors, then the 

scan path would need to be limited to less than 12,800 bits in depth to prevent an ATE reload. 

Other limitations could come from the architecture of the chip or the instrument itself. For 

example, an adjustment to a high-speed signal interface (such as a gigabit serdes LVDS type of 

interface) may need to occur in real-time in some tens of milliseconds. If the scan chain that 

accesses the instrument is designed to 10 MHz, then it must be less than 10,000 bits long to meet 
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a 10 ms access time. These are the types of types of requirements that would drive the length of 

the active scan path, which is an operation budget issue. 

An engineering budget involves items such as the silicon area, the amount of routing and routing 

congestion, and the impact on timing associated with IEEE 1687 IJTAG network components. 

The IEEE 1149.1 JTAG method of design required very strict adherence to cell types (such as 

the BC_2 cell type) and required that all instruction decode be associated with the JTAG IR, 

which is located within the TAP controller. As the number of embedded instruments grows, the 

number of instructions generally grows linearly, eventually resulting in a routing congestion 

problem if all instructions for all of the chips embedded instruments originate within the TAP 

controller. IEEE 1687 IJTAG’s SIB-based design allows the decode process to select an 

embedded instrument located close to the SIB, which should be physically close to the embedded 

instrument. The IEEE 1687 IJTAG Standard also does not stipulate which types of cells must 

comprise the network. The standard only defines the required behaviors, such as mandatory shift; 

optional capture and update; and mandatory reset on update types of cells. 

These requirements mean that the IJTAG architecture and behaviors can be driven by various 

needs that can be quantified as metrics, such as the following: 

1. Access time; scan path length; active scan path segment. 
2. Number of independent IJTAG AccessLinks; instruction routing congestion; instruction 

decode logic area/gate count. 
3. Scan path control signal routing and routing congestion, scan path timing, scan path data 

signal routing length 

These metrics can drive the types of cells in an IJTAG architecture, the configuration of cells, the 

locations of SIBs and how much hierarchy is involved with SIB access. 

Advanced P1687 On-Chip Architectures 

On their surface, simple IEEE 1687 IJTAG networks may appear similar to IEEE 1149.1 

boundary-scan (JTAG) or IEEE 1500 ECT architectures that have had a few SIB-based 

structures added. However, the IJTAG standard was created to solve some of the more prevalent 

and common architectural problems that arise with core-based design and logic re-use. For 

example, IEEE 1500 ECT architectures are often delivered with an 1149.1 JTAG FSM, which 

makes the core an embedded TAP that must be integrated into the same chip design along with 

22 



IEEE 1687 IJTAG Tutorial – Second Edition 

the chip’s primary boundary-scan JTAG TAP. Unfortunately, the IEEE 1149.1 boundary-scan 

JTAG standard does not formally support multiple-TAP environments, even though it does 

describe the selection of different TAPs using added compliance enable chip pins. The IEEE 

1687 IJTAG standard does specify how multiple TAPs can be integrated into the same 

environment and how to document this architecture so that each TAP can be accessed and 

operated. 

In addition, at times an IEEE 1149.1 JTAG scan chain, IEEE 1500 ECT wrapper or an IEEE 

1687 IJTAG instrument’s TDR must be reset without resetting JTAG for the entire chip or board. 

For this reason, IEEE 1687 IJTAG has defined a Local Reset that can reset a portion of the 

IJTAG network, a specific part of the IEEE 1149.1 JTAG scan chain or a certain IEEE 1500 

wrapper. In addition, the JTAG serial access scan path may have problems that require debug 

operations. However, the JTAG operation sequence of Capture, then Shift and then Update is 

adverse to debug operation. In most cases, diagnostic sequences may be required without 

conducting the typical JTAG Reset, Capture, or Update operation. The IEEE 1687 IJTAG 

standard has defined several ’deny’ functions that employ embedded NIBs to restrict the Reset, 

Capture or Update operation during a JTAG DR-Scan. 

Local Reset 

As mentioned, engineers frequently need a local reset to manage board- and chip-level reset 

operations, but the IEEE 1149.1 JTAG architecture does not support local reset. As a result, 

resetting one instrument in a JTAG architecture requires resetting all of the chips on the board 

that are daisy-chained together in the active JTAG architecture. That is, all chips on the active 

JTAG scan chain must enter JTAG’s Test-Logic-Reset (TLR) state, which will reset the entire 

board. With IEEE 1687 IJTAG’s local reset capability, a particular instrument may be reset 

through one or more bits in its TDR (LR-Bits), which are local to the instrument on the scan 

path. To avoid breaking the scan path by disabling its ability to shift the scan path, the IJTAG 

standard requires that the LR-Bit that asserts at UpdateDR must self-clear before reaching the 

CaptureDR state of the operation sequence (2.5 TCK clock cycles on the 1149.1 JTAG FSM). 
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Deny-Functions 

Similarly, if an engineer is debugging the scan chain itself due to operational issues or concerns 

such as a chain that is blocked, stuck-at, has excessive hold-times, slow-to-rise, slow-to-fall and 

other fault models, then some other sequence besides the normal JTAG Capture-Shift(n)-Update 

scan sequence may be required. In this case, the Reset-State could be scanned out of the scan 

path to determine whether the chain is coming up in its correct state. To do this, performing a 

capture on a scan path’s default state prior to shifting out would have to be avoided, as would an 

update from a scanned-in value that could be in a corrupt state. These are a highly advisable 

practices. Normally, doing this over a standard IEEE 1149.1 JTAG path would require a 

different instruction for each instrument TDR on the scan path or every register access mode. On 

an IEEE 1687 IJTAG scan path, bits local to each instrument can turn off the capture and update 

functions by directly interacting with a TDR’s CaptureEn and UpdateEn control signals (Figure 

10). 

 

Figure 10:  An IEEE 1687 IJTAG architecture with a NIB implementing the Deny (Capture/Update/Reset) functions.  

Multiple TAPs 

One of the realities of modern core-based design is that sometimes an IP core will be delivered 

with an entire IEEE 1149.1 JTAG architecture. As mentioned previously, the 1149.1 JTAG 

standard does not formally allow two active TAPs in the same chip. So, when a core with a TAP 

is integrated into a chip design that already has a primary TAP for the entire chip, the integrator 
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has two choices: modify the core by removing its TAP and TAP controller, or leave the core as is 

and integrate it into the chip design along with its TAP and TAP controller. If the core is a hard 

core (layout macro), the engineer has no choice. The TAP and TAP controller must remain in the 

hard core. If the core is a soft core (HDL or RTL code), the core can be modified, but this may 

render the vectors delivered with the core inoperable. Many integrators decide to leave the core 

intact. This raises the issue of how the chip design will support and operate multiple TAPs and 

TAP controllers within a single chip. The main concerns are how to maintain 1149.1 JTAG 

compliance at the chip-level while supporting a multiple TAP environment. 

A common example of this situation is an IEEE 1500 wrapped core complete with an IEEE 

1149.1 boundary-scan (JTAG) TAP and TAP Controller, which includes JTAG’s FSM. 

Generally, this is done for self-contained timing purposes. This makes the TAP in the core an 

embedded TAP when it is integrated into a chip design with its own primary TAP. If several of 

these cores each with its own TAP are integrated into the same chip design, then a multiple TAP 

environment results. For example, four cores each with a TAP could result in five TAPs on one 

chip when the cores are integrated into a design that already has a primary TAP. Fortunately, the 

IEEE 1687 IJTAG standard specifies how multiple TAPs can be integrated into the same 

environment and how to document this architecture so that each TAP can be accessed and 

operated. 

It must be noted, however, that IEEE 1687 IJTAG supports the basic scan path rule that when a 

scan path or scan path segment is not selected, the operations of the TDRs on the non-active or 

deselected scan path segments are frozen. That is, the TDRs do not shift, capture, or update; they 

simply hold their states. This rule also applies to IJTAG network architectures, including TAPs 

that may be selected and deselected. A deselected TAP must remain in Run-Test-Idle [RTI], 

whereas a reset TAP must remain in Test-Logic-Reset (TLR). 

IJTAG can enable a multiple TAP environment through a top-level direct selection by an 

AccessLink instruction. Multiple TAPS are included in an active scan path through several 

possible types of architectural constructs, including the following: 

1. A SIB construct (also known as a ScanMux); 
2. More than one AccessLink instruction; 
3. A configuration TDR. 
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Figure 11 shows a traditional IEEE 1149.1 JTAG connection from the chip design’s primary 

TAP to an embedded TAP (eTAP). Such connections are enabled by the IJTAG standard. The 

primary TAP includes AccessLink instructions to select other eTAPs. In this type of 

configuration an IEEE 1687 IJTAG AccessLink instruction can select one or more eTAPs. This 

configuration allows the primary TAP (the TAP that includes the chip-level BYPASS, IDCODE, 

EXTEST, and other chip-based instructions) to select an AccessLink instruction from among 

several possible AccessLink instructions. This would add one or more of the eTAPs into the 

active TDI-TDO scan path. When the primary TAP selects BYPASS, the architecture is 

compliant with the 1149.1 JTAG standard because one bit represents the bypass register in the 

chip’s TDI/TDO path and the eTAP is deselected, causing it to remain inactive in the Run-Test-

Idle (RTI) state.  When the primary TAP selects an AccessLink, it may connect directly to an 

eTAP or to a secondary selection mechanism such as a configuration register or an IJTAG 

Segment Insertion Bit (SIB). The primary TAP IR can select an eTAP through an AccessLink or 

an eTAP SIB. When the AccessLink or SIB are asserted with an UpdateIR from the primary 

TAP, then the eTAP will wake up from either being in a TLR or in RTI state. The eTAP’s 

parking state depends on the primary TAP controller; turning off TMS parks the eTAP in RTI; 

putting the primary TAP in TLR forces the eTAP into TLR within three TCK cycles 

(immediately if eTRST* is supported). 

 

Figure 11:  A single eTAP enabled by an IJTAG AccessLink instruction 

Figure 12 shows an extension of the eTAP selection concept. Here, a ScanMux or SIB is added 

to the architecture shown in Figure 11 (without the reset gate to minimize clutter in the drawing). 
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In Figure 12, the default selection of the AccessLink selects eTAP2. When the SIB is asserted (a 

logic 1 placed in the Update cell during a DR-Scan), eTAP1 is activated and is included into the 

overall scan path by the SIB generating the Select signal. If the SIB is closed (de-asserted with a 

logic 0), eTAP1 is removed from the scan path on the falling-edge of TCK in the UpdateDR state 

and eTAP1 is placed in RTI. 

 

Figure 12:  A multi-TAP architecture showing how a ScanMux (SIB) can include eTAPs into the scan path. 

Other selection mechanisms are also possible. For example, different AccessLink instructions 

can select individual or groups of eTAPs. Or, a configuration register can select eTAPs for 

inclusion in the active scan path. In the case of a configuration register, any one of several or 

many eTAPs can be associated with a bit in a configuration register that is either in the active 

scan path or accessible from a different AccessLink instruction. 
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Figure 13:  An eTAP can be parked in either RTI or TLR 

Note that eTAPs, to be compliant with IEEE 1687 IJTAG (Figure 13), must be parked in Run-

Test-Idle (RTI) when it is deselected. However, the eTAP must also be placed in a reset state, 

Test-Logic-Reset (TLR), when directed to do so by the primary TAP whether selected or not. 

Parking in TLR is supported by applying the Global Reset signal to the P1687 network. Global 

Reset is generally produced when the IEEE 1149.1 JTAG FSM is in the TLR state, but may also 

include the TRST* if the primary TAP supports the asynchronous reset signal. 

Alternative Controllers 

Although not included in the 2014 version of the IEEE 1687 IJTAG standard, the standard was 

developed so that alternative controllers besides the 1149.1 JTAG TAP could be included in the 

standard in future versions. At such time, the standard could be expanded to allow for even 

greater flexibility and scalability. IJTAG could evolve in a similar fashion to IEEE 1500 ECT, 

which allows for its architecture to be driven from an IEEE 1149.1 boundary-scan/JTAG TAP 

Controller FSM, directly from an automatic test equipment (ATE) system or other type of test 

equipment. To this end, the IJTAG AccessLink instruction was developed as a way to identify 

the specific controller that might be currently providing access to a P1687 IJTAG network 

interface and to set up that controller so that it would provide operations and access to the IJTAG 

network. For example, a very popular embedded instrument controller at the board level is the 

Serial Peripheral Interface (SPI). Engineers may want to embed cores that include an IJTAG 
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network and instruments into chips that have only SPI interfaces and no IEEE 1149.1 JTAG TAP 

port. 

Advanced Instrument Interfaces 

The most common instrument interface is a slave type of interface, which reacts to a logic level. 

This means that as long as a TDR is driving a logic 1 or logic 0 onto an instrument interface 

signal, the instrument will react to this signal. For example, if a Write-Only TDR bit drives a 

logic 1 onto the RUN signal of an embedded instrument, the embedded instrument will operate 

as long as the logic 1 remains asserted. This means that the instrument will start and stop when 

the RUN TDR bit changes state on the falling-edge while in the UpdateDR state of the IEEE 

1149.1 JTAG FSM. 

Similarly, if the interface is a slave-type, status signals from the instrument are static and not 

dynamic. A static signal will change its state and hold the new state until it is changed again, 

essentially resetting or restarting an associated instrument. For example, a memory BIST might 

initialize the FAIL and DONE signals to logic 0. These signals will remain 0 until either a FAIL 

condition is encountered or until the BIST function is done. When one or both of these 

conditions occur, the appropriate signal or signals will change state and the signals will remain in 

that state so that a TDR Shift-Capture bit can capture and read the signal at some time after it 

transitions. This is required because the P1687 IJTAG/1149.1 JTAG architecture does not react 

to a signal at the moment it transitions, but operates in a ’polling’ fashion through DR-scans. 

However, one goal of the P1687 IJTAG standard was that IJTAG instruments should not be 

required to incorporate the 1149.1 JTAG protocol. Rather, IJTAG instruments should be 

designed to be efficient and effective instruments, and P1687 IJTAG should handle the interfaces 

and logic associated with the TDR to accommodate each IJTAG instrument’s communication 

needs. Actually, many instruments were originally designed for other types of controllers or 

interfaces and not P1687 IJAG. To this end, several logic functions and data registers have been 

defined as part of the P1687 IJTAG standard so that TDR interfaces can be modified if 

necessary. In addition, several common instrument interface types have been evaluated, 

including the following: 
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• Slave Interface 
• Read-Only Interface 
• Asynchronous Slave Interface 
• Full-Asynchronous Interface 
• Bidirectional Interface 

 

Figure 14:  Example of static slave interfaces, fire&forget and read-at-will. 

Figure 14 shows two simple examples of what are expected to be the most common interfaces. 

Other interfaces, such as half- and full-duplex, will require semaphore signals such as “Data 

Valid” and “Read Acknowledge” to communicate between the embedded instrument and the 

IEEE 1687 IJTAG TDR. Complex instrument interfaces, such as bus protocol interfaces, may 

require that the interface between the P1687 IJTAG TDR and the actual instrument be modeled 

with PDL. For example, PDL might represent a read-write sequence involving a state-machine 

between the P1687 IJTAG TDR and the embedded instrument’s actual signal interface. 

30 



IEEE 1687 IJTAG Tutorial – Second Edition 

IJTAG Description Languages 

The IEEE 1687 IJTAG standard defines two languages:  

1. Instrument Connectivity Language (ICL) for describing the access mechanism and 
network of embedded instruments;  

2. Procedure Description Language (PDL) for describing instrument operations or test 
vectors. 

These IJTAG languages were created to be distinct from the IEEE 1149.1 JTAG Boundary-Scan 

Description Language (BSDL) and Serial Vector Format (SVF) languages for several reasons. 

The initial thought process of the IEEE 1687 IJTAG working group was that the IJTAG standard 

should not overload the IEEE 1149.1 JTAG languages with information that end-users (board 

test personnel) may not need, since many embedded instruments will only be implemented for IC 

test and not board test. IJTAG’s ICL and PDL were created as separate languages and files so 

they could be delivered if requested by the board test or validation engineer. Another reason 

involved the nature of 1149.1 JTAG. JTAG does not document or describe instruments and their 

operations as IJTAG does; instead, JTAG is more concerned with creating chip-centric 

instructions, test modes, TDRs and ensuring that all of these are compliant with the IEEE 1149.1 

standard. The IEEE 1687 IJTAG standard is more focused on describing the instrument interface 

and its related vectors and operations, and then documenting the pathway to the instrument 

interface. The main purpose of P1687 IJTAG is to enable the retargeting of instrument vectors to 

the pins of the chip1. (Actually, P1687 IJTAG vector or operation retargeting may be applied 

from any module boundary to any other higher-level module boundary.) To facilitate this 

retargeting, a simple IJTAG language to represent the vectors or operations was created (PDL) 

and it was linked to the description of the instrument interface and the instrument access network 

(ICL). 

Instrument Connectivity Language (ICL) 

The basic goal of automated, software tool-based retargeting is that vectors or operations can be 

described at some signal interface or register. Furthermore, that these vectors can be resolved 

through an access mechanism to a physically accessible interface such as the pins on an IC 

package or an edge connector on a board. To do this, the signal interface and access mechanism 

must be described so that a software tool can automate the process. However, some in the 
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industry are concerned about divulging too much information about the specifics of a chip design 

or the instrument. For this reason, ICL was designed to describe the behavior of the network, not 

the physical representation of the network, the instrument itself or the instrument’s target such as 

the memory targeted for testing by a memory BIST instrument. 

From the practical perspective of a user, ICL can be subdivided into instrument-ICL (iICL) and 

network-ICL (nICL). (NOTE: The standard itself does not make this distinction, but dividing 

ICL into iICL and nICL does make ICL easier to understand.) This delineation of iICL and nICL 

recognizes that the language is composed of two subsets, one of which describes the direct 

interface to an embedded portable instrument (no TDR and no network connection) and the other 

that describes the network. An example of an iICL instrument would be one delivered as a 

portable object from a third-party IP provider or from a Verilog-generator in an Electronic 

Design Automation (EDA) tool so that it presents vectors and a documented signal interface.  

nICL describes either an entire or segments of IJTAG access networks. nICL is similar to the 

IEEE 1149.1 JTAG standard’s BSDL language. However, when ICL was being developed, 

BSDL did not support variable length scan paths and other scan-path self-modification features 

such as Local-Reset, Deny-Capture, Deny-Update and Deny-Reset. 

The basic description element of ICL is the module, which is a software structure. Any IJTAG 

network description must contain at least one ICL module. Each different module should be 

given a unique name. A physical network may be made up of embedded TAPs, black-box 

modules, TDRs, SIBs and shift-path multiplexors. Instruments may include a signal interface, 

interface registers, interface logic, data multiplexors and clock definitions. So, an ICL module 

can contain a small set of building blocks that describe the network and the instrument interface. 

The overall ICL for a chip is organized into groupings of modules and looks like a hierarchical 

netlist description language. Each ICL module contains two basic types of information: 1) 

hierarchical network structure and instrument interface building blocks, which are required; and 

2) parameters, aliases, enumerations, and attributes, which are optional. The optional elements 

can improve readability and reusability. For example, alias and enumerations are included in ICL 

modules to simplify the writing of PDL. 

The language components and ICL optimizations are shown in Table 2 below: 
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Table 2:  ICL language elements with proper syntax. 

Index ICL Network Description Elements 
1 Module <ModuleName> {…} 
2 <Func>Port <PortName> {…}2 
3 ScanInterface <ScanInterfaceName>{…} 
4 Instance <InstanceName> of <ModuleName> {…} 
5 ScanRegisterName <ScanRegName> {…} 
6 ScanMuxName <MuxName> SelectedBy <Selector> {…} 
7  OneHotScanGroup <SignalName> {…} 
8 AccessLink <InstanceName> of <LinkType> {…} 
 
 ICL Instrument Description Elements 
9 LogicSignal <SignalName> {…} 
10 DataRegister <DataRegName> {…} 
11 DataMux <MuxName> SelectedBy <Selector> {…} 
12 ClockMux <MuxName> SelectedBy <Selector> {…} 
13 OneHotDataGroup <SignalName> {…} 
  
 ICL Optimization and Organization Elements 
14 Alias <AliasName> = <Element> {…} 
15 Enum <EnumName> {…} 
16 Parameter <parName> = <parValue>; 
17 Attribute <attName> = <attValue>; 
  
 ICL Comments 
18 // single line comment uses double slash 
19 /* multi-line block comments */ 

NOTE: Two items in  Table 2 that are not fully expanded: 1) <func> Port can actually expand 

into a number of different port functions; and 2) the curly braces with ellipses, {…}, means that  

more information  can be represented within the curly-braces. If no extra information is 

available, the statement can be terminated with a semicolon. 

Network Instrument Connectivity Language (nICL) 

A number of description elements are associated with the serial access network portion of the 

P1687 IJTAG standard. An IJTAG network may be delivered in several forms: as a whole 

network in a fabricated chip; as a portion of a network in an IP core, for example; or as just a 

TDR.  As a result of this, most IJTAG network elements can be considered building block 

primitive elements that represent ports and items on the scan path. The physical elements that 
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can make up a scan network are scan-path registers (TDRs), scan-path multiplexors, a scan 

interface or scan signal ports, and an access-link instruction. These items are described in Table 

2 as items two through eight. Each is fairly self-explanatory. 

Several of the other elements listed in items 2 through 8, such as Instance and 

OneHotScanGroup, are not self-explanatory. Instance will create the netlist or schematic view of 

the architecture. For example, a generic module named 32BitTDR may be used four times in an 

architecture. Each of these four modules are identical, but the four different applications of the 

module must be unique even though the same module is instantiated four times.  The example 

nICL code below shows how two instances of the module 32BitTDR is made unique by naming 

one instance ‘red’ and other ‘blue’. 

Instance RedTDR32 of 32BitTDR; 
Instance BlueTDR32 of 32BitTDR; 

A OneHotScanGroup is just another version of a ScanMux, but the enable signals may source 

from multiple places in the architecture. So, these signals are listed within the curly-braces in the 

OneHotScanGroup statement. An example of three signals from three different modules that 

select Mux1 is shown below: 

OneHotScanGroup Mux1 { 
Port RedTDR32.SO; 
Port BlueTDR32.SO; 
Port GreenTDR32.SO; 
} 

Instrument Interface Connectivity Language (iICL) 

Several ICL items describe the non-scan portions of the architecture. These commands are 

mostly associated with the embedded instrument, but some can also refer to the scan architecture. 

Each embedded instrument must have its signal interface described, in addition to any parallel 

registers or data multiplexors. Logic decode must also be described as well as the clock source or 

selection multiplexor. These items are listed as 9 through13 in Table 2 and are self-explanatory. 

The nICL item that requires explanation is the LogicSignal statement. LogicSignal may actually 

refer to either the scan-path network or the instrument interface. LogicSignal represents a signal 

described as a Boolean expression and resolved to a single signal to enable a scan-multiplexor or 
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data-multiplexor, for example.  For instance, a LogicSignal would describe a real signal that 

sources from four different scan-path update-bits and these four bits resolve to a single scan or 

data multiplexor selection signal based on some AND, OR, Exclusive-OR, Not-AND, Not-OR, 

or Not combination. An example of this type of statement that reads “Bit1 AND NOT Bit2 OR 

Bit3 AND Bit4” would be: 

LogicSignal MuxSel1 { 
Bit1 & ~Bit2 | Bit3 & Bit4; 

} 

Procedure Description Language (PDL) 

IJTAG’s Procedure Description Language (PDL) documents the operations of embedded 

instruments. PDL can be associated with different levels of an IJTAG network, but its primary 

task is to describe the operations or procedures for each instrument on the network (Table 3). In 

conjunction with ICL’s network and instrument interface descriptions, PDL allows automated 

tools to retarget an instrument’s procedures or test vectors to the chip’s physical pin interface 

through the device’s test controller. This allows IJTAG instruments to be portable, drop-in 

objects because no matter how many times an instrument is deployed or where it is placed within 

an IJTAG network, the device’s ICL will map a pathway for the PDL procedures to the chip 

pins. From the chip pins, the PDL procedures can be extended further to the edge of the board 

where they can be controlled and managed by an IJTAG tool. PDL commands can be divided 

into two levels. Level-0 is the basic language and Level-1 is considered an advanced set of 

features that are described according to the rules of the Tool Command Language (Tcl) 

language. 

The Level-0 PDL (PDL-0) is a small group of commands that provides the basic structure of the 

language and the basic vector actions needed by instruments. PDL-0 commands are evaluated by 

either a compiler or a Tcl interpreter. These basic Level-0 commands can be organized into four 

groups: 

1. software structure commands that define the organization and actions of the language; 
2. action commands that describe or define the operations of an instrument; 
3. instrument configuration commands that define the environment associated with 

instruments; 
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4. resource commands that involve the sharing, isolating or describing of resources than can 
be associated with multiple instruments or the network. 

Table 3:  PDL Level-0 commands by group 

Index PDL Software Structure Commands PDL Group Description 
1 iPDLLevel PDL commands associated with 

the software structure or actions 
of written PDL or PDL files  

2 iPrefix 
3 iProc 
4 iProcsForModule 
5 iUseProcNameSpace 
6 iNote 
7  iCall 
PDL Action Commands 
8 iRead PDL commands associated with 

the actions or operations involving 
instruments or the network 

9 iWrite 
10 iScan 
11 iApply 
12 iReset 
13 iRunLoop 
PDL Definition Commands 
14 iOverrideScanInterface PDL commands associated with 

defining the conditions under 
which PDL actions operate 

15 iClock 
16 iClockOverride 
PDL Advanced Resource Commands 
17 iMerge PDL commands associated with 

resource management of 
instruments or the network 

18 iTake 
19 iRelease 
20 iState 

On the other hand, PDL Level-1 commands (Table 4) are a more sophisticated set of commands 

than PDL-0. PDL-0 commands can be thought of as ‘flat’ or ‘static statements that map simple 

linear actions associated with an instrument. However, real-world operations require more 

complex actions, such as flow-control operations like ‘if-then’, ‘do-while’ and ‘for-next’. Since 

PDL-1 is based on Tcl, which is a widely adopted and supported language, some of the PDL-1 

operations actually come from the Tcl language. Ultimately though, a wide range of operations 

must be supported for the test and debug process and Tcl allows users to define their own 

commands. The PDL-1 commands defined in the P1687 standard are described in Table 4 below. 
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Table 4:  PDL Level-1 commands defined in P1687. 

CMD # PDL Level-1 Command Command Definition 
1 iGetReadData Return (as a string in the specified unsized number format) 

the value from the most recently applied iRead operation 
on register or output port (or an alias consisting of either 
or both). May contain x-values. 

2 iGetMiscompares Return (as a string in the specified unsized number 
format) the XOR of the value from the most recently 
applied iRead operation on a register or output port (or 
an alias consisting of either or both) and the value 
expected for that iRead operation. May contain x-values. 

3 iGetStatus Return the decimal number of iApply miscompares that 
have occurred since the last time that iGetStatus –clear 
was issued. Clear the count afterwards if directed. 

4 iSetFail Return the message string to the controlling program to 
indicate an unexpected condition, with the optional 
directive to abort execution. 

It must be noted that the PDL can be written so that an embedded instrument may be used in 

several different ways. PDL may be written at the level of a complete test. For example, the PDL 

code may ’run_instrument_to_end’ or ’run_instrument_to_fail’. Alternatively, PDL may be 

written at an atomic level. That is, the PDL code may instruct the instrument to perform certain 

functions, such as ’start’, ’pause’, ’stop’, ’algorithm_1’, ’change_test_data’ and so on. When 

PDL is delivered as a complete test, the end user doesn’t have any options other than to run the 

test. This is especially true if the ICL has been obfuscated to limit the user’s understanding of the 

instrument. When PDL is delivered as atomic functions, end users must develop complete tests 

on their own. Of course, this will require that users understand the operations of the embedded 

instrument. The last option would be for the PDL provider to deliver both a complete test and the 

atomic functions that allow end users to create their own complex functions. 

Coordinating IEEE 1687 IJTAG at the Board Level 

As the IJTAG ecosystem continues to develop, many of the initial IJTAG embedded instruments 

will likely be chip-centric instruments intended for ATE and system test, chip diagnostics, and 

possibly chip characterization and tuning. Of course, each instrument must have a viable return-

on-investment (ROI) or it will not be utilized.  If an embedded instrument saves time, effort, 

cost, or it can reduce the cost and complexity of the hardware associated with test and 

characterization, then the adoption of the embedded instrument makes sense. This adoption 

process has been going on since the 1990s and many types of embedded instrumentation such as 
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Scan, Scan Compression, Memory Built-in Self-Test (MBIST), Memory Built-in Self-Repair 

(MBISR), PLL-BIST, and serdes-BIST have become commonplace (Figure 15:  Chip-centric 

embedded instruments for chip provider purposes). 

 

Figure 15:  Chip-centric embedded instruments for chip provider purposes 

Eventually, embedded instruments will also migrate to support other applications in addition to 

chip-centric verification and characterization. Inevitably, IJTAG embedded instruments will 

service the board and system environments. Chip designers would include these instruments 

within chips, but for the purposes of supporting board and system level applications such as 

validating chip-to-chip communication or providing on-board diagnostics. These types of 

instruments are becoming necessary at the board level because of the engineering challenges 

associated with modern board design. For example, shrinking board sizes, increases in chip 

complexity, increases in signal speeds and the loss of physical test points are limiting the ability 

of external equipment to test and characterize circuit boards.  Most of the features requested by 

the board test community today are all centered around high-speed signals or reducing test time. 
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Figure 16:  Embedded instruments requested by board test organizations 

Even though both are included within chips, the main difference between chip-centric IEEE 1687 

IJTAG instruments and board/system-centric P1687 IJTAG instruments (Figure 16:  Embedded 

instruments requested by board test organizations) is the coordination at the board level that 

board-centric P1687 IJTAG instruments will require. For example, a serdes BIST applied within 

a chip may include an in-chip loopback, but a serdes BIST that is applied at the board level to 

validate board-level resources will require one chip to operate its embedded serdes BIST 

instrument and another chip on the board to either be placed in a loopback mode or to receive 

and respond to the serdes BIST traffic from the source chip. 
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Summary and Conclusions 

Although the IEEE 1687 IJTAG standard was ratified in 2014, the concepts embodied in the 

specification are not new. In fact, interim versions of the standard have been applied by many 

early adopters’ years before the standard was ratified. 

Widespread adoption of the IEEE 1687 IJTAG standard in the industry is anticipated, as 

evidence by the support that technology providers have already given to the IJTAG ecosystem. 

Any standard’s adoption is always accelerated by the presence of a tools ecosystem, which 

supports the standard and simplifies its adoption for working engineers. Collaborative efforts 

among several major tools providers, including Synopsys, Mentor, ASSET InterTech and others 

is proof that an ecosystem for the IEEE 1687 IJTAG standard has already emerged. At the chip 

level, EDA tools are already accommodating the simulation and verification of IJTAG resources 

and architectures, in addition to generating PDL for deployment on ATE testers. However, 

unleashing the vast potential of IJTAG-networked embedded instruments for testing systems-on-

a-chip (SoC) and circuit boards, or even for field service applications, will require a complete 

bundle of resources, including Boundary-Scan Description Language (BSDL) files, ICL and 

PDL. With this sort of a package, the end user engineer will be able to employ IJTAG tools 

running on JTAG tester hardware. This pathway has already been proven by collaborative 

interoperability efforts involving EDA providers, IC suppliers and IJTAG tools companies. 

Learn More 

The IJTAG ecosystem is 

growing rapidly. A proof-of-

concept case study 

demonstrating the 

interoperability of ASSET and 

Synopsys IJTAG tools is 

available here. Register Today! 

 

http://www.asset-intertech.com/Products/IJTAG-Test/IJTAG-Test-Software/Embedded-IJTAG-P1687-BIST-Synopsys-DFTMAX-ScanWorks
http://www.asset-intertech.com/Products/IJTAG-Test/IJTAG-Test-Software/Embedded-IJTAG-P1687-BIST-Synopsys-DFTMAX-ScanWorks
http://www.asset-intertech.com/Products/IJTAG-Test/IJTAG-Test-Software/Embedded-IJTAG-P1687-BIST-Synopsys-DFTMAX-ScanWorks
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