

HARDWARE-ASSISTED

DEBUG AND TRACE

WITHIN THE SILICON

EBOOK

BY LARRY OSBORN

Hardware-Assisted Debug and Trace within the Silicon

2

By Larry Osborn

Larry Osborn, SourcePoint™ Product Manager, at ASSET InterTech,

has over 30 years of experience in product management,

hardware/software product design and development, product delivery to

the marketplace and user support. Over the years, Larry has a proven

track record for identifying user needs and opportunities in the

marketplace, providing innovative solutions and exceeding the

expectations of users. At ASSET, Larry is responsible for the profit and loss for a product group.

Prior to ASSET, he has held positions with Lockheed Martin, OCD Systems, Windriver,

Hewlett-Packard, Ford Aerospace and Intel® Corporation. He holds a Bachelor’s Degree in

Computer Science from the University of Kansas and various technical and marketing training

certifications.

Hardware-Assisted Debug and Trace within the Silicon

3

Table of Contents
Executive Summary .. 4

How did we get here? ... 4

Trace vs. printf() ... 5

Utilizing silicon IP, tools and knowledge to gain insight ... 6

Understanding trace .. 7

Debugger requirements ... 9

Setup ... 9

Display .. 9

Support .. 10

Example: Using the power of trace ... 10

Conclusions ... 14

Learn More.. 14

Figures/Tables
Figure 1: A view with trace data synched to the underlying code. .. 9

Figure 2: An executing function with only state transitions and associated assembly. 11

Figure 3: A simultaneous view of an executing function and source code. 12

Figure 4: Interlocking code tracking view and trace view displays code context. 13

Table 1: Comparing printf and trace. ... 6

© 2015 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks and the ScanWorks logo, SourcePoint and Arium are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

Hardware-Assisted Debug and Trace within the Silicon

4

Executive Summary

Hardware-assisted debug and trace can help identify bugs quicker today than in years past by

taking advantage of intellectual property (IP) integrated into chips by silicon vendors. Taking

advantage of this IP is key to accelerating the last 20 percent of the software development/debug

cycle when engineers are chasing the most difficult bugs. This is the stage in product

development when schedules are blown and profitability suffers the most. Plenty of studies have

analyzed the growth of code and the impact this has had on product development costs and

profitability. Understanding the value of trace and how to setup and apply this technology could

be the difference between profit and loss.

There are three areas that need focus during the product design phase. The silicon, software

debuggers, and vendor support. Too often the focus is solely upon the silicon without regard to

the needs of software developers. They need powerful features so they can debug from within the

silicon. In fact, selecting silicon with powerful debug features will likely be the most cost-

effective move for getting software delivered on time. A debugger that can access the silicon’s

trace IP in an effective manner and display the information provided by the chip is valuable. In

fact, recently several of the more prominent silicon vendors have integrated new trace IP to make

it even more valuable. Focus on the debug capabilities of the silicon and understanding the

specific importance of trace will help to deliver a more robust product on time.

How did we get here?

When software developers start writing code, their objective is always error-free or bug-free

code. In reality, that never happens. Bugs are introduced due to product schedule pressures, poor

requirements, failing to adhere to programming standards or best practices, and the list goes on.

Management often struggles with the progress of software development, especially when it goes

relatively smoothly for a time and then hits a bug that takes weeks to find and fix. Generally,

these show-stopper bugs are discovered in the last 20 percent of the time allocated for product

development. Then, during the weekly or daily progress meetings that were triggered by the

project delays caused by the bug, the status of the problem inevitably does not change and

management becomes even more frustrated. So, it is important that the software team has

Hardware-Assisted Debug and Trace within the Silicon

5

sufficient tools and contextual knowledge of when to use which tool to be effective in

eliminating bugs as quickly as possible.

When it comes time to attack software bugs, the first tool that most developers pull out of their

tool kit is printf(). Sometimes, it is used quite liberally throughout the code. After all, they are

just debugging statements. Yet if code instrumentation is mentioned to these same developers,

they cringe, as they know it is difficult to back out this instrumentation code and it changes the

code execution properties by introducing execution delays and alterations to the code flow.

Unfortunately, they either ignore or don’t realize that printf() involves instrumenting the code

and printf() can introduce timing problems that may cause months of delay and all too often

changes the timing of the code. Programs will work with printf() present, but once removed, the

problem is manifest and becomes extremely difficult to find. There has to be a better way and

there is! The first effective method would be trace and the second would be ARM’s System

Trace Macrocell (STM).

This eBook focuses on trace, but an excellent book on STM in the context of printf() is available

on the ASSET InterTech website’s eResources page.

Trace vs. printf()

Not only does the printf() change the code execution timing, it also adds code bloat because

libraries must be included to support the printf() structure. At some point, a hardware console

driver must also be connected. An open source driver for a particular console might be available,

but that would introduce open source code into the program and many companies are not ready

to deal with GPL. If a driver is not available, then more development time will be spent

extracting the required data from the device manual, writing low-level code and testing the

interface. This isn’t necessarily a particularly difficult task, but it can be time consuming and it

doesn’t add any value to the end product if it is only used as a debug tool. In some embedded

product environments, application memory space is traded off to support the printf()

functionality. Below is a table that highlights just some of the difference between printf() and

trace. Examples of how trace can capture programing errors are presented later in this eBook.

http://www.asset-intertech.com/eResources/eBooks-Software-Debug/Debug-and-Trace-Using-ARM-System-Trace-Macrocell-(

Hardware-Assisted Debug and Trace within the Silicon

6

Table 1: Comparing printf and trace.

Item Printf Trace

Requires special Silicon IP No Yes (but available in commercial silicon)

Must instrument user code Yes No

Changes code behavior Yes No

Longer code execution time Yes No*

Timing measurements No Yes

Analysis tools available No Yes
*negligible as documented in silicon manuals

Utilizing silicon IP, tools and knowledge to gain insight

Considering the increasing complexity of today’s hardware and software designs, engineers

should fully utilize all of the resources available to them. Within silicon there are typically two

types of trace IP. They are:

• Instruction trace

• Data trace

A careful evaluation of the silicon specification will be required to determine which trace IP is

supported or if both are available. Instruction trace captures code flow. Data trace provides

context for code behavior. That is, data values are captured and these values are what the code

relies upon to make flow-control and other decisions.

Hardware-assisted debuggers like ASSET’s SourcePoint™ take two fundamental approaches to

providing developers insight into how the code behaves in relation to the behavior the developer

expected. These two approaches are:

• Static code analysis or run control

• Dynamic code analysis or trace

Static code analysis or run control debugging involves start, stop, stepping, setting break points

and running to break points. By its very nature, this is intrusive to code execution, but it has its

place in software debug. Examples include viewing data structures, examining pointers, checking

the stack, stopping execution to allow experiments by the developer and so on.

Hardware-Assisted Debug and Trace within the Silicon

7

Dynamic code analysis or trace captures code flow and program data and is the tool of choice for

providing rapid insight into real code execution. Code execution always seems to be where the

most insidious and the most difficult to find bugs hide. Execution bugs are manifest in various

ways like code exceeding range boundaries on arrays or data structures, uninitialized pointers,

wild writes to memory by incorrectly formed addresses and timing issues. Timing issues might

involve flows from hardware to software, software to software or software to system. All of

these execution bugs are prime candidates to be found by a trace tool.

Understanding trace

There are different ways to use trace or different types of trace operations. Trace types can

generally be categorized as one of the following:

• Trace Before – The trace is captured prior to a line of code or event. This type of trace is

also referred to as Trace Until. This is the best type of trace for examining a crash,

because the last data captured in the trace buffer will be the point where the crash

occurred, which is the beginning of the bread crumb trail leading back to the cause of the

crash.

• Trace After – The trace starts after a line of code or event.

• Trace About – The trace about a line of code or event.

• Trace Event – This trace type finds a specific event for the debug engineer like writing to

a particular memory location.

• Trace Sequence – This trace type helps when the engineer is looking for a specific

sequence of events prior to triggering the start of a trace. The complexity of the sequence

is limited to the capabilities of the debugger or the engineer’s imagination. Trace

sequence can be the most powerful of the trace types as it will mimic the events leading

up to the bug’s manifestation and then capture the most relevant information.

Intel and ARM provide trace capabilities which vary with the silicon. Each vendor has different

devices (IP) by various names and various control schemes, but they all boil down to instruction

trace, data trace or both trace capabilities. Trace schemes are implemented to be as unobtrusive

as possible. Minimal buffers within the silicon may be available for trace, but most trace

capabilities in silicon generally support a means for storing trace data in target memory or off-

Hardware-Assisted Debug and Trace within the Silicon

8

target memory when deeper trace storage is needed. It is necessary to take these factors into

account before a debug methodology is adopted. Silicon trace features in the past introduced

delays in code execution, but the silicon vendors’ trace IP has improved greatly recently. A

deeper discussion of the tradeoffs involving on-die buffer, target memory or hardware-assisted

tools versus the code being developed is beyond the scope of this eBook, but could be covered in

a future eBook.

ARM has a variety of trace implementations, including Embedded Trace Macrocell (ETM),

Program Trace Macrocell, Instrumentation Trace Macrocell, AHB Trace Macrocell and the

previously mentioned System Trace Macrocell (STM). This link goes to a page on the ARM

website that discusses why trace is recommended for SoCs with ARM cores. The topics include

why ETM is used, performance benchmarks and specifications.

Intel has released information about Intel Processor Trace (Intel PT) in its latest “Intel® 64 and

IA-32 Architectures Software Developer's Manual.” Volume 3, Chapter 36, of this manual

describes Intel PT as an extension of the Intel® Architecture. It states that Intel PT captures

information about software execution using dedicated hardware facilities that cause only

minimal performance perturbation to the software being traced. This trace information is

collected in data packets. The first implementation of Intel PT offers control flow tracing, which

collects timing and program flow information, such as branch targets and branch taken/not taken

indications, and program-induced mode-related information. Another resources is a presentation

from the Intel Developers Forum 2014 by Beeman Strong of Intel that discusses the introduction

and use of Intel® PT. Here is the link.

Regardless of the silicon being considered, examining the code to determine the degree to which

it is data driven should play an important factor in silicon selection. Some applications are

mostly flow dependent, where tracking interrupt flow and overall code flow is the major concern.

Other applications are dependent on dealing with large amounts of real-time hardware-driven

data. Whether porting code or developing new code, knowing the code debug requirements will

help select the processor that includes the correct resources needed by the software development

team to diagnose the inevitable bugs.

http://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://intel.lanyonevents.com/sf14/connect/fileDownload/session/64115DDAD8D7174736E4D82C5FA3A42C/SF14_ARCS001_100f.pdf.

Hardware-Assisted Debug and Trace within the Silicon

9

Debugger requirements

Setup

Software debuggers must be able to configure the trace IP available on a SoC from a more

abstract view of the device and present that view to the debug engineer. Otherwise the engineer

is left digging through a thousand page manual, for example, to find the single register with the

single bit that must be enabled to turn on or off tracing or to find multiple registers to configure

the trace stream.

Display

The debugger must present the trace captured data in a view correlated to the code view. The raw

trace data can include instructions, code addresses, hex data and time stamps. All of this

information needs to be presented in a form relevant to the developers’ point of view. Also

extremely valuable is a view that locks trace data with the code so that while scrolling through

trace data, the engineer can view the underlying code that triggered the trace data. An example of

this view follows in Figure 1.

Figure 1: A view with trace data synched to the underlying code.

Hardware-Assisted Debug and Trace within the Silicon

10

Support

The debugger vendor needs to be very knowledgeable of the trace support within the silicon, as it

may have multiple trace implementation. Consider the following example of how important

knowledge of a device’s trace resources and the debugger’s capabilities can be. During final test

of a new product a bug is discovered. The manifestation is clear, but the root cause is not

obvious. Starting from what is known, a trace might use one implementation such as instruction

trace to narrow the focus from 1,000 lines of code to a module of 100 lines by just following

code execution. This reduces the problem from haystack-size to a bale of hay-size. Next,

switching to data trace will capture the data that the code is making incorrect decisions about to

cause the bug. The needle or bug is found. Support experience on the part of the debugger’s

supplier in configuring the trace capture can be invaluable. Knowing how to drill down and when

to use what resource are skills that the development team will develop over time. With support

and training from the supplier of the debugger, these skills and information transfer will happen

much quicker enabling the developers to be more productive.

Example: Using the power of trace

The following more comprehensive example is based be on an ARM target running Linux. Once

the kernel with application is loaded, including debug symbols, code execution can be examined

via trace. Trace can display lots of data, but it is extremely useful if the trace data view can lock

with a code view so the engineer can traverse the trace and see the exact code reference. It will

also be helpful when the source code is integrated into the trace view. However, the trace data is

often cluttered with so much information that the source code gets lost. During the postmortem,

at least in the early stages of analysis, less information is more useful. As a result, a link to the

code view can be just the ticket for quick, high-level analysis.

The following are several views of traces captured from the environment described above. The

first view (Figure 2) is a raw capture of a function executing. The debugger’s display parameters

are set to view only the state transitions and associated assembly. In this case, the trace data is

not of much value for quickly understanding what is being debugged.

Hardware-Assisted Debug and Trace within the Silicon

11

Figure 2: An executing function with only state transitions and associated assembly.

This is what the processor is capable of capturing but the display of the data still isn’t

informative enough. Changing the debugger’s display parameters can add information about the

source code to the view (Figure 3). Now, a clearer picture emerges. This is an example of how

the vendor of a debugger that has working knowledge of the silicon can provide multiple views

of the trace information.

Hardware-Assisted Debug and Trace within the Silicon

12

Figure 3: A simultaneous view of an executing function and source code.

Figure 3 shows that the first line captured is “setup_nr_cpu_ids()” followed by a branch into the

function. With this view, the code can be analyzed at a detailed level. The trace view should

allow the engineer to scroll forward to the end of the trace or backwards to the beginning of the

trace.

Better yet, some debuggers are able to add another level of clarity to this picture. This is done by

opening a code tracking view to show the context within the code, rather than just a code

fragment with all the extra data. With code tracking, the bigger context of the code can be seen.

Interlocking the code tracking view with the trace view allows the engineer to move through the

code in the trace window and see the context clearly in the code window (Figure 4).

Hardware-Assisted Debug and Trace within the Silicon

13

Figure 4: Interlocking code tracking view and trace view displays code context.

Figure 4 shows that a breakpoint has been set at line 487. By stepping through the code and

stopping at line 493, the whole execution of the function “setup_nr_cpu_ids” is captured. Code

tracking clearly shows the context and also the depths of the code execution. Neither the source

view nor the code tracking view will show that the starting point is in main.c and then switches

to smp.c for this function. By traversing the trace the engineer sees that the function calls several

other functions that are not within the scope of the code view. This simple view provided by the

trace opens a clearer view of the true execution behavior of the code.

Hardware-Assisted Debug and Trace within the Silicon

Conclusions

Using trace can help ensure a timely product delivery. Getting to the needle in the haystack is a

matter of choosing the right silicon that supports the software debug efforts, selecting a software

debugger that provides clear insight into the trace data captured and a support team that can

assist the development team when they encounter the most difficult of real-time execution bugs.

Using trace is like building muscle through daily exercises. That is, by analyzing a myriad of

problems and repetitive use of a trace tool and performing numerous debug experiments,

software developers will have the means to make complex measurements to pinpoint problems

quickly. In the beginning of this process, engineers will only be using 20 percent of the

functionality of the trace tool, but as their skills are developed, they will rapidly get to a point

where they will be using 80 percent of the tool’s functionality. Accelerating this learning curve

in the setup and use of trace can be accomplished by investing in training from the tool provider

as well as target-specific training. This small investment will provide big payback in increasing

the quality of the software and getting products to market sooner.

Learn More

You can experience the value of

trace firsthand through a demo

of ASSET’s SourcePoint™ for

either ARM® or Intel®

SourcePoint ARM® Demo SourcePoint Intel® Demo

http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon

	Executive Summary
	How did we get here?
	Trace vs. printf()
	Utilizing silicon IP, tools and knowledge to gain insight
	Understanding trace
	Debugger requirements
	Setup
	Display
	Support

	Example: Using the power of trace
	Conclusions
	Learn More

