HARDWARE-ASSISTED

WITHIN THE SILICON

DEBUG AND TRACE

I& Code (P6):: ci\efi\bp_2013_wwd0_ ylibrep: (Trace) &% Instruction Trace (P6*)
Gparan Guidl & pointer to a 128 bit GUID STATE Pn STS DATh ADDR TIHESTANE 3
@paran Guid2 A Pointer to a 128 bit GUID 09842 £ INT 4 17 D7F2A178F ~33.418 us
bandls o line 89 (CorsGetbrctosolintertace)
@retval TRUE Guidl and Guid2 are identical (EFI_ERROR (Status)) {
@rotval FALSE Guidl and Guid2 are not identical PG 000000007281 76F TEST
Ranale 6 Lins 837 (CorecetProtassiIntertace)
xS return LL;
BOOLEAN |33 000000007F241732 1S 000000007£2a1 7211
EFIAFL bsndle.c Line 305 (CoreGetbrotocolinteriace)
CompareGuid ({Link - izndle—sProtoools. ForverdLink, Link |- éllandle—sProtoools; Link - Link-Forvardlink
IN CONST GUID =Guidi, 6 0000000075241734 40D S1.00000010
IN CONST GUID xGuidZ P6 000000007F241738 HOV Rok. CR1]
) 6 000000007F24179E JHP 00800000 7¢ 2017451
IFa3 7 6 000000007F2A17DC CHP
UINT64 LowPartOfGuidi: 3 000000007F2A17DF JNE B03360007¢ 2217941
UINT64 LowPartOfGuid2: bandls.c line 306 (CorsGetbrotosolintzriace)
UINT64 HighPartOEGuidl: Link. PROTOCOL_INTERFACE. Link. PROTOCOL_INTERFACE_SIGNATURE):
UINT64 HighPartOfGuid2 PG 0000000728179 LR BDL. (REL)-0C
E6 000000007F2A17AL CHE [RDI], 636663
89 LowPartOfGuidl = ResdUnalignedsd ((CONST UINTe4*) Guidl): E6 000000007F2A1748 JE §6000000 3¢ 2a17esL
a0 LowPartOfGuidZ = ReadlUnaligneded ((CONST UINTedx) Guid2): oo Line 307 (CorsGetProtocolInterface)
a1 HighPartOfGuidl - ReadlUnaligneded ((CONST ULNT&dx) Guidl + 1); ErotBntry = Prot—>Protocol
92 HighPartOfcuid? - ReadlUnalignedéd ((CONST UINTédx) GuidZ + 1)) P6 000000007F2417C5 HOV RCE, [RDI]+30
=.c Lins 908 (CorsGetProtocolIntarface)
94 return (BOOLERN) (LowPartOfGuidl == LowPartOfGuid2 & HighPartOfGuidi == HighPar if (CompareGuid (&ProtEntry—>ProtocolID. Protosel)) {
95 6 000000007F2417CY MOV EDX. REP
6 000000007F2417CC ADD RCX. 00000018
sun 3 000000007F2417D0 CALL 000000007 £ 2a6bbsl
Scans a target buffer for o GUID. and returns a pointer to the matching GUID nenlibguid.c Lins B3 (CompareGuid)
in the target buffer
PG 000000007F2AGEES MOV [RSP]+08, REX
This function searches ths targst buffsr specified by Buffer and Lenath from E6 F2R6BCI HOV [ESE]+10.REF
the loyest address to the highest address at 1f — —|[RSP1+18 RSl
GUID valus that matches Guid, If 5 natch = £| #% Instruction Trace Search - 1273 calls &= |rp1
GUID in the terget buffer is returmed. If Rop. 00000020
If Length is D, then NULL is returmed. [Cods.] Call Tree | Call Chat | REE RDX
If Length > 0 and Buffer is NULL, then ASSERT(| | [Awlee] [Hep] =] ~] Cyole: 9842 Total time:32.738us Measured time:+0ns Guid)
If Butfer i= not aligned on a 32-bit boundary, codlinalignedéd ((CONST UINT64*) Guidl):
If Length ic not aligned on = 128-bit boundary| |[#]_ Function < 32738us > Incl_Time: Excl_Time T | [S0000607¢2mE R P AL
If Length is greater than (MAN_ADDRESS — Buffe| || 0 CoreDispatch) 32.738 us 41.875 ns Ligned6d)
1 Corelosdlusgl 10.103 us 72.500 ns
@parem Buffer The pointer to the target buff REX
®faram Length The mumber of bytes in Butfer | || 2 CorsLosdInsg) M W L0031 us 17500 ne RSE. 00000020
@paran Guid The value to ssarch for in the| |3 CorelnstallE 2.877 us 176.250 ns REX, RCX
4 CorcHandleFs| 2§3.125 ns 61.675 ns Lisneded)
@return A pointer to the matching Guid in the | |[5 133 750 ns 47,500 n= =
. & ComparsGuid 96.250 ns 86.250 ns R
TotD = ? ReadUnaligne 0 ns 0 ns 233418 us
2 FRT&PT Tianedfrd -
4 »
000000007F2417C8L ~ (9] [Sewcs || GeCusor | [Setdresk | [Teok P| [/ " \PIAPTRP2LF D D Calbrate

EBOOK

BY LARRY OSBORN

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

By Larry Osborn

Larry Osborn, SourcePoint™ Product Manager, at ASSET InterTech,
has over 30 years of experience in product management,
hardware/software product design and development, product delivery to
the marketplace and user support. Over the years, Larry has a proven

track record for identifying user needs and opportunities in the

marketplace, providing innovative solutions and exceeding the
expectations of users. At ASSET, Larry is responsible for the profit and loss for a product group.
Prior to ASSET, he has held positions with Lockheed Martin, OCD Systems, Windriver,
Hewlett-Packard, Ford Aerospace and Intel® Corporation. He holds a Bachelor’s Degree in
Computer Science from the University of Kansas and various technical and marketing training

certifications.

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

Table of Contents
EXCCULIVE SUMIMATY ..euiiiiiiiieeiiie ettt ettt e ettt e et eeeteeeeteeesstaeesssaeensseeesseeensseesnsseesnseeennses 4
HOW did W ZEE RETE? ...t ettt ettt e e e e s e enbeennee e 4
TTACE VS. PIINEE) ceveeitieiiieiieeie ettt ettt et et e et e e bt e eabeeseesabeenseeenbeenseesnseenseennne 5
Utilizing silicon IP, tools and knowledge to gain insight............cccoveeeiiiieniiiiiniie e, 6
UNAErstanding trACEcccvvieeuiieeiieeeiieeeteeeetee et ee et eeetteeeteeesseeesssaeessseeesssaeensseeansseessseesseeesseeenns 7
DEbUZZET TEQUITEIMEIILSeeueieeiiieiieeeiieeiieeteeeiteeteesteeeeteesteeeabeessaeenseeseessseeseessseenseesnseenseensseenseensns 9
T TP PSPRUSTRSRN 9
DISPLAY ..ttt ettt et e et et e e ateenbe e tee et e e bteenbeeteeenbeenbeeenbeenteas 9
N 010] 010) PSPPSR 10
Example: Using the POWET OF tTaCE........cciiuiiiiiiieciie ettt ee e e e e e e sree e 10
COMCIUSIONS ..ttt ettt e h e s bt et sh e e bt et e eae e bt et e eb e e bt e st e sbee bt ensesaeenbeennes 14
LEAIT IMIOTE....c.eeeeeee ettt ettt et sttt et e sbt e st e sae e et e naneeanees 14
Figures/Tables
Figure 1: A view with trace data synched to the underlying code..........ccccoeevveeviiieiiienciieeiieeee, 9
Figure 2: An executing function with only state transitions and associated assembly................ 11
Figure 3: A simultaneous view of an executing function and source code.cccceeveuveerreenns 12
Figure 4: Interlocking code tracking view and trace view displays code context.cc.c....... 13
Table 1: Comparing printf and traCe.ceccvieiriiriiiieeiee e e e 6

© 2015 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks and the ScanWorks logo, SourcePoint and Arium are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

Executive Summary

Hardware-assisted debug and trace can help identify bugs quicker today than in years past by
taking advantage of intellectual property (IP) integrated into chips by silicon vendors. Taking
advantage of this IP is key to accelerating the last 20 percent of the software development/debug
cycle when engineers are chasing the most difficult bugs. This is the stage in product
development when schedules are blown and profitability suffers the most. Plenty of studies have
analyzed the growth of code and the impact this has had on product development costs and
profitability. Understanding the value of trace and how to setup and apply this technology could

be the difference between profit and loss.

There are three areas that need focus during the product design phase. The silicon, software
debuggers, and vendor support. Too often the focus is solely upon the silicon without regard to
the needs of software developers. They need powerful features so they can debug from within the
silicon. In fact, selecting silicon with powerful debug features will likely be the most cost-
effective move for getting software delivered on time. A debugger that can access the silicon’s
trace IP in an effective manner and display the information provided by the chip is valuable. In
fact, recently several of the more prominent silicon vendors have integrated new trace IP to make
it even more valuable. Focus on the debug capabilities of the silicon and understanding the

specific importance of trace will help to deliver a more robust product on time.

How did we get here?

When software developers start writing code, their objective is always error-free or bug-free
code. In reality, that never happens. Bugs are introduced due to product schedule pressures, poor
requirements, failing to adhere to programming standards or best practices, and the list goes on.
Management often struggles with the progress of software development, especially when it goes
relatively smoothly for a time and then hits a bug that takes weeks to find and fix. Generally,
these show-stopper bugs are discovered in the last 20 percent of the time allocated for product
development. Then, during the weekly or daily progress meetings that were triggered by the
project delays caused by the bug, the status of the problem inevitably does not change and

management becomes even more frustrated. So, it is important that the software team has

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

sufficient tools and contextual knowledge of when to use which tool to be effective in

eliminating bugs as quickly as possible.

When it comes time to attack software bugs, the first tool that most developers pull out of their
tool kit is printf(). Sometimes, it is used quite liberally throughout the code. After all, they are
just debugging statements. Yet if code instrumentation is mentioned to these same developers,
they cringe, as they know it is difficult to back out this instrumentation code and it changes the
code execution properties by introducing execution delays and alterations to the code flow.
Unfortunately, they either ignore or don’t realize that printf() involves instrumenting the code
and printf() can introduce timing problems that may cause months of delay and all too often
changes the timing of the code. Programs will work with printf() present, but once removed, the
problem is manifest and becomes extremely difficult to find. There has to be a better way and
there is! The first effective method would be trace and the second would be ARM’s System
Trace Macrocell (STM).

This eBook focuses on trace, but an excellent book on STM in the context of printf() is available

on the ASSET InterTech website’s eResources page.

Trace vs. printf()

Not only does the printf() change the code execution timing, it also adds code bloat because
libraries must be included to support the printf() structure. At some point, a hardware console
driver must also be connected. An open source driver for a particular console might be available,
but that would introduce open source code into the program and many companies are not ready
to deal with GPL. If a driver is not available, then more development time will be spent
extracting the required data from the device manual, writing low-level code and testing the
interface. This isn’t necessarily a particularly difficult task, but it can be time consuming and it
doesn’t add any value to the end product if it is only used as a debug tool. In some embedded
product environments, application memory space is traded off to support the printf()
functionality. Below is a table that highlights just some of the difference between printf() and

trace. Examples of how trace can capture programing errors are presented later in this eBook.

URCEPOINT™

More visibility. Software Debug and Trace.

http://www.asset-intertech.com/eResources/eBooks-Software-Debug/Debug-and-Trace-Using-ARM-System-Trace-Macrocell-(

Hardware-Assisted Debug and Trace within the Silicon

Table 1: Comparing printf and trace.

Item Printf Trace
Requires special Silicon IP No Yes (but available in commercial silicon)
Must instrument user code Yes No
Changes code behavior Yes No
Longer code execution time Yes No*
Timing measurements No Yes
Analysis tools available No Yes

*negligible as documented in silicon manuals
Utilizing silicon IP, tools and knowledge to gain insight

Considering the increasing complexity of today’s hardware and software designs, engineers
should fully utilize all of the resources available to them. Within silicon there are typically two

types of trace IP. They are:

e Instruction trace

e Data trace

A careful evaluation of the silicon specification will be required to determine which trace IP is
supported or if both are available. Instruction trace captures code flow. Data trace provides
context for code behavior. That is, data values are captured and these values are what the code

relies upon to make flow-control and other decisions.

Hardware-assisted debuggers like ASSET’s SourcePoint™ take two fundamental approaches to
providing developers insight into how the code behaves in relation to the behavior the developer

expected. These two approaches are:

e Static code analysis or run control

e Dynamic code analysis or trace

Static code analysis or run control debugging involves start, stop, stepping, setting break points
and running to break points. By its very nature, this is intrusive to code execution, but it has its
place in software debug. Examples include viewing data structures, examining pointers, checking

the stack, stopping execution to allow experiments by the developer and so on.

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

Dynamic code analysis or trace captures code flow and program data and is the tool of choice for
providing rapid insight into real code execution. Code execution always seems to be where the
most insidious and the most difficult to find bugs hide. Execution bugs are manifest in various
ways like code exceeding range boundaries on arrays or data structures, uninitialized pointers,
wild writes to memory by incorrectly formed addresses and timing issues. Timing issues might
involve flows from hardware to software, software to software or software to system. All of

these execution bugs are prime candidates to be found by a trace tool.

Understanding trace

There are different ways to use trace or different types of trace operations. Trace types can

generally be categorized as one of the following:

e Trace Before — The trace is captured prior to a line of code or event. This type of trace is
also referred to as Trace Until. This is the best type of trace for examining a crash,
because the last data captured in the trace buffer will be the point where the crash
occurred, which is the beginning of the bread crumb trail leading back to the cause of the
crash.

e Trace After — The trace starts after a line of code or event.

e Trace About — The trace about a line of code or event.

e Trace Event — This trace type finds a specific event for the debug engineer like writing to
a particular memory location.

e Trace Sequence — This trace type helps when the engineer is looking for a specific
sequence of events prior to triggering the start of a trace. The complexity of the sequence
is limited to the capabilities of the debugger or the engineer’s imagination. Trace
sequence can be the most powerful of the trace types as it will mimic the events leading

up to the bug’s manifestation and then capture the most relevant information.

Intel and ARM provide trace capabilities which vary with the silicon. Each vendor has different
devices (IP) by various names and various control schemes, but they all boil down to instruction
trace, data trace or both trace capabilities. Trace schemes are implemented to be as unobtrusive
as possible. Minimal buffers within the silicon may be available for trace, but most trace

capabilities in silicon generally support a means for storing trace data in target memory or off-

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

target memory when deeper trace storage is needed. It is necessary to take these factors into
account before a debug methodology is adopted. Silicon trace features in the past introduced
delays in code execution, but the silicon vendors’ trace IP has improved greatly recently. A
deeper discussion of the tradeoffs involving on-die buffer, target memory or hardware-assisted
tools versus the code being developed is beyond the scope of this eBook, but could be covered in

a future eBook.

ARM has a variety of trace implementations, including Embedded Trace Macrocell (ETM),
Program Trace Macrocell, Instrumentation Trace Macrocell, AHB Trace Macrocell and the
previously mentioned System Trace Macrocell (STM). This link goes to a page on the ARM
website that discusses why trace is recommended for SoCs with ARM cores. The topics include

why ETM is used, performance benchmarks and specifications.

Intel has released information about Intel Processor Trace (Intel PT) in its latest “Intel® 64 and

[A-32 Architectures Software Developer's Manual.” Volume 3, Chapter 36, of this manual

describes Intel PT as an extension of the Intel® Architecture. It states that Intel PT captures
information about software execution using dedicated hardware facilities that cause only
minimal performance perturbation to the software being traced. This trace information is
collected in data packets. The first implementation of Intel PT offers control flow tracing, which
collects timing and program flow information, such as branch targets and branch taken/not taken
indications, and program-induced mode-related information. Another resources is a presentation
from the Intel Developers Forum 2014 by Beeman Strong of Intel that discusses the introduction

and use of Intel® PT. Here is the link.

Regardless of the silicon being considered, examining the code to determine the degree to which
it is data driven should play an important factor in silicon selection. Some applications are
mostly flow dependent, where tracking interrupt flow and overall code flow is the major concern.
Other applications are dependent on dealing with large amounts of real-time hardware-driven
data. Whether porting code or developing new code, knowing the code debug requirements will
help select the processor that includes the correct resources needed by the software development

team to diagnose the inevitable bugs.

URCEPOINT™

More visibility. Software Debug and Trace.

http://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://intel.lanyonevents.com/sf14/connect/fileDownload/session/64115DDAD8D7174736E4D82C5FA3A42C/SF14_ARCS001_100f.pdf.

Hardware-Assisted Debug and Trace within the Silicon

Debugger requirements

Software debuggers must be able to configure the trace IP available on a SoC from a more

abstract view of the device and present that view to the debug engineer. Otherwise the engineer
is left digging through a thousand page manual, for example, to find the single register with the
single bit that must be enabled to turn on or off tracing or to find multiple registers to configure

the trace stream.

The debugger must present the trace captured data in a view correlated to the code view. The raw
trace data can include instructions, code addresses, hex data and time stamps. All of this
information needs to be presented in a form relevant to the developers’ point of view. Also
extremely valuable is a view that locks trace data with the code so that while scrolling through
trace data, the engineer can view the underlying code that triggered the trace data. An example of

this view follows in Figure 1.

& SourcePoint - SLM Core - C: g |_Avoton\Edi Mahon jects\SP\E prj - a
File Edit View Processor Options Window Help

EEW BH| S| B | 45 loadCurent $)PEM: §5 DXEs 45 GoToNedDriverEntry 45 PowerCycleReset % LoadSmramSymbols 4 GoToShadowedPeiCore & HOBs 43 SysConfigTable 4 DumpMemMap 4 DumpCaliStack 4§ CacheAsRAM SiDate | & M B 0¥ T | @

@ Brezkpoints G Code > Command [Log B Memory IP Registers @ Symbols » Trace 88 Viewpaint Q, Watch e e ?
s Instruction Trace Search - 23537 calls [=)= =5 | B Code (P6): (64-bity: 0000000000000000L - FFFFFFFFFFFFFFFEL (Trace) | o | = | 55 | | o Instruction Trace (P6%) ===
Code | Call Tres | Call Chart 226 RenovelienoryapEntry (Entry): ~ |[STATE "Pn STS DaTa ADDR TIHESTAHE A
JFO00000007F2C0B52L ESADFEFFER CALL FenovelemirpHapEntry 2383167 Fo THT 6 7D 07F2COBAF ~44.527 us
; 206 while (Lisk |- qfeacrylien) { End - Eatry—>End;
nchizn kil +l /|18 v Cele2303167 Totaltime:60.652ms Measured time:dt 000000007F2C0BS7L 433EDE Rit Ps 000000007F2C0BAF MOV RS, RDX
] Function < 7.40dus > 000000007F2C0BSAL 7544 JNE ShDI"- ptr CoreiddRange+cl % g:g%vEMEmDIVl{aDEnL?J (Enktd 12: .
0 CoreliotifyOnFrotocolEntryTable [> 7 (SR L L S
L CoreCrsateEventlnternal []] ©2 hdd deseripter B§ 000000007F2C0A04 HOY [RSP]+03, REX
2 InternaldllocateZercPool || 7 P& 000000007E2C0409 PUSH
3 CoredllocatePool B 000000007F2C0A0L S RSP, 00000020
4 CoreallocatePooll I” ‘-ll ‘I 234 nMapStack [mMapDepth] 51Qnaﬁure = HORY_MAl FPe 000000007F2C0ADE MOV
000000007F2C0BSCL 488B0525260100 MoV R&X. gword ptr [[I[I[IEIEIEI[I[I7£Z REmEVEEntrVI)SL (&Entry—>Link)
5 CoredllocatePoolPages Il TNl 000000007F2C0B63D 49991555450100 IEA EDX.gword ptr [ml{aDSLaDk] B6 000000007PF2C0A11 ADD RCX, 00000008
& CoreComvertPages 1 1] pStack [nMapDepth] . FromPages Pé 000000007E2C0A15 CALL RenoveEntryList
I CorodddRange ’“ﬂapﬁﬁﬂ'ﬂ“ﬁapgepilﬁ% i tart F§ 200000007E2C96A0 PSR REX
napStack [niapDep art art;
8 RenovelenorylapEntry miapStack [aapDepth] End 6 000000007E2C9642 SUB RSP, 00000020
8 ‘?ENDVEEHU"VDSL nHapStack [nfapDepth] . VirtualStart : 43 000000007F2C3646 MOV RBX, RCX
10 IsListEnp! nlapStack [aliapDepth] Attributs - Aitribute; ASSERT (!IslistEnpty (Entry));
11 IME,namBSEL)MS“DdEInbSt Inser{Ts)ll)s{ {EgenoryMap, LmMapStack[mMapDep 13 000000007E2C9649 CALL IsListEnpty
000000007F2C0B6AL 498BCE RCH.R14
EIEI[I[I[I[I[IEI7FZC[IB&DT. 48C1E006 RAX. 6 F6 000000007F2C9SED PUSH
000000007F2C0B71L 48C7 041060606170 HOV gword ptr [RAX][RDE].70616 FPe 000000007F2C9SEZ SUB RSF, 00000020
DBD0000DIESEORTSE. cedsidian 107 byte ptr [RAX][RDE]+i3, 00 BSSERT (IntepnaiBaceliblotodelnlist
000000007F2C0B7EL 0V dword ptr [RAX][RDE]+lc, EB P& 000000007F2CY5E6 HOR R8
000000007F2C0BE2L 48897C1020 MOV qword ptr [RAX][RDE]+20,RD P& 000000007F2CY5ET MOV RD}{ RCX
000000007F2C0BE7L 4889741028 MOV gword ptr [RAX][RDE]+28, RS F& 000000007F2CYSEC MOV LRCX
000000007F2C0BBCL 458364103000 AND gword ptr [RAX][RDE]+30.00 FPe 000000007F2CYSEF CALL InternalBassLibIsNodeIn
000000007E2E0B32L 4209641038 HOY quord pir [RAX][RDEI+30.Ri
000000007E2C0B97L 4900641008 1EA RDE,qvord ptr [RAKI[RDX]+0 6 DUODO0DO7EICIIEC HOY [RSP]+03, REX
000000007F2C0BICL ES77890000 CALL InsertTaillist P& 000000007F2CY3CL MOV [RSP]+10, REP
F& EIEI[I[I[I[I[IEI7FZC93CE MOV [RSF]+18 RSL
nMapDepth += 1 F6 000000007F2C93CE PUSH RDT
000000007F2C0BALL 4C8B1DEO250100 MOV E1l.gword ptr [000000007f2 FPe 000000007F2C93CC SUB RSP, 00000020
000000007E2E0BABL 49FFC3 it ml ASSERT (List 1= HULL):
000000007F2C0BABL 4C8910D6250100 MOV ord ptr [EIEI[I[I[I[I[IEI7{2d3IE P& 000000007F2C93D0 HOR EBX, EE
ASSERT (mMapDEpth < l{A}i MAP_DEPTH) P& 000000007F2C93D2 MOV RSI, RDX
000000007F2C0BBZL 4983FE0E R11.00000006 F& 000000007F2CY3D8 MOV RDI, RCX
000000007F2C0BBEL 7214 JC ShDI"- ptr CorsiddRange+l8c FP6 000000007F2C93D8 LEA RBP,[D[I[I[I[I[IEIEW(Zd[ISSU]
DO0000007ESCOBBET 4C300591580000 LEA 8 quord per [000000007¢20 Eé 000000007E2C330F CHE RCX_ R
000000007E2C0BEFL BAF 4000000 1oy EDX 0000004 3 000000007F2C33E2 JHE Int emamasehbkhdeln
000000007F2C0BCAL 498BCD MOV H R13 ASSERT (List- >Fc|rwsrdL1nl< = ILL).
000000007F2C0BCTL E828910000 CALL DEbL\QASSErt F& 000000007F2CY3FE CHE ['DIL].RE:
FPe 000000007F2C93F3 JHE Ints ErnlesSEL)bISNDdEIn
return ASSERT (List->Backlink |=
247 6 000000007E2CI40F CHE [RDI]+03, REX
000000007F2C0BCCL 488B5C2450 MOV RBY, gqword ptr [RSP]450 Pt 000000007F2C9413 JHE InternalBaseLiblsNodelIn
000000007F2C0BD1L 488B6C2458 MOV REP.quword ptr [RSP]458 ASSERT (Node |= NUII)
000000007F2C0BDEL 488B742460 MOV RSI.gword ptr [RSE]+60 F& 000000007F2C9429 CHE RSI,
000000007F2C0BDBL 488B7C2468 MoV EDI.gword ptr [RSP1+68 FPe 000000007F2C942C JHE InLErnalEaSEL)bISNDdEIn
000000007E2E0BEL 4863C430 ADD ESE. 00000030 Btz - List
000000007E2C0BEAL 415E FOP R14 6 000000007E2C9442 HOY RDE, RDI
000000007F2C0BE6L 415D POP R13 Pt 000000007F2C9445 MOV EAX, 000£4240
000000007F2C0BESL 4150 FOF R12 Ptr = Ptr—Forwardlink:
000000007F2C0BEAL C3) RETN FPe 000000007F2C944A MOV RDX, [RDX]
000000007F2C0BEBL CC INT 3 Count++:
13 000000007F2C344D INC BE
s ¥ while ({Ptr |= I.)st) 86 {Count <
P& 000000007F2C9450 CMF RDX, RI
F& 000000007F2C9453 InternalBaseliblsNodeIn
FP6 000000007F2C9455 CMP
3 000000007F2E3458 JC InternalBaseliblsiodeIn
2303166 Fo 0E - —44.527 us
v - 5 P& 01 —44 485 us
> >
<> PO}, PTY, P23, PI) P, P P (77 / < > 0D000D07F2CIBS2L v |2 | Mised || GoCusor | | SetBreak | [TiacklP | View P Refiesh 2383167 Mised v Dispiay. Filer, Colbrate Fiefiesh
Fl:Help, F5:Go, Shift+F5:Stop, F8:Step Into, F10:Step Over, Shift+F12Reset P& 18: Stopped 64 Bit Halt Mode [|

Figure 1: A view with trace data synched to the underlying code.

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

The debugger vendor needs to be very knowledgeable of the trace support within the silicon, as it
may have multiple trace implementation. Consider the following example of how important
knowledge of a device’s trace resources and the debugger’s capabilities can be. During final test
of a new product a bug is discovered. The manifestation is clear, but the root cause is not
obvious. Starting from what is known, a trace might use one implementation such as instruction
trace to narrow the focus from 1,000 lines of code to a module of 100 lines by just following
code execution. This reduces the problem from haystack-size to a bale of hay-size. Next,
switching to data trace will capture the data that the code is making incorrect decisions about to
cause the bug. The needle or bug is found. Support experience on the part of the debugger’s
supplier in configuring the trace capture can be invaluable. Knowing how to drill down and when
to use what resource are skills that the development team will develop over time. With support
and training from the supplier of the debugger, these skills and information transfer will happen

much quicker enabling the developers to be more productive.

Example: Using the power of trace

The following more comprehensive example is based be on an ARM target running Linux. Once
the kernel with application is loaded, including debug symbols, code execution can be examined
via trace. Trace can display lots of data, but it is extremely useful if the trace data view can lock
with a code view so the engineer can traverse the trace and see the exact code reference. It will
also be helpful when the source code is integrated into the trace view. However, the trace data is
often cluttered with so much information that the source code gets lost. During the postmortem,
at least in the early stages of analysis, less information is more useful. As a result, a link to the

code view can be just the ticket for quick, high-level analysis.

The following are several views of traces captured from the environment described above. The
first view (Figure 2) is a raw capture of a function executing. The debugger’s display parameters
are set to view only the state transitions and associated assembly. In this case, the trace data is

not of much value for quickly understanding what is being debugged.

10

URCEPOINT™

More visibility. Software Debug and Trace.

Hardware-Assisted Debug and Trace within the Silicon

STATE SRC STS DATA ADDR TIMESTAMP (Cycle Accurate

00050 Mised | [Configwe.. | [Displap..] [Seach..] [Fiter.. | | Siari Trace | [Refiesh |

Figure 2: An executing function with only state transitions and associated assembly.

This is what the processor is capable of capturing but the display of the data still isn’t
informative enough. Changing the debugger’s display parameters can add information about the
source code to the view (Figure 3). Now, a clearer picture emerges. This is an example of how
the vendor of a debugger that has working knowledge of the silicon can provide multiple views

of the trace information.

11

Hardware-Assisted Debug and Trace within the Silicon

STATE SRC ADDR INSTRUCTION TIMESTAMP (Cycle Accurate

00049 Disassemtly | [Configure... | [Display... | [Seach.. | [Fier.] | GtaiTiace | [Fiehesh | I

Figure 3: A simultaneous view of an executing function and source code.

Figure 3 shows that the first line captured is “setup nr_cpu_ids()” followed by a branch into the
function. With this view, the code can be analyzed at a detailed level. The trace view should
allow the engineer to scroll forward to the end of the trace or backwards to the beginning of the

trace.

Better yet, some debuggers are able to add another level of clarity to this picture. This is done by
opening a code tracking view to show the context within the code, rather than just a code
fragment with all the extra data. With code tracking, the bigger context of the code can be seen.
Interlocking the code tracking view with the trace view allows the engineer to move through the

code in the trace window and see the context clearly in the code window (Figure 4).

12

Hardware-Assisted Debug and Trace within the Silicon

" (B Code (0% MBUILDVinuse 20 38\ nimain.e

mie7 printk(KERN_NOTICE "%s". linuz_banner):
488 setup_arch{fcommand =)
489 mn_init_owner(&init_mm, &init_task):
490 wn_ini t_cpumask (&init_un):
491 setup_comnand_line(command line) .
492 setup nr_cpu_ids();
=493 setup_per_cpu_areas();
494 snp_prepare_boot_cpu(): % arch-specific hoot-cpu hooks %/
495
496 build all zonelists(HULL):
497 page_alloc_init():
498
499 printk(KERN_NOTICE "Eerne=l conmand lins: 4=n', boot_command lins):
so0 parse early_parami);
501 parse_args("Booting kernsl", static_command line, _ start_ param,
502 __stop___param — __start___param,
g03 Tunknown_bootoption) :
504 S
505 * These use large bootnem allocations and nust precede
506 * knen_cache_init ()
507 *
508 setup_log_buf(0):
509 pidhash_init();
510 vis_caches_init_early():
511 sort_main_sxtable():
512 trap_init():
513 mn_init{);
514
e
B000BEEC ~ [#)[souce][GoCusar] [[SetBreak] [ITieck P [ViePC] [Refesh |

- Souree: ~ |[[GoCusor | [SetBreak | [7]Track e [MiewPC | [Refiesh |

Disassembly = | [Configure. | [Display. | [Seaich. | Fik Siart Trace: | [Refiesh)
Figure 4: Interlocking code tracking view and trace view displays code context.

Figure 4 shows that a breakpoint has been set at line 487. By stepping through the code and
stopping at line 493, the whole execution of the function “setup nr cpu ids” is captured. Code
tracking clearly shows the context and also the depths of the code execution. Neither the source
view nor the code tracking view will show that the starting point is in main.c and then switches
to smp.c for this function. By traversing the trace the engineer sees that the function calls several
other functions that are not within the scope of the code view. This simple view provided by the

trace opens a clearer view of the true execution behavior of the code.

13

Hardware-Assisted Debug and Trace within the Silicon

Conclusions

Using trace can help ensure a timely product delivery. Getting to the needle in the haystack is a
matter of choosing the right silicon that supports the software debug efforts, selecting a software
debugger that provides clear insight into the trace data captured and a support team that can
assist the development team when they encounter the most difficult of real-time execution bugs.
Using trace is like building muscle through daily exercises. That is, by analyzing a myriad of
problems and repetitive use of a trace tool and performing numerous debug experiments,
software developers will have the means to make complex measurements to pinpoint problems
quickly. In the beginning of this process, engineers will only be using 20 percent of the
functionality of the trace tool, but as their skills are developed, they will rapidly get to a point
where they will be using 80 percent of the tool’s functionality. Accelerating this learning curve
in the setup and use of trace can be accomplished by investing in training from the tool provider
as well as target-specific training. This small investment will provide big payback in increasing

the quality of the software and getting products to market sooner.

Learn More

You can experience the value of

trace firsthand through a demo
of ASSET’s SourcePoint™ for
either ARM® or Intel®

http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-ARM/SourcePoint-ARM-Debug-Trace-Cortex-Cyclone-X-Gene
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon
http://www.asset-intertech.com/Products/SourcePoint/SourcePoint-for-Intel/SourcePoint-Debug-Trace-Demo-Intel-Atom-Core-Xeon

	Executive Summary
	How did we get here?
	Trace vs. printf()
	Utilizing silicon IP, tools and knowledge to gain insight
	Understanding trace
	Debugger requirements
	Setup
	Display
	Support

	Example: Using the power of trace
	Conclusions
	Learn More

