

FASTER FLASH

PROGRAMMING

VIA FPGA AND IJTAG

EBOOK

BY KENT ZETTERBERG

Faster Flash Programming via FPGA and IJTAG

2

By Kent Zetterberg – Product Manager

Kent Zetterberg started his career in the automation

industry, working with systems from ABB, Siemens and

others. Following graduation from the University of Gävle

with a Bachelor’s of Science Degree in Computer

Engineering, he worked 15 years in the telecom industry

where he held various positions involving hardware test and

debug. He joined Ericsson AB in Sweden in 1997 where he

developed functional test programs for processor boards,

and designed interface boards and test fixtures. At Ericsson he became an expert in boundary

scan and eventually led the boundary scan team. With ASSET Kent has held several positions in

support, serving as a customer trainer and European support team leader. Currently he is the

technical product manager for ScanWorks boundary-scan test products.

Faster Flash Programming via FPGA and IJTAG

3

Table of Contents
Executive Summary .. 4

Background ... 5

JTAG Register Access .. 5

Multiple Interfaces Accessed through IJTAG .. 6

Expected Throughput Benefits ... 8

Conclusions ... 10

Learn More.. 10

Table of Figures
Figure 1: FPGA with a user instruction implemented programming interface 6

Figure 2: IJTAG Network with multiple programming interfaces .. 7

Figure 3: IJTAG network with functional test and programming IP ... 8

© 2015 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks and the ScanWorks logo, Arium and SourcePoint are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

Faster Flash Programming via FPGA and IJTAG

4

Executive Summary

When and how to program memories connected to field programmable gate arrays (FPGA) is a

challenge for both system development and production engineers. Development engineers need

to bring up circuit board prototypes, but often the system software, including the FPGA

configuration files, may not be complete when prototypes are produced. That rules out pre-

programming the FPGA-connected flash memories. And many board bring-up or production

engineers either need to program FPGA flash memories with the most recent version of a

software image that may still be changing or they never know which user-specific version of the

software to load until a particular board configuration is ordered by a user. In these and other

such cases, the most effective answer to the ‘when-to-program’ question would seem to be after

the devices have been assembled onto a circuit board.

Unfortunately, the methods most frequently employed for in-system programming are relatively

slow. The problem with slow programming speeds is exacerbated by the fact that FPGAs are

growing in size, which means that the files stored in connected flash memory devices are likely

also getting bigger every day. In addition, many FPGAs may be configured with embedded

processor cores connected by various buses such as I2C or SPI to many different types of

memory, such as NOR Flash, NAND Flash and possibly boot EEPROMs. As the amount of data

that must be loaded into FPGA-connected memories increases, programming times will also

increase unless newer high-speed methods are deployed. Moreover, production engineers are

very cognizant of the manufacturing beat rate on the production line. Time is money and adding

as little as a minute to the time it takes to produce a circuit board is a significant consideration.

Historically, most in-system programming methods have taken advantage of the JTAG port on a

device connected to the memories. The connected device’s JTAG port, as defined in the IEEE

1149.1 Boundary-Scan Standard, gives access to the memories, which lack a JTAG port, so they

can be loaded with data. With the recent ratification of the IEEE 1687 Internal JTAG (IJTAG)

standard, new more advanced IJTAG-based programming methods can be employed which still

take advantage of an FPGA’s JTAG port, but which also speed up the programming process by

as much as a factor of 1,000. Depending on the context, of course, programming times can be

reduced from 10 or more minutes to one or two seconds. This eBook explains how IJTAG

methods involving FPGA-based intellectual property (IP) can accomplish this.

Faster Flash Programming via FPGA and IJTAG

5

Background

During design, when prototypes of a new board design have been fabricated and they are being

brought up to verify the functionality of the design, engineers often need to program memory

devices like EEPROMs and flash memory in-system. The software may not have been completed

when the prototypes were produced or the firmware for the EEPROMs or flash memory is still

being modified. Removing and re-programming pre-programmed devices that were soldered

down during assembly with an incomplete version of the software or one that subsequently

changed could significantly lengthen the board bring-up phase, quite possibly delaying the

design’s transition into volume manufacturing. Moreover, removing soldered-down chips from a

circuit board frequently damages the devices or the board.

In addition, during volume production of certain board designs, the on-board flash memories are

not loaded with software until a specific version of the software is selected by the end user just

prior to shipping the system. In these and other scenarios, the ability to program flash and other

types of memories in-system increases the designer’s and the manufacturing engineer’s

flexibility and increases the efficiency of the entire design and manufacturing process. (Another

eBook in ASSET’s eResources center, titled “At-Speed SPI Flash/EEPROM Programming using

FPGA and JTAG”, discusses several alternatives for programming flash memory connected to an

FPGA via the SPI bus.)

JTAG Register Access

It is not uncommon to program memory devices connected to an FPGA via the FPGA’s JTAG

port and its boundary-scan registers. Unfortunately, this method for accessing memory is

typically very slow because every write or read transaction on data, address and control pins

must be scanned in through the FPGA’s entire boundary scan chain, which can be anywhere

from approximately 500 to 3,000 cells wide. Since FPGAs are completely programmable, they

can be configured to include fast memory programming IP or even at-speed programming

engines. The former method essentially replaces the long boundary-scan register with a shorter

register for programming purposes and the latter removes the need for scanning through any

boundary-scan register. At-speed programming engines typically have a FIFO buffer design with

direct access to the FPGA pins. When these types of programming IP are embedded in the

http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG

Faster Flash Programming via FPGA and IJTAG

6

FPGA, flash programming times can be reduced quite significantly. This reduction is

approximately proportionate to the reduction in the length of the scan register or the number of

register cells in the scan chain. For example, if the cell count can be reduced from 1,000 to 100

cells to program a NOR flash device, the programming time can be reduced in the range of five

to 10 times. Similarly, if a flash device were connected to an FPGA over the SPI bus, reducing

the number of register cells from 1,000 to five would reduce programming time by a factor of

100 to 200. With the at-speed programming engine, the time savings can be even greater. These

methods have been deployed by several system suppliers over the last few years.

Multiple Interfaces Accessed through IJTAG

The scenario becomes somewhat more complicated when the FPGA is connected to several

different flash interfaces, such as NOR or NAND flash, or other types of memories with

interfaces to the SPI or I2C buses. In these cases, an IJTAG-based programming method can be

very beneficial and accommodate such diversity.

Typically an FPGA supports several instructions that can be used to implement user-defined

instructions for accessing register architectures as well as instruments. These secondary

instructions and register constructs might implement short scan chains, but, unfortunately, most

FPGAs typically only support relatively few of these user-accessible instructions. This limits the

number of secondary instruments/registers that can be defined (Figure 1).

Figure 1: FPGA with a user instruction implemented programming interface

Faster Flash Programming via FPGA and IJTAG

7

The traditional IEEE 1149.1 Boundary-Scan Standard (JTAG) pairing of instruction register/data

register is also limiting, insofar as only one register can be communicated with at a time.

On the other hand, the new IJTAG standard is able to implement a practically unlimited number

of instruments/registers within the FPGA supported by only one of the device’s virtual user

instructions. This capability is enabled by IJTAG’s Segment Insertion Bit (SIB), which acts as a

register selection mux. When loaded with the right value, a SIB opens a path into an instrument

or multiple instruments. Since an FPGA is programmable, one SIB can be inserted for each

programming instrument or engine that has been tailored to a specific programming interface

(Figure 2). This kind of architecture affords access to each instrument individually and the

overhead associated with each SIB is only one bit, considerably less than the hundreds of bits if

the full boundary-scan chain must be traversed to program the connected memory device.

Figure 2: IJTAG Network with multiple programming interfaces

It should be noted that the IJTAG standard is not limited to the deployment of programming

engines or programing embedded instruments. A FPGA might also be populated with functional

IJTAG instruments such as frequency counters, UART, SPI and I2C masters, as well as

functional embedded instrument IP for memory test and logic BIST. An IJTAG network of

embedded instruments could include programming engines as well as all sorts of functional test

IP, all of which could be accessible via IJTAG (Figure 3). Of course, deploying a large number

of individual instruments each with its own SIB can result in a large number of SIBs in the scan

Faster Flash Programming via FPGA and IJTAG

8

chain. Care should be taken during the design of the IJTAG network to ensure that the IJTAG

network structure will be efficient in terms of its speed and responsiveness.

Figure 3: IJTAG network with functional test and programming IP

Today’s medium to large FPGAs can have anywhere from several hundred to several thousand

boundary-scan cells. For example, a Xilinx Virtex 7 has more than 3,000 cells while an Altera

Stratix 5 includes just under 3,000 cells. IJTAG-based access methods can effectively shorten

these scan chains down to three or four cells. Considering the use case of programming SPI or

I2C memory, the potential time savings are enormous and the theoretic maximum programming

rate of the connected flash device can be reached even when the device is already mounted on a

circuit board.

Expected Throughput Benefits

The following are several examples of the possible reductions in programming times that can be

expected when FPGA-based IJTAG programming engines are deployed. Of course, actual

programming times will depend on the specific FPGA device as well as the write times for the

memory devices being programmed. The examples below demonstrate the potential throughput

acceleration that can be gained by shortening the scan chain through IJTAG access.

Faster Flash Programming via FPGA and IJTAG

9

• Between 2 to 50 times faster throughput
• 10 minutes down to 12 seconds

NOR Flash

• 50 - 1,000 times faster throughput
• 10 minutes down to one second

SPI Flash

• 50 - 1,000 times faster throughput
• 10 minutes down to one second

I2C Flash

• 4 - 80 times faster throughput
• 10 minutess down to eight seconds

NAND Flash

Title of paper

Conclusions

The IEEE 1149.1 Boundary-Scan/JTAG Standard has been around for more than 20 years and it

still provides huge value in test, programming and other areas. And now, the newly approved

IEEE 1687 IJTAG Standard not only builds on the value inherent in JTAG, but adds to it

significantly, bringing a new generation of benefits and value to many of the established JTAG-

based applications and also opening up new applications to the greater value of embedded

instrumentation. In this instance, IJTAG methods extend the value that JTAG has delivered for

years to in-system programming applications by significantly accelerating and streamlining the

in-system programming process to the point where development engineers are able to speed their

new designs to market faster and production engineers can now incorporate in-system

programming into the assembly line without jeopardizing the manufacturing beat rate. Tools like

the ScanWorks® platform for embedded instruments are able to add to the established benefits

and value of JTAG with the new and more powerful capabilities of IJTAG.

Learn More

For more information on how a

functional FPGA can form the

basis for high-speed in-system

programming, click here.

Register Today!

http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag
http://www.asset-intertech.com/eresources/speed-spi-flasheeprom-programming-using-fpga-and-jtag

	Executive Summary
	Background
	JTAG Register Access
	Multiple Interfaces Accessed through IJTAG
	Expected Throughput Benefits
	Conclusions
	Learn More

