

FAST FLASH

PARALLEL IN-SYSTEM

PROGRAMMING

BY KENT ZETTERBERG

Fast Flash Parallel In-System Programming

By Kent Zetterberg – Product Manager

Kent Zetterberg started his career in the automation

industry, working with systems from ABB, Siemens

and others. Following graduation from the

University of Gävle with a Bachelor’s of Science

Degree in Computer Engineering, he worked 15

years in the telecom industry where he held various

positions involving hardware test and debug. He

joined Ericsson AB in Sweden in 1997 where he

developed functional test programs for processor

boards, and designed interface boards and test

fixtures. At Ericsson he became an expert in

boundary scan and eventually led the boundary scan

team. With ASSET Kent has held several positions

in support, serving as a customer trainer and

European support team leader. Currently he is the

technical product manager for ScanWorks

boundary-scan test products.

2

Fast Flash Parallel In-System Programming

Table of Contents
Executive Summary .. 4

Introduction ... 5

Distributed programming with boundary scan/JTAG ... 5

High-volume programming and test ... 7

Low-volume / high-mix test and programming .. 9

Mid-volume / mid-mix programming and test.. 11

Real world scenarios ... 11

Conclusions ... 13

Learn More.. 13

Table of Figures
Figure 1: A typical boundary-scan programming and test station ... 6

Figure 2: Parallel programming and test with distributed vector application 7

Figure 3: True parallel programming and test. Each programming or test step is started and
stopped at the same time. .. 8

Figure 4: Asynchronously starting programming or test. Each step starts independently of the
others. .. 8

Figure 5: Rack-mounted backplane for programming and test applications. 9

Figure 6: Programming/test in a low-volume/high-mix manufacturing setting.. 9

Figure 7: A realistic illustration of a low-volume/high-mix manufacturing setting. 10

Figure 8: A fixture–based programming and test system. ... 11

Figure 9: Mid-volume/mid-mix production environment. ... 11

© 2014 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks while the ScanWorks logo is a trademark of ASSET InterTech, Inc. All other

trade and service marks are the properties of their respective owners.

3

Fast Flash Parallel In-System Programming

Executive Summary

The value of programming flash memories in-system – after the chips have been soldered to a

printed circuit board (PCB) – is well established. Unfortunately, the industry seems to have taken

a step backward to the 1990s as the increasing size of flash memory devices has driven

manufacturers to program flash outside of the regular assembly flow with stand-alone

programming stations before populating a PCB with programmed devices. Instead of capturing

the greater efficiencies of in-system programming (ISP) integrated into the assembly line,

manufacturing engineers are relegating memory programming to off-line processes because the

capacity of flash memories and the amount of data being programmed into them has increased to

the point where legacy ISP methods have become too slow to be tolerated in the manufacturing

flow. The speed of every process in an assembly line is critical to achieving cost-effective

production rates or maintaining manufacturing’s ‘beat’ rate. Any particularly slow in-line

process might bring a production line to a crawl.

Formerly, methods based on boundary-scan (JTAG) access to PCBs and the devices on them had

been a mainstay for ISP as well as structural and electrical testing in manufacturing. Designers

have also employed boundary-scan systems from certain suppliers to validate high-speed I/O

buses before the design moved into manufacturing. Boundary-scan technology, which was

developed in the 1990s, has demonstrated over the years that it can be quite adaptable. In fact,

several innovations have been developed in recent years that enable high-speed in-line ISP quite

effectively with boundary-scan tools. Increasing the speed of the boundary-scan test clock (TCK)

is certainly one way to accelerate in-line ISP, but another more advanced method is based on

temporarily configuring an on-board FPGA with intellectual property (IP) that defines an

embedded instrument for ISP. This method not only accelerates the rate at which a flash device

is programmed, but it also supports parallel or concurrent programming whereby multiple PCBs

each with their own flash devices can be programmed simultaneously by one boundary-scan

station in manufacturing, speeding up the ISP process even further.

This eBook discusses several methods that can accelerate ISP and bring it back into the

production line. In addition, high-speed ISP is described in several different manufacturing

environments, including high-volume, and low-volume/high-mix production scenarios.

4

Fast Flash Parallel In-System Programming

Introduction

The benefits manufacturers have enjoyed from programming flash memory in-system and as part

of the board assembly process is being threatened by the larger capacity of memory devices and

the increasing amount of data that must be programmed into these devices. Ideally,

manufacturers would prefer to assemble PCBs with empty flash devices, such as NOR/NAND

memories, SPI, I2C and others various types of components with on-chip memory. With empty

memories assembled onto a PCB, the manufacturer can then load data or software into the

devices as a step on the assembly line. By adopting ISP, manufacturers were able to program

these devices at practically any time, even after PCBs have been fully assembled and placed in

inventory. In this way, user-specific and application data or code can be programmed into flash

memories just-in-time for delivery.

In addition, the firmware or application software for a new PCB design is often not complete

when prototype PCBs are first available for design validation and board bring-up. Or, the

firmware might be changed because of a newly found bug after a previous version of the

firmware had already been loaded into PCBs. All of these situations point up the value of ISP

over de-populating assembled PCBs to program memory devices individually. The boundary-

scan or JTAG port on circuit boards and many components continues to be an excellent entry

point for ISP methods. In fact, recent tool and technology enhancements have made boundary-

scan ISP methods even more effective over legacy boundary-scan methods.

Distributed programming with boundary scan/JTAG

Boundary-scan/JTAG test systems typically connect to the PCB that is being programmed or the

unit-under-test (UUT) through an interface module or pod (Figure 1).

5

Fast Flash Parallel In-System Programming

Figure 1: A typical boundary-scan programming and test station

Some suppliers of boundary-scan tools have integrated intelligent hardware with processing

power and memories into their interface pods. Because of this, the boundary-scan system’s

programming application can be distributed from the PC to the interface pod. This means that

multiple boundary-scan controllers can be configured in the same boundary-scan system. Since

the interface pods can communicate over a common interface like Ethernet, applications, such as

ISP, can be truly distributed, enabling all of the benefits of a distributed system architecture.

For example, consider a design which must be programmed in-system, except legacy boundary-

scan-based/JTAG programming methods would require 120 seconds per PCB and the

manufacturing circumstances are such that the entire process must be accomplished in 12

seconds. In other words, the legacy JTAG ISP method would have to be accelerated by a factor

of 10, not a simple assignment for any programming tool.

A distributed and parallel programming application, which can apply additional resources to the

problem in a coherent and concerted fashion, is capable of meeting these requirements. With a

distributed programming application, the programming vectors may be applied to multiple

devices on multiple boards in parallel (at the same time) or each board can be programmed

asynchronously, depending on the particular requirements of the assembly line and how the

manufacturing flow prior to programming is configured. With such a distributed programming

6

Fast Flash Parallel In-System Programming

application, the test executive that manages the entire process must be very flexible so that it can

handle practically any scenario. (Figure 2)

Figure 2: Parallel programming and test with distributed vector application

In certain cases, a distributed boundary-scan programming and test system can handle hundreds

of PCBs, each based on a different design, at the same time. The following sections of this

eBook describe several production scenarios where this distributed boundary-scan programming

methodology can be effectively deployed.

It should be pointed out that the same boundary-scan tool employed in an in-line, in-system

parallel programming application can also perform a number of structural and electrical tests on

a PCB. Explaining these testing procedures is beyond the scope of this eBook.

High-volume programming and test

Many high-volume manufacturing operations typically assemble PCBs on parallel assembly lines

where programming and test are performed on each line simultaneously. The manufacturing

engineers who design and implement the overall manufacturing flow are usually intent on

eliminating or alleviating any process that could possibly disrupt the manufacturing flow and

cause bottlenecks in assembly operations. If device programming and test might slow down the

manufacturing ‘beat’ rate, these processes might be moved off-line outside of the main

manufacturing flow. From the standpoint of manufacturing efficiency, this would be a worst case

7

Fast Flash Parallel In-System Programming

scenario, because it would add additional steps into the manufacturing flow, slowing it down

even further and requiring expensive capital equipment expenditures for off-line programming

stations. In some cases, the programmable devices may have already been assembled onto the

PCBs. Depopulating each PCB individually to reprogram the on-board devices and then

repopulating each PCB is extremely time consuming, resource intense and laborious. The

following several graphs illustrate how distributed in-system parallel programming and test can

be integrated effectively into an efficient high-volume production flow. (Figure 3 and 4)

Figure 3: True parallel programming and test. Each programming or test step is started and stopped at the same time.

Figure 4: Asynchronously starting programming or test. Each step starts independently of the others.

8

Fast Flash Parallel In-System Programming

High-volume manufacturing will most likely require a rack-mounted implementation of the

programming and test applications. (Figure 5)

Figure 5: Rack-mounted backplane for programming and test applications.

Low-volume / high-mix test and programming

Some manufacturing plants regularly assemble a great variety of different designs in relatively

small numbers. Electronic manufacturers serving the defense, avionics, automotive and several

other industries typically run their plants with this sort of low-volume/high-mix of products. The

challenge this presents is how to apply the same production systems and assembly machines on

many different designs simultaneously and asynchronously. In these types of scenarios, the

programming and test steps in the manufacturing lines still face the same kind of speed

requirements. (Figure 6)

Figure 6: Programming/test in a low-volume/high-mix manufacturing setting..

9

Fast Flash Parallel In-System Programming

The case illustrated in Figure 6 is most likely an environment where the boundary-scan

programming/test systems are mounted in racks on the manufacturing line. The PCBs or UUTs

might arrive at the programming station in batches of four, for example. Each batch of four PCBs

might be based on several different board designs. The programming/test system may be

equipped with bar code scanners that automatically scan the board’s identity so that the correct

programming files are loaded and appropriate test vectors are applied. Although Figure 6 is

easier to understand, it does not illustrate a real world scenario insofar as programming and test

processes will likely not require the same amount of time on each design.

Figure 7: A realistic illustration of a low-volume/high-mix manufacturing setting.

The second low-volume/high-mix case illustrated in Figure 7 is probably closer to reality than

Figure 6. Figure 7 shows varying amounts of programming time for the different designs. In this

type of scenario, a more flexible backplane solution for the boundary-scan programming and test

station is more likely. This would involve an operator manually populating the PCBs as they

flow through the production line. This is a very effective way to maximize the utilization of the

programming and test equipment when a numerous designs are being assembled and each has its

own programming time.

Although rack-mounted boundary-scan programming and test systems could be employed in

both of the manufacturing scenarios described above, a more flexible fixture-based test system

(Figure 8) could also be incorporated into a low-volume/high-mix production line.

10

Fast Flash Parallel In-System Programming

Figure 8: A fixture–based programming and test system.

Mid-volume / mid-mix programming and test

While every production line is unique, boundary-scan programming and test tools are flexible to

meet every need, including a mid-volume/mid-mix production environment (Figure 9).

Figure 9: Mid-volume/mid-mix production environment.

Real world scenarios

All of the various programming and test processes described in this eBook have been

implemented by manufacturers who serve many different types of markets. The following briefly

11

Fast Flash Parallel In-System Programming

describes several real world scenarios and the benefits the manufacturer has derived from

parallel in-system and in-line programming.

• Scenario: one rack–mounted station programs and tests in parallel more than 20 PCBs

that are all based on the same design.

o Benefits: production throughput can increase up to 20 times, depending on the

number of PCBs that are programmed and tested in parallel.

• Scenario: a flexible backplane programming and test system with anywhere from three to

six boundary-scan/JTAG controllers (one per shelf in the test rack) can program and test

10-20 different designs simultaneously and asynchronously.

o Benefits: allows for a very flexible system in a low-volume/high-mix

manufacturing environment. The same station and operator can handle multiple

different designs, reducing capital equipment expenditures as well as labor costs.

• Two or four PCBs are programmed and tested in parallel.

o Benefits: It is fairly typical for the programming time to increase from one

generation of a design to the next. This solution remains the same no matter the

generation of the design and, even though programming times per PCB may

increase, this type of boundary-scan station can actually increase production

throughput by programming multiple PCBs in parallel instead of one at a time.

12

Fast Flash Parallel In-System Programming

Conclusions

The benefits to the manufacturer of in-system programming are too great to ignore. As just-in-

time production practices revolutionized manufacturing in general, so too just-in-time

programming, made possible by in-system programming, has delivered tremendous returns to

those who have adopted it. Now, new high-speed methods of programming flash memories after

they have been soldered to a circuit board give manufacturers the ability to reduce the time it

takes to program much larger memories with the larger quantities of data and code required by

new-generation systems today. By accelerating flash programming tremendously, these

advanced methods return ISP to its rightful place on the assembly line where manufacturers can

reap the greatest benefits. In addition, several of these new programming and test methods are

enabled in tools through a distributed processing architecture which makes parallel programming

and test possible. As a consequence, multiple PCBs or UUTs based on different designs can be

programmed and tested simultaneously, significantly enhancing the throughput of an assembly

line even further and delivering product to the market much sooner.

Learn More

Learn more about how to

perform at-speed in-system

programming of SPI

flash/EEPROM.

Register Today!

You can learn more about boundary-scan test/JTAG for your programming and test-related

requirements by visiting our eResources.

13

http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/At-speed-SPI-Flash-EEPROM-Programming-FPGA-JTAG
http://www.asset-intertech.com/eResources

	Executive Summary
	Introduction
	Distributed programming with boundary scan/JTAG
	High-volume programming and test
	Low-volume / high-mix test and programming
	Mid-volume / mid-mix programming and test
	Real world scenarios
	Conclusions
	Learn More

