

DEBUG AND TRACE USING
ARM® SYSTEM TRACE

MACROCELL (STM)

BY LARRY TRAYLOR

Debug and Trace using ARM® STM

By Larry Traylor, Vice President Software Debug and Trace

Larry Traylor co-founded Arium Corporation in 1977.

Larry served as president, CEO, and chairman of the

board of Arium. He was instrumental in driving that

company’s vision for product creation of hardware-based

program debug and code trace tools. In 2013, Larry

joined ASSET InterTech when Arium was acquired by

ASSET. He has a BSEE from Cal-Poly Pomona.

2

Debug and Trace using ARM® STM

Table of Contents
Executive Summary .. 4

The importance of firmware debug tools .. 5

What is an STM? .. 5

What STM does for debugging engineers .. 6

Two types/purposes for trace software events .. 7

STM system architecture .. 8

STM: A new programming paradigm .. 8

STM use case models.. 9

Tool-hosted printf capabilities .. 10

Ease-of-Use ... 11

Conclusions ... 13

Learn More.. 13

Glossary: ... 14

Figures and Tables
Figure 1: Relative Development Costs of a Product .. 5

Figure 2: STM Architecture ... 6

Figure 3: Block diagram of SoC with STM ... 8

Figure 4: Writes to STM and tool-hosted printf output ... 11

Figure 5: Trace window with tool-hosted printf output ... 11

Table 1: Programming Models .. 10

© 2014 ASSET InterTech, Inc.
ASSET and ScanWorks are registered trademarks while the ScanWorks logo is a trademark of ASSET InterTech, Inc. ARM and
Coresight are registered trademarks of ARM Holdings plc. All other trade and service marks are the properties of their respective
owners.

3

Debug and Trace using ARM® STM

Executive Summary

Project delays caused by difficulties finding the cause of system-level failures are a major

contributor to increasing the time-to-market for technical products. STM (System Trace

Macrocell) can be a game changer by reducing the time it takes to find this type of problem.

Products containing software, which is almost every electronic product today, are becoming

more complex along several dimensions, including multicore architectures, heterogeneous cores,

multi-threading software, power management and other features as well as larger code bases.

This complexity results in bugs occurring at system run time that are much harder to diagnose.

To get these products to market in a timely fashion and in robust enough condition to create

customer satisfaction, new debug features like STM must be supported.

Unfortunately, many of today’ system-on-a-chip (SoC) devices contain application processors

that do not produce data trace. (Data trace is a group of trace packets with the addresses and

values of the data objects operated on by the program.) In addition, an SoC can often contain

several cores and several different types of cores. Add these factors to hardware that changes

power states (i.e. low power modes) as well as active clock domains and the result is that tracing

the state of an SoC to find an error becomes very difficult.

The old model of simply tracing the executed instruction stream is far from sufficient to

understand what is going on within the SoC. However, real-time tracing is still one of the most

effective tools available for finding the root-causes of catastrophic symptoms.

For trace to be effective in complex SoCs, various types of events measured at various places

within the SoC must be traced. STM is a newer trace element which, when integrated into an

ARM® CoreSight® trace structure, can provide the added event and data value tracing necessary

to render and observe changes in the state of the system.

4

Debug and Trace using ARM® STM

The importance of firmware debug tools

Within the context of this document, debug refers to finding the root cause of an error that

exhibits itself as a software error. The actual root-cause could occasionally be a hardware issue,

but usually a software bug is also present. Trace is one of the most powerful debug tools.

The relative proportion of software development costs to hardware development costs is growing

very fast. An ITRS (International Technology Roadmap for Semiconductors) report in 2011

presented the following data:

Figure 1: Relative Development Costs of a Product

This trend will likely continue over the next decade. The CoreSight architecture from ARM has

been the world’s leader in silicon tool hooks to allow firmware debug. STM is the next really big

step.

What is an STM?

STM is a trace source (trace generator in an SoC) which provides an orthogonal means of

tracking events and data that are not generated from processor execution trace sources. The STM

that is considered in this document is the ARM version which is compliant to both CoreSight and

the MIPI Alliance’s MIPI STP-V2. (Other STMs are available, such as the TI-V1, but these are

not addressed in this document.)

0

5

10

15

20

25

30

35

40

45

2000 2007 2017

Software

Hardware

5

Debug and Trace using ARM® STM

Figure 2: STM Architecture

The ARM STM has two primary types of interfaces which are used to stimulate the production

of trace messages on the Advanced Trace Bus (ATB) (Figure 2). The Advanced eXtensible

Interface (AXI) is a slave interface which, when written to, generates trace messages on the ATB

bus. In addition, up to 32 hardware signals can be monitored and trace packets generated when

the hardware signals change. Like most CoreSight components, STM is programmed

(configured, started and stopped) via an Advanced Peripheral Bus (APB) interface. Starting and

stopping STM can also be controlled by Cross Trigger Interface (CTI) connections. The output

from STM is to an ATB bus. The following is a simple diagram of an STM application in a SoC.

What STM does for debugging engineers

STM is a trace element which allows for several types of trace messages to be added to a trace

stream. This trace stream may or may not also contain instruction flow trace streams. Adding

STM messaging has several effects. STM trace messages can be a way of tracing the high-level

state of the SoC-based system. These trace messages can indicate what states the system

transitioned through on its way to a point of interest (a symptom). Most bugs could be described

as an incorrect or unexpected transition in these states. Historically, this type of function has

been accomplished by “printf” statements, which were often directed to slow hardware ports or

6

Debug and Trace using ARM® STM

built-in logs. Logging this data through an STM is much faster as well as much more efficient in

terms of the number of instructions needed to record the event.

STM messages can also contain the specific value of program objects. If a specific value that the

program writes to a variable (data object) is needed, that value can be output via trace. This type

of tracing is missing from instruction trace elements like the Program Trace Macrocell (PTM),

which is often found on large SoCs containing application processors (A8, A9, etc.).

STM has an additional advantage of being core-type ambivalent. This means that system state

messaging can come from completely dissimilar core/processor types, yet be time and order

correlated in the same trace stream.

When STM tracing is added to instruction execution tracing, the trace stream can contain both

the high-level system state indicators from STM as well as low-level detail from PTM and other

sources to allow the engineer to efficiently drill down to the problem’s cause.

Two types/purposes for trace software events

Two completely separate uses for trace software events are common. These are:

1. Emit data from a program not available from a PTM (micro-level detail)

2. Mark major system state changes (macro-level detail)

In some cases, Embedded Trace Macrocells (ETM) may serve most of the micro use cases.

However, when instruction tracing is accomplished with a PTM (or an ETM with no data, such

as on a Mx), STM is very useful for simply tracing select program data values.

System state changes (with values included) are often logged via a software mechanism. STM is

more efficient and it correlates on a time scale to the PTM or ETM instruction trace streams.

Examples of interesting and common macro events are:

1. Power state changes

2. ECC failures

3. Buffer overflow errors

4. Entry into a major functional area of a program

7

Debug and Trace using ARM® STM

5. Semaphore/mutex acquisition/release

These types of events label the overall state of the system and allow the engineer to follow the

state transactions without looking at the code minutia.

STM system architecture

Below is a block diagram (Figure 3) of a dual-core SoC with ARM A9 and Cortex R4 cores, as

well as a digital signal processor (DSP) core. In this architecture, any of the A9s, R4 or DSP

cores can write to the STM. In addition, STM also monitors several hardware signals.

Figure 3: Block diagram of SoC with STM

STM: A new programming paradigm

Before an STM can produce trace messages that will clearly track system states, software

engineer(s) must add instrumentation code to their programs. This STM-specific code may only

be included in debug builds of the product’s software or it may be present in all forms of the

system’s software. Usually, some STM code will be present in the software. Because the STM is

a very efficient way to instrument trace in software, more of the STM instrumentation code can

be left in the production software than was previously practical with older trace methods. This is

8

Debug and Trace using ARM® STM

possible because the STM provides no backpressure to the code, meaning the code will continue

to execute regardless of whether a trace-sink or adequate trace-sink bandwidth are available.

When a trace-sink or the necessary trace-sink bandwidth are not available, trace cycles may be

lost but the program does not stall. This is very different from previous trace methods, which

directed printfs statements to serial channels.

Several STM use case models will evolve, depending both on the history of the products being

debugged as well as product features.

STM use case models

Depending on the features of the product as well as the history of the product’s code base,

several possible use case models will be followed for instrumenting code for STM tracing.

The code base history issue is the result of legacy logging methods present in large code bases.

For example, it will be very unlikely that anyone would recode all of the kprintfs in a particular

version of the Linux kernel. That said, capturing these output streams in an STM-based trace

transport system still has huge advantage. These implementations, while being much less

efficient than new code based exclusively on STM-optimized use models, will still offer much

more time efficiency in terms of processing cycles and performance than not including STM

trace in the code at all. The opposite alternative would be to develop totally new code with STM

tracing and not be saddled by the inefficiencies of the legacy printf function.

On a completely different axis, the way that the code runs produces very different requirements.

For example, symmetrical multi-threading code would have different requirements from single-

threaded fixed location code. For these reasons, one should consider the six different

programming models shown in Table 1.

9

Debug and Trace using ARM® STM

Table 1: Programming Models

 New Code
(Little or no trace

messaging present)

Legacy Code
(Large numbers of trace

messages (printfs) present)

OS (Linux) Process 1b. Kernel call to access master/port;
master may be irrelevant (SMP); no
printfs

1b. Lots of printfs

Flat OS (including
Linux kernel only)

2b. Static code but SMP and dynamic
master and port assignments may be
required (processes running)

2b. Lots of kprintfs

Bare metal 1b. Fully static; compile time assignments
for master and port are allowed.

3b. Lots of printfs (or possibly
ITM writes)

Tool-hosted printf capabilities

Today, advanced debugging tools are able to make logging through an STM even more efficient.

This feature is often referred to as tool-hosted printf. It moves almost all the overhead of printf

to the debug tool and outside of the user’s product. The only things that pass through the STM

are parameters (variables) and a pointer to a printf style format string. This offers two major

advantages:

1. Smaller payload through the STM (fewer write cycles)

2. Less processing to prepare a string (faster target execution time)

This method is applicable to all of the use cases outlined in the previous section. This feature

should be considered for all new code bases where it is possible to use an STM.

• Examples of tool-hosted printf

Arium™ SourcePoint™ debuggers from ASSET InterTech are the only tools that currently

support tool-hosted printf capabilities (patent pending). The following images show some very

simple code that is writing data to an STM and then displaying some of that data along with

PTM instruction trace data. Figure 4 shows some code with both simple writes directly to the

STM as well as tool-hosted printf output. Figure 5 shows a trace window, tracing a portion of

this code including the tool-hosted printf output. Notice that the output is delayed until the entire

message has been transmitted, but it is still time stamped so that the beginning write can be

located.

10

Debug and Trace using ARM® STM

Figure 4: Writes to STM and tool-hosted printf output

Figure 5: Trace window with tool-hosted printf output

Ease-of-Use

XML-based metadata files will allow a given project to customize the STM display lines such

that the labeling and ASCII notes make the activity clear. This must be on a master/port basis.

This should make both the size of the program being debugged and the programmer’s effort as

11

Debug and Trace using ARM® STM

minimal as possible. For simple tabular displays or simple strings, this can all be done in the

metadata. For more varied information, tool-hosted printf capabilities can maximize efficiencies.

The following is the metadata that was used in the previous examples. Clearly, much of the data

labeling can be done on a per port basis, requiring no additional text via the STM.

Example of XML-based metadata:

<?xml version="1.0" encoding="utf-8"?>
<!--
 File: ports.xml
 Purpose: SourcePoint sample STM metadata
-->
<settings>
 <setting name="mark terminates message" value="false"/>
 <setting name="newline terminates message" value="false"/>
</settings>
<masters>
 <master id="0x40" name="P0" format="ASCII">
 <ports>
 <port id="0x43" name="Blue"/>
 <port id="0x25" name="Norwegian" format="Tabular Hex"
columns="16"/>
 <port id="0x2000" name="Parrot" format="Hosted
printf"/>
 </ports>
 </master>
 <master id="0x41" name="P1" format="ASCII">
 <ports>
 <port id="0x43" name="Green"/>
 <port id="0x25" name="Swedish" format="Tabular Hex"
columns="16"/>
 <port id="0x100" name="Timer_Placeholder" format="ASCII"/>
 <port id="0x2000" name="Duck" format="Hosted
printf"/>
 </ports>
 </master>
</masters>
<hardware>
 <event id="0" name="signal1"/>
 <event id="1" name="signal2"/>
 <event id="8-15" name="bus"/>
/

12

Debug and Trace using ARM® STMr

Conclusions

The capabilities of STM such as event logging in software through the STM can be a real game

changer for software debug in complex programmed systems. Looking at a filtered version of an

STM trace stream will show the engineer only a high-level abstraction of the system state. Once

the area of trace interest is located, the engineer can then drill down to whatever level of detail he

needs to find the root-cause of a system fault. In addition to STM’s software-generated events, it

also supports hardware stimulus ports that can monitor specific signal changes within the SoC.

Modern SoC design should not be considered today without at least a thorough examination of

the usefulness of including one or more STMs in the SoC. STM, with its post-processing tools,

can often save weeks in a product development cycle. This can produce significant cost savings,

both direct and indirect.

Learn More

If you are interested in

“Board Test of DDR3/DDR4

Memory and Serial I/O”,

you should check

out this tutorial.

Register Today!

13

http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO
http://www.asset-intertech.com/Products/Boundary-Scan-Test/BST-Software/Tutorial-Board-Test-DDR3-DDR4-Memory-Serial-IO

Debug and Trace using ARM® STM

Glossary:

APB – Advanced Peripheral Bus

ATB – Advanced Trace Bus

AXI - Advanced eXtensible Interface

CoreSight – An ARM® architecture for debug components on and SoC

CTI – Cross Trigger Interface

DSP – Digital Signal Processor

ECC – Error Correction Code

ETM – Embedded Trace Macrocell

MIPI – Mobile Industry Processor Interface as defined by the MIPI Alliance

PTM – Program Trace Macrocell

SOC – System-on-a-chip

STM – System Trace Macrocell

STP – System Trace Protocol

XML – eXtensible Mark-up Language

14

	Executive Summary
	The importance of firmware debug tools
	What is an STM?
	What STM does for debugging engineers
	Two types/purposes for trace software events
	STM system architecture
	STM: A new programming paradigm
	STM use case models
	Tool-hosted printf capabilities
	Ease-of-Use
	Conclusions
	Learn More
	Glossary:

