

INCREASING TEST

COVERAGE ON CURRENT

INTEL PLATFORMS
AN INTERACTIVE AND

AUTOMATED APPROACH

BY LARRY OSBORN

Increasing Test Coverage on Current Intel Platforms

2

Larry Osborn

Larry Osborn, Senior Product Manager, at ASSET InterTech, has

over 30 years of experience in product management,

hardware/software product design and development, product delivery

to the marketplace and user support. Over the years, Larry has a

proven track record of identifying user needs and opportunities in the

marketplace, providing innovative solutions and exceeding the

expectations of users. At ASSET, Larry is responsible for the profit

and loss for a product group. Prior to ASSET, he has held positions with Lockheed Martin, OCD

Systems, Wind River, Hewlett-Packard, Ford Aerospace and Intel® Corporation. He holds a

Bachelor’s Degree in Computer Science from the University of Kansas and various technical and

marketing training certifications.

Increasing Test Coverage on Current Intel Platforms

3

Table of Contents
Introduction ... 4

Interactive Approach: Functional Test Development Methods and Steps 5

Understanding the Board Structure ... 6

Fault Isolation ... 7

Processor Area .. 7

Memory ... 9

PCIe... 12

PCH ... 13

Fault Identification .. 14

Automated Approach: Functional Test Development Methods - A Better Way 14

Summary ... 16

Learn More.. 16

Figure 1: Example Platform Architecture .. 6

Figure 2: Pins Edit View .. 8

Figure 3: Pins Test Results .. 9

Figure 4: Interactive Memory Test .. 11

Figure 5: PCI Bus 0.. 12

© 2016 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks, and SourcePoint and the ScanWorks logo are trademarks of ASSET InterTech, Inc. All other
trade and service marks are the properties of their respective owners.

Increasing Test Coverage on Current Intel Platforms

4

Introduction

This eBook will discuss the use of functional testing in a production test environment to increase

test coverage. First determining the definition of a functional test will need to be analyzed.

Conducting a “google search” of functional testing results in a whole host of definitions. A good

definition by Wikipedia below with the links removed.

Functional testing is a quality assurance (QA) process and a type of black-box testing
that bases its test cases on the specifications of the software component under test.
Functions are tested by feeding them input and examining the output, and internal
program structure is rarely considered (not like in white-box testing). Functional testing
usually describes what the system does.

Functional testing does not imply that you are testing a function (method) of your module
or class. Functional testing tests a slice of the functionality of the whole system.

Functional testing differs from system testing in that functional testing "verifies a
program by checking it against ... design document(s) or specification(s)", while system
testing "validate[s] a program by checking it against the published user or system
requirements" (Kaner, Falk, Nguyen 1999, p. 52).

Functional testing has many types:
• Smoke testing
• Sanity testing
• Regression testing
• Usability testing

Most of the definitions found on a google search are about how to test software functions (e.g.

test how the software behaves or functions). In the context of this eBook, the use of functional

testing does not adhere to that definition. Here, a functional test is used as a means to test

hardware, at-speed, via software running on the processor.

By developing a functional test on a golden platform (known working hardware), it stands to

reason that the same software can be used to test an identical platform in production to identify

functional hardware failures.

Some manufacturers are using this technique by executing the BIOS and then preforming a

functional test, thus using the BIOS as a functional test setup, although it might not be described

or considered as such. Of course, the main purpose of the BIOS is to boot, load, and initialize all

the capabilities of the board, thus the purpose is not to be a high-quality functional test. The

Increasing Test Coverage on Current Intel Platforms

5

assumptions about the BIOS ability to “test” hardware is overreaching for the requirements of

the BIOS. A good discussion on this topic is in the previous eBook in this series called “Testing

Memories without BIOS on the Latest Intel® Platforms”. The focus of this eBook will show how

functional testing can be applied to increase test coverage of the unit under test (UUT)

leveraging the processor as the smartest embedded instrument on the board. This technique

should be as part of an overall test methodology that also includes a structural test. The reason

for combining the two distinct methods, functional and structural, is to provide maximum test

coverage of a given platform. In the context of this eBook, we are talking about Intel platforms.

Interactive Approach: Functional Test Development Methods and Steps

Before starting the test development process, it is necessary to analyze the test objectives, steps,

and tools necessary to meet the objectives. To have maximum control over the test process,

while conducting a functional test, the CPU will act as the control agent; therefore the tool

selection is important. The tool(s) needs to allow the test to start and stop the processor, run test

code or scripts, allow for examination of memory, registers, pin signals and IO space, and

provide for user input/output in the form of logs or graphical user interface.

The tool used to meet the needs mentioned above in the development of this eBook is ASSET’s

ScanWorks® Processor-Controlled Test (PCT). Although this eBook provides a manual

methodical approach of test development, it should be noted that the tool used here can automate

this process by simply connecting to a known working board and run the PCT Golden Board

Interrogator utility and then run the Automated Test Generation utility.

As with all engineering tasks, breaking the test development process into manageable steps is the

best approach. To construct a programmatic test implementation, it is often necessary to start

with an interactive approach to test development. This interactive approach allows the developer,

when connected to a known working board with a superior tool, to conduct experiments on the

target platform to sharpen the skills needed for programmatic development. The recommended

approach consists of three top-level steps:

• Understanding the Board Structure

• Fault Isolation

• Fault Identification

Increasing Test Coverage on Current Intel Platforms

6

Understanding the Board Structure

Using available platform documentation, divide the board into functional blocks and draw a

block diagram of the board structure similar to the one shown in Figure 1.

Figure 1: Example Platform Architecture

1. Identify the platforms main processor and PCH.

2. Identify major buses and their relationships (DMI, PCIe SPI, LAN, SATA, USB,

etc.).

3. Identify board memory and assign addresses.

4. Identify major peripheral devices, I/O components which drive them, and the buses

which connect to the I/O devices. Define what range(s) an IO controller will use for

ALL its IO functions, and defined the address ranges, then for each IO function in

the block, define the I/O addresses.

Increasing Test Coverage on Current Intel Platforms

7

From the block diagram in Figure 1, the functional blocks can be identified. The block diagram

is not a complete representation of the platform, but provides enough information about the

platform for test development. In the current Intel designs, most of the functional blocks are

connected to the CPU complex, consisting of the CPU and PCH (Processor Control Hub). There

are three functional blocks that need testing on the processor, which are the PCIe 3.0, memory

interfaces (both channels), and the DMI interface. The rest of the testing is conducted via the

PCH. To be clear, in the communications about the role of the processor and the PCH, the testing

is controlled by the processor, but the configuration of the PCH is what enables access to the

downstream components. Beyond the PCH, the developer will need to collect available

datasheets for all the major board ICs. The best source for these is the websites of the IC

manufacturers.

Fault Isolation

Once the functional blocks are identified, testing should commence from the processor down to

verify each functional block; a test sequence can be developed using PCT’s pre-programmed

functions. Functional testing implies that the device is acted upon in such a way to produce a

response from a given stimuli. For bus testing, reading and writing a register or memory location

with known expected response will suffice for a bus test. For I/O devices it might be sufficient to

read a status register of the I/O component to know that the board device structure and

components are indeed functional. It should be noted that a more exhaustive test maybe required,

but that decision is left up to the test developer.

For this discussion, functional blocks and the test sequences used can be categorized as follows:

• Processor Area

• Memory

• PCIe

• PCH

Processor Area

Working with a known working board, the developer needs to understand when a platform under

test has a problem with the debug communication. If the processor can reset and enter test mode

Increasing Test Coverage on Current Intel Platforms

8

(i.e. debug port communications mode can be established), it is safe to assume that the processor

area is OK. However, the developer needs to assume that there could be a problem with the

debug communications, otherwise, on a failing board the functional programmatic test could

never begin. To address this concern, the developer needs to include a structural test of the

processor. PCT provides the means of conducting a structural test of the processor.

A sample needs to be taken when the processor pins are in a known state and the signals are

quiescent from a known working system. The best place to learn the signal state is the reset state.

Figure 2 is an example of sampling the processor pin status at reset from the PCT pins view. Not

all the processor pins are selected or shown and this interface allows the developer to decide

which pins need to be sampled.

Figure 2: Pins Edit View

By sampling the processor pins state at reset of a golden target platform, the platform under test

can be compared to the expected state. Figure 3 is a comparison overview, where the system is

verified to be in the correct state, and the pin connectivity is correct.

Increasing Test Coverage on Current Intel Platforms

9

Figure 3: Pins Test Results

Using the data from this pins test, the developer can include the expected pins status results with

the test profile. Other buses like DMI need to be considered as a candidate for structural

sampling on a golden system and use the collected data to verify the DMI interface between the

processor and the PCH. Pin testing on the PCH can be accomplished provided that the PCH and

processor are on the same JTAG scan chain. The objective is to ensure the structural integrity

between these two devices before proceeding to the functional check out of the platform. The use

of pins testing, when the state of the device in question is known, is a good technique when a

functional test fails or amplification of the data is needed.

The next area of the processor block that needs testing is the memory block.

Memory

Current Intel platform architectures, like the one depicted here, requires that the memory

controller is configured or setup first before memory testing can begin. There are two ways to do

this. Executing the platform BIOS, found in the SPI flash, or by writing the configuration

registers within the memory controller directly.

Increasing Test Coverage on Current Intel Platforms

10

Starting with BIOS execution. The SPI flash contains several firmware elements including the

BIOS. Within the BIOS is the memory setup code. This code, referred to as Memory Reference

Code (MRC), does the memory controller setup and lane training such that the memory is in a

functional state whereby the testing can begin. However, from a functional test development

point-of-view, the SPI interface from the PCH has yet to be tested. The developer should

consider what would happen, in the production line, if the SPI flash was corrupted or the SPI

flash was replaced with a different device type that the flashing process didn’t handle this device

properly. The structural aspects of the SPI interface must be considered, if possible, before

assuming that the functional test can execute.

In the case of memories, supporting a structural test is not always possible. Memory devices

often lack the boundary scan cell necessary to support structural testing. So with no validated SPI

access and no structural means of testing the memory, the alternate is writing (directly) to the

memory controller registers. As pointed out earlier, the MRC is the code that does this

configuration, and that code is a closely held secret by Intel due to the proprietary nature of the

memory setup. Directly writing to the memory control registers is not an option due to the MRC

constraints. Is there a course of action that the developer can take to complete the testing of the

processor block? Namely the memory block.

PCT provides a means of using the CPU’s internal cache as a RAM so MRC code can be

executed from the cache. Developed by ASSET and built into the PCT product is an

instrumented version of the MRC, which is executed out of cache and used to conduct the

memory setup. After using this setup, the developer can write a memory test. Developers can use

an interactive means of examining (testing) memory within PCT. Shown in Figure 4 are a

memory dump and the functional tests that can be executed against this memory region once the

memory setup has been completed.

Increasing Test Coverage on Current Intel Platforms

11

Figure 4: Interactive Memory Test

This interactive testing is a good way of validation of the parameters needed for the

programmatic test like the number of channels, the number of DIMMS per channel, the size of

the DIMMS and others. The developer can ensure that all areas of memory are accounted for in

the development process. The data then needs to be extracted and used in the memory test

sequence. Often there are several memory population schemes that need to be considered for a

given platform. Using this development process, the developer can vary the memory population

densities and have tests that are configuration specific. Then using data about the memory

population during a read of a configuration register determine which functional test should be

performed. Once all the memory parameters have been identified, PCT reports the failures to

pinpoint the channel, rank, DIMM, device and not just the failing address.

The final functional block of the CPU is the PCIe component.

Increasing Test Coverage on Current Intel Platforms

12

PCIe

Here the developer needs to know what PCIe devices are populated. PCI device functions have a

configuration space which is addressable by knowing the 8-bit bus, 3-bit device and 5-bit

function numbers for the device (commonly referred to as the BDF bus/device/function). This

BDF data allows up to 256 buses, each with up to 32 devices, each supporting eight functions.

Still using the golden board as a development platform and armed with the information about

what PCI devices are populated, the developer can conduct experiments to understand what

information is available to verify the correct device is connected to the bus and verify, to the

extent possible, its operation. Figure 5 is an example of a PCI dump of bus 0, devices 0-31,

functions 0-7.

Figure 5: PCI Bus 0

From the data collected, the developer can verify that the vendor ID and device ID matches what

was documented in the device or platform manual. This data can then be use to develop the

programmatic script. The status register can also be sampled. Comparing these known good

values to the platform under test will provide the information about the correct part and

Increasing Test Coverage on Current Intel Platforms

13

functionality of the device. All the PCI devices need to be enumerated to be included in the test.

This test development method can be a very time-consuming effort. There is a better more

efficient way of dealing with the generating volumes of code manually. That better approach will

be discussed at the end of this eBook.

PCH

The PCH provides access to several buses, SPI, SMBus, LPC, GPIO, SATA, USB, Integrated

LAN, and PCIe. This eBook will not cover all buses or devices, but will instead focus on a

couple of critical buses to help the developer understand what action needs to be taken. For the

buses not covered, the information provided to this point in the eBook should provide enough

information for the developer to develop a robust, structured functional test. As discussed earlier

in the processor section, the DMI interface needs to be considered a candidate for structural

sampling on a golden system and use the collected data to verify the DMI interface between the

processor and the PCH. Pin testing on the PCH can be accomplished provided that the PCH and

Processor are on the same JTAG scan chain. At this point, it is imperative the DMI interface is

working. It is good practice to conduct a pins test on the PCH.

SPI bus.

The most critical bus on the PCH is the SPI bus. Without a functioning SPI interface, the board

won’t power up. Here is the catch-22 on the SPI bus and the DMI bus for that matter. For the

processor to get to the point where the functional test can be conducted, the PCH needs to read

the straps on the GPIO interface and other pin straps in addition execute the ME code within the

SPI. Without the execution of the ME, the platform won’t power up. So if either the SPI or the

DMI link is broken, there is no functional test capability.

When validating the SPI bus, it is possible to conduct a pins test of the serial interface. Once the

structural interface has been established, the developer should validate the contents of the SPI

flash. The most expedient way to validate the contents of the flash is to perform a CRC test on

the SPI bus with the address range of the BIOS and compare to a known good CRC.

Increasing Test Coverage on Current Intel Platforms

14

SMBus

Another bus that deserves a structural test is that of the SMBus. The SMBus controls many

devices on Intel platforms. One critical piece of data needed for testing is the SPD data which is

only accessible via the SMBus. The SPD data from the EEPOM of the DIMM from the golden

board should be extracted and used in comparison if and only if the platforms under test are

using the same DIMMS. The data stored in the SPD is critical for memory setup and testing.

Other Buses

The developer will need to determine what buses have critical components attached and from

that analysis determine if a structural test is necessary before beginning the functional test

development.

Fault Identification

During test development, a test profile is created and a checkout of the first functional test profile

should be conducted against a platform with known problems. This step is necessary to ensure

that the functional test is robust enough to capture these known faults. During that exercise, the

defective functional blocks isolated using the methods described above, will probably still

contain a few components and numerous interconnects. To identify the actual defect within the

failed functional block use the following methods.

• Visual Inspection – Keep it simple! Perform a detailed visual inspection of the isolated

area. Look for shorts, bad solder joints, “tombstoned” resistors, wrong, ICs, etc.

• Tactile Inspection – Again, keep it simple! Are there any overheating ICs? Loop the

failing test. Press down on all major ICs. Does the test pass now? This method can detect

open circuits on devices such as BGAs etc.

• Probing – PCT in the interactive views can be used to create stimuli within a device so

that probing via an oscilloscope can be used to determine a fault or signal quality.

Automated Approach: Functional Test Development Methods - A Better
Way

From reading this eBook, the developer can be overwhelmed with the effort involved to create a

robust functional test. Throughout the eBook, there are hints about a potentially better, time-

Increasing Test Coverage on Current Intel Platforms

15

saving, development approach. All of the development efforts start with a golden board/platform

so that experiments can be executed against this platform to find what the correct register data

values or setting a device state for the production tests. Then extract and use that date to create a

programmatic (script) for the CPU to execute. PCT provides a better approach than the manual

methodical development methods describe here.

Again starting with a golden board, boot the board to the EFI shell or Windows®. At this state

all the devices are properly configured, then extract all the register settings and use that data as

input to create a test. PCT has a Golden Board Interrogation (GBI) utility that, via JTAG run-

control, does this extraction. PCT is model driven and from the data extracted in the GBI

execution that data can be compared to existing platform models. The model combined with the

GBI extracted data is used by the Automated Test Generation (ATG) Utility to create the Tcl

profile.

A developer might recognize a problem with this approach when it comes to dealing with the

MRC. The MRC is an algorithm that does repetitive reads/writes to the memory control registers

to get the memory lane training to operate at maximum efficiency. Reading the last known state

is not going to provide the optimal memory response for a platform under test. In electrical

validation circles, this is referred to as the eye. Which is correct. The platform under test is not

required to operate at the optimum memory access bandwidth for testing. The platform

requirement is that the memory controller is configured so that a memory test, like

RAMBUSTEST, can execute.

The ATG creates all the Tcl script needed to test the platform. These scripts can then be edited

by the developer and adjusted as needed. In dealing with the PCIe enumeration, this will save the

developer potentially days (weeks) of work.

Once the functional profile is generated from the ATG, the developer should determine what

areas of the platform such as JTAG, DMI, SPI and others, would benefit from a structural and

include pins test for these buses. The reason PCT doesn’t do this via the GBI/ATG is the pin

state of a given devices is platform state specific. Pin state information within the model

wouldn’t be relative to the pin state of the platform under test.

Increasing Test Coverage on Current Intel Platforms

16

Summary

A tool designed for functional board test is invaluable in saving development effort and time. By

following a simple 3-step procedure, defects can be rapidly isolated. By skipping to step 4, even

more, savings can be realized.

1. Understand board structure. Break it into functional blocks and create a

troubleshooting tree.

2. Isolate the fault area by using simple test sequences to verify each functional block.

3. Finally, identify the actual defect using a combination of inspection and probing.

4. Use the easiest development approach.

Learn More

Learn more about Processor-Controlled Test products on our website.

http://www.asset-intertech.com/products/processor-controlled-test

	Introduction
	Interactive Approach: Functional Test Development Methods and Steps
	Understanding the Board Structure
	Fault Isolation
	Processor Area
	Memory
	PCIe
	PCH
	SPI bus.
	SMBus
	Other Buses

	Fault Identification

	Automated Approach: Functional Test Development Methods - A Better Way
	Summary
	Learn More

