GUIDE TO INTEL®

DEBUG AND TRACE

#% Tnstruction Trace (PE")

handle c (CoreValidateHandle+2c)
B84

STATE Fn THSTROCTION TIHESTANE =
I3 000000007E241840 JE CorsHandleProtocol+2e
P& 000000007F241642 AND [R81,00000000
Pé 000000007F241846 CALL Cors¥alidateHandle 3
handle .o (CoreValidateHandle) =
77 if (Handle == WOLL) {
3 000000007F2A0E40 TEST RCX, RCX
Fé 000000007F240E43 JHE Cors¥alidateHandle+10
hendle . (CoreValidateHandle+10)
80 if (Handle—>Signature |= EFI_HANDLE SIGHATURE) {
-0069459 P§ 000000007E2A0ES0 HOY RAX, [RCK] —4.736 ms (+1.045 us)
Pé 000000007F240ES3 MOV RCX, 8000000000000002
13 000000007E240ESD SUB RAX. 6646068
P& 000000007F240E63 HEG RAX
E6 000000007F240E66 SEB EAX, RAX
6 000000007F240E69 AND RAX, RCX

Fe 0 F2A0E6C RETH
-0069452 Fe
e #* Instruction Trace Search - 5275 calls =
gg | Code | CallTree | Call Chatt ‘
=] Cycle:-63856 Tatal tme:52.295 me - Measured time:+47.072 us
P§
P& # Function < 102133 us > Incl. Time Excl. Time -
P8l |14 CoreloadImage 300 ms 103,000 ns
5 CoreloadImageComnon 300 ms 587.000 ns
F6l || & GotFileBufferByFileFath 164 us 178 000 n=
7 FyReadFileSection 693 ws 114,000 ns |
8 GetSection I | I - 550 u= 119.000 ns
Pel|]e allocatePonl T TININ T |10 998 us 154 000 ns
10 CoreallocateFooll | W [T 10.811 us 64.000 ns
ODE34E2 11 CoredllocateFoolPages 4.515 us 39.000 ns L
L 11|12 CoreConvertPages mm | NI} NI =2.636 us 227 000 n= 3
13 CoreAddRange I 1 I 2.363 us 358 000 n=
14 RenovelenoryMapEntry (| 111} £24.000 ns 36.000 ns
15 RenoveEntryLlist 219.000 ns 11.000 n=s
16 IsListEnpty 1l 208.000 ns 28.000 n=s
17 InternalBaseliblsHodelalist | 180.000 ns 180,000 ns
<1 NP0 PTY P2} P43 PS) Pe (F7 K =

BY LARRY TRAYLOR

ASSET

Guide to Intel Debug and Trace

Larry Traylor

Larry Traylor co-founded Arium Corporation in 1977. Larry served as president,

CEQ, and chairman of the board of Arium. He was instrumental in driving that

company’s vision for product creation of hardware-based program debug and code

trace tools. In 2013, Larry joined ASSET InterTech when Arium was acquired by ASSET. He
has a BSEE from Cal-Poly Pomona.

SourcePoint) ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

Table of Contents

PUIPOSE.... et ettt e sttt e e ettt e e sttt e e e s bbb e e e s aabbeeessabaeeeeaaee 5
INEEOAUCTION ...ttt ettt et e e e e bt e et e e bt e eabeeseesnbeenseeenseenseesnseenseennns 5
UEFT dEVEIOPIMENTeeiuiiiiiiiiieiiieeeieeeeiieeetee et e e ite e et e e et eesaeeesnsaeessseeessaeesseeensseesssseesnseeesseeenns 6
Possible Debug Use Cases and FEatures............cocvueeeiiieiiiieeiiiecie e 9
Debug topologies VS ChIP tYPCeieeiiiiieiieeieeiteeie ettt ettt et ee et e siaeeteesebeesbeeseseeneeas 11
EVENE TTACE ..eieiiiteiiee ettt ettt e sttt e st e e st e e abeeesbeeessbeesaaeeenbeeesabeeenns 11
Introduction to Trace Hub and its relation to Intel PT.........cccooiiiiiiie, 11
How Trace Hub can shorten the time to find the really hard bugs.c.cccooeviiiiiiiiiiiinn, 13
What it takes to use the Trace HUubcooiiiiiiiii e 15
STM via Trace Hub overcomes performance issues of Printf techniques..........ccccceceveenennnen. 16
INSTIUCHION TTACE ...ttt ettt ettt et e sbe e et e e sabeenbeesaeeeneeas 17
How Intel Processor Trace compresses the informationccceeeveeeeieeeeieeecieeseie e 17
Trace features used by ASSET InterTech’s SourcePoint toolscccecceeeiieniieiiieniieniieienne, 17
The older Intel Trace MeEthOds:ccouiiiiiiiiii e 18
Use Models and Advantages for High Speed Tracecccueeviieniieiiienieiiieieeeeeeeeeee e 18
How trace can be displayed in modern tools like SourcePoint.............cccceeveiieviiienciieneeeee, 19
Call Graph DiISPIaYeeeeiieiiieiiecie ettt et ettt e st esateesbeessbeenseeenaeenseenene 21
Using the Statistics View to Tune Execution Timescccccveeviieriiieenieeeniee e 22
Other Features of SourcePoint that Make Use of Traceccceevuieviiinieniieniiecieeiieeieeeee 23
CoNSENt CONSIACTALIONSceuvveiutieriiietieiite et ettt et et etee st e et e esateebee st e eabeesseeabeesaseenbeesneeebeesneeans 23
The transition 10 DICL.....c..oiiiiiiiiiiiieiece ettt ettt et e e s saeebeeenaeenbeessneeseesnsaans 24
COMCIUSION ..ttt ettt e h e bttt sh e bt e st e sbe e bt et e eb e e bt e st e ebeenbeensesseenbeennes 25

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Table of Figures

Figure 1: Simple View of Trace Hub
Figure 2: STM trace of UEFI and ME
Figure 3: A SourcePoint List Display
Figure 4: Sample Instruction Trace of UEFI Code
Figure 5: A SourcePoint Call Chart Display

Figure 6: SourcePoint’s Statistics View

Acronyms

BTM Branch Trace Messages

DDR Double Date Rate

DMI Direct Media Interface

DCI Direct Connect Interface

ME Management Engine

MIPI Mobile Industry Processor Interface

MMIO Memory Mapped 10

PEI Pre-EFI

QPI Intel Quick Path Interconnect

SoC System-on-a-chip

SPI Serial Peripheral Interface

STM System Trace Messaging

STPV2 System Trace Protocol version 2

UEFI Unified Extensible Firmware
Interface

USB Universal Serial Bus

© 2018 ASSET InterTech, Inc.

Guide to Intel Debug and Trace

ASSET and ScanWorks are registered trademarks, and SourcePoint and the ScanWorks logo are trademarks of ASSET

InterTech, Inc. All other trade and service marks are the properties of their respective owners.

Platform for Software Debug and Trace L/

4

ScanWorks’

Platform for Embedded Instruments

Guide to Intel Debug and Trace

Purpose

Any new software-based product will contain newly written code in which there are bugs that
must be found and fixed. This is best accomplished using quality debug tools. For an Intel
processor-based computer, the firmware image containing the UEFI code must be made to work
(debugged). The really hard-to-find bugs, encountered toward the end of big software projects
like a UEFI port, often cause major schedule slips. Trace can really help shorten the time to find
these bugs. Instruction trace is too difficult to navigate given today’s code base size and
complexity. Trace features combined with other newer Intel debug hooks, in the silicon, are now

enabling tool features that make all phases of debug much more efficient.

Hard-to-find bugs are usually caused by asynchronous events. Examining the flow of
instructions as they were executed (Instruction Trace) is the only way to see these bug causes
clearly. That said, the instruction trace process used on today’s code bases tends to produce huge
trace files composed of millions to trillions of instructions. Finding the correct place to look is
nearly impossible without a way to navigate at a higher, coarser level. Trace Hub (System Trace)

provides this capability by allowing the programmer to label code states in real-time trace.

Programmers debugging BIOS (now UEFI) have been without trace for the last 20 years. Intel
has only recently decided to put the machinery in the silicon to provide trace. Debug of UEFI

(and other firmware) on Intel Architecture (IA) based systems can now be much more efficient.

The really hard bugs have the biggest effect on program schedule slippage. These same bugs are

the ones most positively affected by the availability and use of trace.

This document is intended to point out many ways to work through these issues during the bring-

up, debug and validation of a new UEFI port on an Intel-based platform.

Introduction

In an environment where there is not an operating system running yet (for example, UEFI), or
when debugging the kernel of that operating system, the debug tools that provide the
functionality required to get the job done must run on a separate computer from the one where

the bugs are being found. This is because any quality debugger will need the features of an

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

operating system like Windows, Linux or OSX in order to provide the debug environment
expected. This arrangement is called remote-hosted debugging. It also usually provides
hardware-assisted debug, which consists of some sort of hardware pod that interfaces between
the computer hosting the debugger and the system on which the code is running (which is being
debugged). In the very latest processors from Intel, there are features that can provide for

remote-hosted debug without any extra hardware other than a cable or two.

Much of today’s code is written in C or C++. Therefore, there is an abundance of code reuse and
many layers of calls from the code that is sequencing a process to the code that is doing a
specific piece of work. This means that the actual instruction pointer to the code that may exhibit
misbehavior (bug or symptom) will provide little information about where in the overall process
the error occurred. For example, a string copy routine that was passed a bad pointer does not
have a bug in it just because it attempts to write to a location that causes a bus hang. The bug is
related to the bad value in the pointer passed to it. Likewise, the routine that called the string
copy may have only passed on the bad pointer. This sort of layered software may be many tens
of levels deep. The actual bug may be somewhere very different. Finding the actual root cause is
the whole point in using trace tools. This level of complexity is why instruction trace must be
augmented with System Trace (Trace Hub) in order to navigate the massive instruction trace data

set.

The references here to trace tools and their importance in finding asynchronously-generated bugs
is not meant to decrease the value of quality source-level tools for static debug. All of these

topics will be touched on here.

Backing up above the forest, there are several types of silicon and tool features that may be

utilized at different times in development and for different types of problems or tasks.
UEFI development

Today, the word BIOS is basically synonymous with “UEFI” (Unified Extensible Firmware
Interface). This is the firmware that runs from processor reset until the OS bootloader begins. It
also contains all the drivers that the bootloader will then use. Remote hosted debuggers like

SourcePoint® are critical when debugging UEFI.

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

6

Guide to Intel Debug and Trace

The major steps in a new UEFI port are:

Write any additions or modifications and build a firmware image
Early board bring-up

New code debug

Platform-specific debug

Runtime failure cause determination

Stress testing failures (hot plug)

AN e

Once power supplies and basic hardware operation have been tested on a new board, a firmware
image is loaded into a flash device (usually a SPI device). After the code is installed, the most
convenient way to get started is to power up the new board and stop execution at the reset vector.

This is accomplished using a debug tool. From the reset state the following steps may be taken:

1. The code is stepped or moved through manually to see that it basically works (code
walking).

2. When each module or system is thought to be mostly functional, the system is then run as
a whole and exercised by some form of test suite or environment.

3. Misbehaviors (bugs) are observed in the running system. These bugs are then root-caused
and fixed.

In today’s world, step 1 above is probably a little different. If the UEFI image was built using the
latest EDK, ingredients provided by Intel, and using the “Best Known Configuration”
ingredients, then probably the early code will be run to some point farther into the PEI phase.
This will likely be the first occurrence of code that has been added or modified by the team
bringing up the board. If this is far enough into the UEFI build, the person debugging may
monitor a console to verify proper progress up to that point. If the code stops earlier, an earlier
breakpoint can be set and the experiment re-run. When the boot process is successfully
proceeding to the beginning of newly written or modified code, the code walking may be started.
Both the author and many professional programmers believe the way to produce quality code is
to walk all newly generated code at least once. This can be accomplished using a combination of
step, breakpoint, and automatic breakpoints called “go to cursor” (depending on what debug tool
is being used). This process can be made much easier and clearer if a quality source-level debug
tool, such as SourcePoint from ASSET, is available so that the programmer is seeing the exact

code that they wrote, including comments, in the debugger display.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

Once the code has been walked, future verifications can be quickly accomplished using a call
stack graph like the one included in ASSET’s SourcePoint debugger. This graphical display
requires tracing of the code. Other methods of monitoring overall progress in mostly working
UEFT are via console output (printfs) or system trace. These methods will be discussed in detail

in later chapters.

These activities will progress until the UEFI process displays a UEFI prompt, or an operating

system is booted.

At this point stress testing will be started. To begin, the system will be booted many times, using
different settings and devices. When any of this fails, the root cause will need to be identified
and fixed. At some point, the time between finding flaws will become large enough that multiple
platform stress testing will be required to find any remaining defects. It is these latent defects
that are often the hardest to root-cause. Having a powerful, feature-rich debug tool will really

help here.

There are two distinct types of debugging available to programmers in most environments today.

These are:

Static Debug: This type of debug involves stopping program execution at some point by means
of either a breakpoint or as the result of a step. The engineer then examines the program object
values in that state. These program objects, which are accessed either directly or indirectly, are
the processor registers, memory values and other hardware registers within the system. This type
of debug is quite adequate for code walking as mentioned above and for easy-to-find root causes,
such as those found during new code debug and platform-specific debug, when the system is run

as a whole and where the coding error is near the symptom in address space and execution order.

Dynamic Debug: This type of debug records the execution of a program while it is running and,

after the experiment, examines the results. This is trace. In most modern application processors,
for practical reasons, this is often limited to the instructions executed and not the values (data
objects) that these instructions operated on. This experiment often ends in stopping the

execution, but this is not required and not always possible. Dynamic debug is the only effective

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

method of finding the root cause of bugs found when the entire system is stressed. This type of

bug involves a flaw or failure in a running system.

In the most fatal types of bugs, the system actually hangs in a way that retrieving any data about
the machine state when it crashed may be very difficult. On most modern designs this will result
in a catastrophic error (known as CATERR, often arising from a 3-strike error where context is
lost). In this case, the only method of static debug is via facilities called “crash-dump”. If there
was any form of real time tracing occurring at this point it may yield better hints to determining

the actual root cause of the crash.

Less fatal bugs in the boot process often result in the system simply not completing the boot
process. In many of these cases, the processor core can still be stopped and state examined. As
mentioned before, the exact location of the executing code is usually not the problem, but
instead, is a result of the root cause. Many methods of getting an overall picture of progress are
available. The simplest (and crudest) is the simple POST code display. Debug messages to the
console provide a much more granular and descriptive method of feedback, but often slow the
boot process so much that behavior is modified. Real-time trace in the form of instruction trace

or system trace (or a combination of the two) is the most elegant and productive tool for this.

One more issue for any source level debug (static or dynamic) is the modularity and location
scheme for UEFI. UEFI basically has three different types of code location and linkage. The
“Framework”, also known as TianoCore is a statically located hard-bound piece of code much
like any other firmware. PEIM and UEFI modules are located and bound in their own specific
ways. Additionally, UEFI modules are dynamically located. Good source-level debuggers that
support UEFI debug have a set of button-operated macros that load the debug information at

various appropriate times for convenient and smooth debug experiences.

Possible Debug Use Cases and Features

As mentioned in the previous chapters, there are several points in a project that will indicate the
use of different types of features offered by debug tools. These specific tool use features and
configurations that are often called use cases. For an Intel processor processor-based design with

major UEFI work done, the use cases in timeline order might be:

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

9

1y

2)

3)

Guide to Intel Debug and Trace

Port new code to an Intel supplied development platform with new silicon. Tool features:
a) Static Source level Debug using Run-Control on the Intel CRV

b) POST code display

c) Console debug messaging OR Trace Hub message tracing

d) Full suite of trace tools

Move new code to OEM platform and finish debug

a) Tool features: Same as 1), but functional on OEM platform

Stress test a new product in Stress lab with many instances running

a) Tool features: Same as 1) PLUS hot-plug; STM may also be helpful here

With these use cases as the target debug issues to address, the list of tool/silicon features required

to expediently get the job done are:

1) Static Source-Level Debug including

2)

3)

4)

a)
b)

c)

Run-control directly out of reset or power-up

Source level debug of the UEFI code base including fast symbol searching across
multiple programs (a UEFI code base is composed of many dynamically loaded
programs)

Debugger features that deal with UEFI source location

Overall State Monitoring

a)

b)

c)

d)

A POST code display is the crudest form but still indicates last state achieved (this does

little for showing the sequence leading to the state nor any source reference)

Console tracing (printfs which slows the code so much it often changes the problem

being examined)

Event trace (STM is the general acronym for System trace). This type of trace is achieved

using the Trace Hub in Intel devices. STM displays show a timestamped version of all

console outputs plus other state markers

1) There are two forms: SVEN from Intel (still a little invasive); and Tool-Hosted Printf
from ASSET InterTech, which is very fast.

Instruction trace which when time-correlated to STM provides the details of the

program execution

Hot-Plug

a)

This is a hardware feature allowing a system that has hung or entered an error state to be
stopped and queried even if there was no debugger attached when the error occurred.

Crash Dump: a method where the state is dumped from a target that has experience a
catastrophic error (CATERR)

These four types of features will be expanded on in subsequent sections of this document.

Platform for Software Debug and Trace

O ScanWorks®

Platform for Embedded Instruments
10

Guide to Intel Debug and Trace

It should be noted, that in order to facilitate all of these displays in a Source based form that the
UEFI code must be built with the debug features enabled. The UEFI framework is structured
such that the location of each EFI program is dynamically assigned, and its identity and location

must be determined with the UEFI hooks intended for this.

Debug topologies vs chip type

Not all debug features are available in all generations of Intel chips. The following table

summarizes some of this:

Run- Instruction DCI-
Control Trace Trace Hub 0O0OB DCI-DbC
Broadwell X - - - -
Skylake X X X X -
Coffee Lake X X X X X
Beyond X X X X X

The upcoming sections will describe these different types of Debug and Trace feature support.

Event Trace

Intel added the Trace Hub to its processor system in order to provide several trace features that
augment the newly added Intel Processor Trace (Intel PT). These features include (1) coalescing
of trace streams from different sources with IDs and timestamps, (2) System Trace Module
feature (STM), and (3) common multipath trace transport. In the first generation of Intel chips to
offer the Trace Hub (server and client solutions) the primary advantage is the STM feature set.
This allows for code instrumentation (similar to printf, but in real time) in several code bases and
multiple cores. The post-processed trace stream can then be time-correlated to the Intel PT trace

streams to provide the trace navigating facilities described in this eBook.

The Intel Trace Hub is a piece of hardware (IP within the Intel chips) that is a slave on the
MMIO fabric of a given platform or SOC. The vagueness here is necessary because Trace Hub is
used in both SOCs as well as the largest server platforms. A write to a memory space that is not
routed to one of the actual DDR memory controllers or north-complex 10 may be destined for

the Trace Hub. In client or server sets of chips today, this means that writes to the Trace Hub are

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

routed down the DMI fabric. In SOCs the nature of the fabric is different. In addition there can

be other transports that stimulate trace message generation in the Trace Hub.

In the most basic use, programs running on any core (IA, ME, or other) can write debug
messages (think printf or logging) and direct them to Trace Hub instead of to a serial port,
console or memory log. This means they are timestamped and correlated with instruction trace. It
also means they can be transported in a variety of ways depending on target, silicon and target

state.

The address space of the slave interface to the Trace Hub is divided into masters and each master
is subdivided into channels. Writes to different addresses within a channel result in the
production of different message types. All messages and timestamp packets are eventually
formatted in STPV2 which is a MIPI standard for system trace encoding and transport. The
nature of this protocol is intended to be generated with Master/Channel message identification.
In this way the message identification is implicit instead of needing to be handled by the
software under debug. This mechanism provides for a more code efficient (low insertion loss)
method of instrumenting code. This means instrumentation inserted in the code has less effect on

the code size and speed of execution.
In client and server chip sets the important sources for software debug are:

(A)Direct program writes from the host cores

(B) Direct program writes from the ME

(C) AET (Architectural Event Trace) (generated by the core for selected architectural
event types)

In SOCs, in addition to the above, Intel PT may be routed through the Trace Hub. A simple view
of the Trace Hub is shown in Figure 1.

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

12

Guide to Intel Debug and Trace

Figure 1: Simple View of Trace Hub

In Figure 1, above, there is a time stamp unit shown. This unit can place a time stamp on each
individual trace message. There is a timestamp alignment mechanism that allows the Trace Hub
time stamp to be directly correlated to each Intel PT (Instruction Trace) stream in the system.
Therefore, all views of each of the types of trace can be time-aligned with all other views. This
means locating an event in a Trace Hub sequence will directly point to a spot in the instruction

trace.

Isolating a bug usually begins by observing a symptom (blue screen?) and then attempting to set
a breakpoint at the point in the code that is generating the symptom (this might be as simple as
searching the code base for the string that is printed at the point of the symptom. A breakpoint
can then be set on the code that outputs that string). For simple bugs, this is almost the end of the
process as it is likely that statically inspecting the code will quickly reveal the bug. Harder to
find bugs almost always show up at this point as a piece of code operating on bad data. The

executing code is not making an error; it is just processing data that is not correct.

With execution (instruction) trace, it is then possible to see what function called the function
processing the wrong data. In a large body of code like UEFTI, this is still likely to be a properly
operating piece of code that is, again, operating on bad data. This story, and the time it takes to
wade through trace, can go on and on. A much more effective way to view the trace at this point

is to look at a less fine-grained resolution view of it. A call analysis tool might be a good

SourcePoint’)y ScanWorks’

13

Guide to Intel Debug and Trace

solution. This can show the software engineer what major functions are running and which have

just run. It will be obvious what called the offending code and passed down bad data.

For really complex situations, STM trace with good instrumentation in the code base can make
this quick and easy. There needs to be instrumentation in the code that outputs messages when
major functions of the code base are started or important nodes within these functions are
reached. It turns out that the UEFI code base already has many such lines of instrumentation
which currently are passed to the serial port or to the console (depending on where in the BOOT
process the message is generated). In EDK2-generated UEFI many of these messages are
generated with a “DEBUG” macro which uses syntax much like printf, including a printf string.
These STM messages can easily be redirected to the Trace Hub. With this small change to the
UEFI code base, there is now the two-level trace system described here. In the future, these

messages can be augmented to take even better advantage of STM with Processor Trace.

A source level software debugger, like SourcePoint from ASSET InterTech, should have trace
list displays which clearly display the formatted STM messages, with time stamps, and with the
ability to directly synchronize the cursor in Intel Processor Trace to the STM message trace

listing. In this way moving from the macro view to the micro view is trivial. This is illustrated in

Figure 2 below.
#*° Trace Hub - race (time alignes (]| =)
Trace Hub - SW/FW Trace (time aligned)]
STATE ADDR INSTRUCTION TIMESTAMP -
-005884 ME:STATUS -92.376 ns
Tnl - 0x8086000
Argunents = 00000001, 80050509, 00000001

-005848 ME:STATUS -92.373 ns
Tnl coda = 0808
Argunents = 00000001, 08010040, 00000001

-005811 ME:STATUS -92.370 ns
Unknown code = 0x80860002004e01ad
Arguments = 00000001

~005574 ME:STATUS -41.831 ns
U code = 20041002b
Argunents = 00000003

-005548 ME:STATUS -41.830 ns

- 200410040
Arguments = 01000901

-005522 ME:STATUS -41.827 ms
Unknown code = 0xB80860002004100b0

Arguments = 00000000, 000000c8, 00000000. 00000000, 00000000

—-005475 ME:STATUS -41.824 ns
Next State = CMO_ENTRY_COMPLETE. (3)

-005449 ME:STATUS -41.823 as
Unknown code = 0x8086000200410040
Arguments = 00000901

-005269 UEFI:DEBUG -1.924 ns
POSTCODE=<al> LS
POSTCODE=<000000a1 >

-005232 UEFI:DEBUG -1.793 ns
PROGRESS CODE: V2080000 I0

-005205 UEFI:DEBUG -1.498 ns
POSTCODE=<a3>

-005186 UEFI:DEBUG -1.451 ms
POSTCODE=<000000a3>

-005168 UEFI:DEBUG -1.367 mns
ROGRESS CODE: V2080003 10

~005140 UEFI:DEBUG =757.375 us
POSTCODE=<a5>

—005121 UEFI:DEBUG —709.880 us
POSTCODE=<000000a5 >

-005103 UEFI:DEBUG -625.395 us
'ROGRESS CODE: V2070000 I0

-005075 UEFI:DEBUG -331.095 us

CODE=<a7>

~005056 UEFI:DEBUG —283.808 us
POSTCODE=<000000a7 >

005037 UEFI:DEBUG -199.378 us
'ROGRESS CODE: V2070003 I0

005250 Disassembly | [Configure. Display... F Caltxate | [Rehesh |

Figure 2: STM trace of UEFI and ME

SourcePoint)y ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

In addition to using STM to provide a guide to what functions are running, it can also be used to
trace the data a program is operating on. Intel PT, much like many other trace mechanisms on
high performance application processors, does not trace the values of data being operated on. It
only traces which instructions were executed. All decisions in code are made on data values
(A==B). Many times, to truly understand why a program decision went wrong, it is necessary to
know the value of a program variable at some specific point in that program. It is not practical to
trace all data all the time. This would consume two much trace transport bandwidth. STM allows
inserting very small code snippets that dump particular values just at the time it is desired to test
the value. These data probes are inserted temporarily when working through a problem. Again,
they are timestamped, so that correlating with Instruction Trace is easy. This process in general

is referred to as data tracing.

In summary, the use of Trace Hub described here provides navigation, drill down, and data value
probe capabilities. These features are exactly what is needed to make it easy and more efficient
to work with large buffers of Instruction Trace. Again, it is Instruction Trace that will actually

reveal the specific software malfunction.

There are several things involved in setting up an environment to use Intel’s Trace Hub. Some of
these are within the tool set used, some are within the target software being debugged, and some
may involve hardware configuration. Exactly how each item is accomplished is dependent on the
version of Intel chips you are using as well as the debug tools you are using. The various items

required for 6™ generation Intel chips include:

A. Target:

(1) Provide an area in RAM to store trace buffers. In the UEFI world this is accomplished
by allocating a reserved, non-cacheable area for all trace buffers. This is described in
detail in the BIOS writers specification provided by Intel.

(2) Build in STM messages as needed into the code bases that are to be debugged
(instrument your code). For console/serial port messages from UEFI, this is a simple
modification to a couple of files. ME messages are built into the firmware distributed

by Intel.

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

15

Guide to Intel Debug and Trace

B. Target, via debug tool:
(1) Set up registers that enable the Trace Hub as well as point to the storage buffer. In
SourcePoint this is all done via settings in the SourcePoint GUI interface.
C. Via Tool at experiment time:
(1) Establish an end point for the experiment. This is usually a breakpoint (trigger) that
stops the processors from executing.
(2) Run the experiment
(3) Select the display desired in the tool and the tool will automatically perform the trace
buffer post processing, using the trace buffer contents, the object files associated with
the source files and possibly the target static information. This last item is dependent
on tool set up. The post processing of STM information will also require a metadata
file that provides target/program information required for the post processing of the

raw STPV2 data.

Once this is all set up, each successive experiment will cause the tools to capture and prepare all

of this automatically so that the displays are available at the click of a button.

UEFI, like other embedded code bases, is riddled with printf style debug statements. In the
EDK2-based version of UEFI these statements are actually macros which call debug print
routines with several possible destinations. These macros, such as “DEBUG”, use a syntax and
process which includes, as an argument, a printf style text formatting string. The processing code
to turn the arguments into a readable string can run thousands of instructions in the target code
being debugged. This execution time added to the backpressure caused by synchronous call to
drivers for slow transports such as RS232 serial IO can cause the execution speed of the boot
code to increase from tens of seconds to several minutes. Not only is this console logging
process time consuming for the software engineer, it often changes the nature of the code

running program enough to stop the bug from occurring.

The speed of the Trace Hub as a transport, in addition to its other advantages, removes the effect

of the transport induced backpressure. This improvement combined with modern tools that move

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

16

Guide to Intel Debug and Trace

string formatting to the tools and to display time, almost completely remove the timing effects of

enabling all of the debug messaging.

Taking these advantages even farther, ASSET InterTech’s SourcePoint offers a proprietary
version of this tool-based string formatting that makes it transparent to the software engineer.
Thus, the engineer adds messages just like before, yet gains all the advantages of ASSET’s
“Tool-Hosted Printf”.

Instruction Trace

Intel Processor Trace, like many trace algorithms today, limits the data it carries to time-stamped
instruction-flow information. In the most compressed form, a portion of a trace stream of bytes
will simply represent taken/not-taken branches in the execution stream. In this mode, each byte
represents up to 6 branches, and this will usually represent 30 or more executed instructions.
Along with these taken/not-taken packets there are several other packet types that include new
address packets (when needed), time-stamp information, and other auxiliary packet types. Some

of these packets are periodic while others are as-needed.

This format is more completely described in the referenced Intel manual. It provides a very

compressed trace stream for collecting and post processing by tools like SourcePoint.

One of the most important features of “High Speed Processor Trace” in Intel’s newer ICs is that
it is nearly full speed. It has no significant impact on the execution speed of the program being
executed. In contrast, when using BTMs with BTS (storage to memory) there was a minimum of
a 60% slow down. For some code this could be much greater. This change in execution speed
could often impact whether a bug does or does not occur. High Speed Processor Trace (HSPT)

has no measurable impact on the experiment.

In addition, HSPT has several types of time stamp available in most of its instantiations. Using

cycle-accurate timestamp, time can be measured with a resolution of the processor clock. In later

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

17

Guide to Intel Debug and Trace

instantiations, global timestamp will allow alignment with all threads and all other trace sources,

including AET and other new sources.

This highly-compressed, full-speed trace, when enabled, provides instrumentation of an
operating program to allow for examination of the exact sequence of execution of instructions,

including asynchronous sequences like exceptions and external interrupts.

These trace features are on par with trace methods found in other architectures and will produce
the results that firmware engineers have come to expect. These features can also be used at the

application level and for diagnosing system faults.

In the ten years prior to Intel’s introduction of Processor Trace, Intel had only two methods of

instruction trace. These were LBR, and BTM to BTS.

LBR trace was based on a relatively small number of pairs of last-branch-record registers. A
typical number was 8 or 16 pair. Each pair of registers would record the “from” and “to”
addresses of the last 8 or so changes of execution flow. This could typically record 40 or 50
instructions. This would rarely capture all of the last interrupt. Due to the small depth of this

trace, it often did not contain the fault-producing event.

The other method available was BTM to BTS. This was cumbersome to setup and use, and it
slowed the execution of the processor greatly. This often altered the problem being diagnosed.

Because of the difficulty in use and the speed issue, most programmers did not use this feature.

Neither of these types of trace had any notion of a timestamp, so, many post-processing features

could not be implemented, such as time-based execution call graphs and statistics views.

There are many powerful uses for instruction trace. These include several types of defect root-
cause determination, understanding of performance issues, and gaining a quick overview of the

execution of a program or process.

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

18

Guide to Intel Debug and Trace

The classical and still most compelling use of instruction trace is in finding the interference in a
particular program sequence by an asynchronous event. There is nothing more frustrating than
finding the place that a program is making the wrong decision, only to discover that you have no
way of telling what altered that data object upon which the errant decision is based. In a simple
case, it could be a matter of determining what code sequence called this code; call stacks can
often show this. In a difficult case, the data may have been changed by code running in an
interrupt that was not supposed to modify the data in question (maybe from an errant pointer?).
In this case, even though the software engineer may be able to reliably trigger the debug tool on
the exact errant decision, he has no way of knowing what piece of code modified the bad data or
why. Using trace to see what code preceded the bad decision will usually yield the culprit in a
very short amount of time. This can literally save weeks in diagnosing a blue screen or Linux

“OOpS”_

Another very common use of trace is to actually measure which parts of code are contributing to
the execution time of a function. Nothing shows this more clearly than a statistics view of the
code operating at full speed. This can often directly show the engineer exactly which pieces of
code can be optimized for the maximum improvement. Measuring these times using real-time

trace allows making the measurement without altering the experiment.

These are just two examples of how using instruction trace can take weeks out of a development
schedule. Many developers of embedded programs have been using trace for years and the
number of ways it can be used to diagnose problems is almost limitless. Firmware (UEFI)

development on Intel-based computers can now take advantage of these silicon/tool features.

Now that High Speed Processor Trace is available in Intel chips, development engineers can take
advantage of the powerful features in tools like SourcePoint. SourcePoint has many different
ways it can display data collected in a trace buffer. Conventional displays that are list-based are
available with many format options ranging from simple disassembly to full source display.
These displays are enhanced by many features such as flyover symbol. In addition to the
classical list-based displays, SourcePoint offers several trace post-processing features and

displays that make it very easy to visualize code execution at a high level and then drill down to

O ScanWorks®
Platform for Software Debug and Trace

Platform for Embedded Instruments
19

Guide to Intel Debug and Trace

the line-by-line views. Modern large trace buffers, in the gigabyte range, make examining trace
detail without good browsing tools impractical. SourcePoint offers several types of post-

processing tools which include:

e Structured Search

e Call Charts

e (Call Graphs

e Statistical Summary Displays.

Several of these will be described in detail in later sections.

The most basic trace display is the list display. In SourcePoint, the software engineer can select
the items to be displayed and control the color coding to differentiate multiple trace sources. The
lines are time-stamped and can be used to index into other displays such as source windows,
chart windows, or other trace list displays. The lines can be assembly, source, or mixed. An
example of a list display is shown in Figure 3. This display shows both assembly and source-

level depiction of the executed code. This list display is very configurable by the user in

SourcePoint.
.-" Instruction Trace (PE*) EI@
STATE Pn ADDR INSTRUCTION TIMESTAMP -
Fi 00000D0DOFF2A1840 JE CoreHandleProtocol+2e
F6 000000007F241842 AND [RE].00000000
P& 000000007F2A1846 CALL CoreValidateHandle
handle.c (CoreValidateHandle)
77 if (Handle == HULL) {
Pt 000000007F2A0E40 TEST RCE, RCX
P& 000000007F2A0E43 JHE CoreValidateHandle+10
handle.c (CoreValidateHandle+10)
&0 if (Handle—>»>Signature |= EFI_HANDLE SIGHATURE) {
—0069459 P& 000000007F2A0ESD HOV RAX, [RCK] —4.736 n= (+1.045 us)
P& 000000007F2A0ESS MOV RCE, B000000000000002
Pt 000000007F2A0ESD SUE RAX, bch4bebd
P& 000000007F2A0E63 HEG RAXL
F6 000000007F240E66 SEB RAX, RAX
F6 000000007F2A0E6S AND RAY RCY
handle.c (CoreValidateHandle+2c)
84 T
P& 000000007F2A0EEC RETH
—0069452 P& 000000007F24184E MOV RBX, RAX —4.736 n= (+65.000 n=)
P& 000000007F24184E TEST RAX, RAX
Fb 000000007F241851 J5 CorsHandleProtocol+15c
F6 000000007F241857 LEA RCE, [gProtocolDatabasseLock]
Fg& 0000000D7F2A185E CALL Coreicquirelock
library.c (CoreAcquirelock)
69
P& 000000007F245944 PUSH REX
F6 000000007F245946 SUB RSP, 00000020
F6 000000007F245944 MOV RBE, RCY
library.c (Coreicquirelock+9)
7n ASSERT (Lock != HULL):
Pt 000000007F245940 TEST RCE, RCX
Fg 00000000YF245950 JHE Coreicquirelock+24
library.c (CoredcguireLlock+24)
71 ASSERT (Lock—:Lock == EfilockReleased):
F6 000000007F245968 CHP [REX]+10, 00000001
Fg& 000000007F2A596C JE Coreicquirelock+42
librarv.c (Coredcouirelock+42) Ay
-D0G3462 Disassembly v|| Corfigurs... | [Display.. | Filter Calbrate Refresh

Figure 3: A SourcePoint List Display

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

When a large amount of trace has been captured, and the code base is extensive, looking at the
detail of the trace is very tedious. The Call Graph display allows the SourcePoint user to look at
large portions (or even all of the trace buffer) and view it in a graph showing call depth. Each
line in this graph can represent a different function at different points in time. Changes in color
represent changes in a function. Each line moving downwards represents another level of call
depth. A moveable cursor points to specific points on the timeline (x-axis of graph). The left-
hand column displays the names of the functions, at each level, at the point indicated by the

cursor.

The controls above the graph allow the user to expand the graph (zoom in) at the point indicated
by the cursor. Figure 4 shows an actual trace of a range of UEFI in the boot-up of an Intel based

computer. This is a good illustration of the power of this viewer:

#* Instruction Trace Search - 5275 calls =] ===
Code | Call Tree | Call Chart |
[Anabze | [Help | O [z ~| Cpole-B3836 Totaltime:52295 ms Measured tie:+47.072 us
Function < 102.139 ug_> Incl. Time Excl. Time -
4 CoreloadInags 300 ws 103.000 ns
5 CoreloadImageCommon 300 ms 587.000 ns
6 GetFileBufferByFilePath 164 us 176.000 ns
7 FvReadFileSection 693 us 114.000 ns
9 GetSection | 1 A (N G390 us 119000 ns
9 AllocateFool U TN D | N [|| || [/ || 10.988 us 154 000 ns
10 CoredllocateFonll TILTEIEED | H1 [| A | 10811 us 64 000 ne
11 CorellocateFoolFages 4.515 us 39.000 ns
12 CoreConvertPages 11 | | m I MM 2636 us 227.000 ns
12 CoreAddRanges | M | | Il 11 2 363 us 358 000 ns
14 RenovelenoryHapEntry [l | I 1111 624.000 ns 36.000 ns
15 RemoveEntryList 219.000 ns 11.000 ns
16 IsListEnpty L[] 208.000 ns 28.000 ns
17 InternalBaseLibIsNodeInList | 180.000 ns 180.000 ns = _
< NPORPTLFZYFILPELFS e (PT K ’

Figure 4: Sample Instruction Trace of UEFI Code

Another way of looking at the same information is with the Call Chart. In this view, specific
areas can be drilled into by function name, expanding or collapsing as desired. Both of the call
views can be synchronized to a list view so that the specific code can be examined at the point of

interest. Figure 5 is a Call Chart display.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

#¥ Instruction Trace Search - 5375 calls

Code | Call Tree | Call Chart]

[Anabze | [Help | [EspandAl | [ColapseAll | Upperimit O & Lowerlimit: 39 5| [C] Shaw intenupts

Cycle Address | # | + Function Timestamp Incl. Time Excl. Time -

69462 7F239805 7 B CoreHandleProtocol —4.737 ms 3.332 us 164.000 ns
—69462 7F2a1846 8 CoreValidateHandle -4.737 ms 1.045 us 1.045 us
—69452 7F2A185E & H Corshcquirelock -4.736 s 165.000 ns 13.000 ns
-69452 7F245989 9 CoreRaizeTpl -4.736 ms 152.000 ns 152.000 ns
69441 7F2al869 & B CoreGetProtocolInterface —4.736 ms 286.000 ns 81.000 ns
69441 JF2A178k 9 CoreValidateHandle —4.736 us 0 ns 0 ns
69436 7F2a17D0 9 H ConpareGuid -4.736 s 205.000 ns 205.000 ns
69436 7F2A6BDE 10 ReadUnalignedéd -4.736 ms 0 ns 0 ns
—£9430 JFZAEBEL 10 ReadUnalignedé 4 -4.736 ms 0 ns 0 ns
69425 JFZAEBED 10 ReadUnalignedé 4 —4.736 ms 0 ns 0 ns
—69420 7F2AEBF9 10 ReadUnaligneded -4.736 s 0 ns 0 ns
—69405 7F2A190E & H AllocatePool -4.736 mns 1.497 us 211.000 ns
—-69402 7F2a7059 9 CoreRaizeTpl -4.735 ms 0 ns 0 ns
—£9397 7F2a7077 9 B CoredllocateFooll —4.735 ms 1.061 us 256.000 ns
—£9397 JFZADICA 10 LookupPoolBead —4.735 ms 0 ns 0 ns
—69391 7F2a0231 10H IsListEnpty -4.735 ms 358.000 ns 42.000 ns
—-69391 7FZA667E 11 InternalBassLlibIsHodel -4.735 ms 316.000 ns 316.000 ns
—£9371 7F2a0341 108 RenoveEntryList ~4.735 ms 180.000 ns 11.000 ns
—£9371 7F2aE735 110 IsListEnpty —4.735 ms 169.000 ns 23.000 ns
—69371 7F2AEETE 12 InternalBassLibIsHods —4.735 ms 146.000 ns 146.000 ns
—69347 7F2a0374 10H DebugClearienory -4.735 ms 267.000 ns 267.000 ns
—69346 7F2A6B23 11 InternaldenSetMen -4.735 ms 0 ns 0 ns
—£9337 7F240399 10 DebugFrint -4.734 ms 0 ns 0 ns
—£9328 7F2a7086 9 B CoreReleaselock ~4.734 ns 225.000 ns 225.000 ns
—69325 7F2423D6 10 CorsSetInterruptState -4.734 ms 0 ns 0 ns
—-69311 7F2a1945 & H InsertTaillist -4.734 = 109.000 ns 13.000 ns
—£9311 JF2AE5B7 9 InternalBassLibIsNodeInl —4.734 ms 96.000 ns 96.000 ns
—£9298 7F2a1957 & B CoreReleaselock —4.734 ns 66.000 ns 66.000 ns 2
« ' WPOLPTYPZLPI}PELPE L PE P g i '

Figure 5: A SourcePoint Call Chart Display

Without trace, it can be very difficult to determine the execution time of the various areas in the
program. Very often some programmed operation, such as booting up a computer with UEFI,
takes longer than desired. It may not be obvious what portions of the code are the real culprits.
SourcePoint’s statistics view can be used to quickly find out exactly where the time is being

spent. Figure 6 shows the statistics view in SourcePoint.

Fl # Instruction Trace Statistics
Function Frofiling |
Analyze Help [Tl Include interrupts ~ Tatal time: 52,235 ms Calls: 5275

Function Count Incl. Time Incl. % -
D rint
BasePrintLibSPrintHarker 110 267 us 0 il
InternalBaseliblsNodeInlist 285 41.082 us 0.08% 082 us 0.08x
DebugClearHenory 42 30.911 us 0.06% 911 us 0.06x% £
ConpareGuid 534 26.335 us 0.05% 982 us 0.05%
CopyHen 63 26.460 us 0.05% 567 us 0.05%
BasePrintLibValueToString 61 17.728 us 0.03% L210 us 0.03%
AsciiStrlen 34 9.259 us 0.02x% 8.259 us 0.02x%
CorelnstallProtocolInterfaceNotify 4 36.887 m= 70.54% 7.899 us 0.02%
CoreFreePooll 11 38.816 us 0.07% 4.823 us 0.01%
CoreFindFreePages1 [4.312 us 0.01% 4,312 us 0.01%
CoredddRange 10 22.504 us 0.04% 4.183 us 0.01%
CoreReleassLlock 77 4.228 us 0.01% 4.090 us 0.01%
CoreRai=eTpl 91 4.090 us 0.01% 4.090 us 0.01%
CoredllocatePooll 27 60.059 us 0.11% 3838 us 0.01%
CoreConvertPages 10 £1.150 us 0.10% 3.596 us 0.01x%
CoreHandleFProtocol 19 21.231 us 0.04% 3. 582 us 0.01%
CoreReadInageFile 43 13.809 us 0.03% 3.428 us 0.01x
IsListEmpty 138 25 486 us 0.05% 3.278 us 0.01%
CoreloadPeInage 1 8. 754 ms 16.74% 3. 268 us 0.01x%
CoreFindProtocolEntry 18 20.290 us 0.04% 3.048 us 0.01x%
IsDevicePathEnd 40 2.959 us 0.01% 2.851 us 0.01%
CorelocateHandle 6 10.584 us 0.02x% 2.664 us 0.01%
CoreFresedencryHapStack 10 13.680 us 0.03% 2.417 us 0. 00
InsertHeadlist 85 8.963 us 0.02x% 2.057 us 0.00%
InternalenCopyien 63 1.893 us 0.00% 1.893 us 0.00%
Coredcguirelock 59 4,327 us 0.01% 1.870 us 0.00% -
¥ \POLPIRP2)PILPAY PSLPE (P / i i ’

Figure 6: SourcePoint’s Statistics View

SourcePoint)y ScanWorks’

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

Note that in all of the trace post-processing displays there is a tab per processor. The list display,
which can be time-aligned to all these other displays, can be one display per processor or

multiple color-coded trace displays.

The exact time-stamp features, and therefore the exact alignment features available, differ from
one Intel processor to another. For exact features for a specific processor please contact your

local ASSET representative.

In addition to the post-processing screens shown, SourcePoint has several other popular trace-
processing features. Trace views may be searched in either simple textual algorithms or in
structured algorithms that evaluate addresses and data and search for those. Also, all trace views
contain flyover examination of data objects. Code windows and symbol windows can be opened,

referencing cursor-selected objects in the trace window.

SourcePoint also contains some of the most powerful and quick symbol-finding/evaluating
dialogs available in any tool. These symbol-search tools work across program modules making

them extremely convenient when used in a UEFI environment.

Consent Considerations

For several generations of Intel processors (going back to around 2012), there has been a
mechanism called “Consent” that enables (or disables) the ability of a particular system to
support remote-hosted debug. The major effect of Consent is enabling the capability of the cores
in a processor to enter probe mode. Forms of consent have varied over the past five or so
generations, and the exact details in more current silicon cannot be covered here due to

confidentiality requirements.
That said, consent may involve some or all of the following:

1) “switches” that may be set by Intel at chip manufacturing time

2) “switches” that should be set late in the OEM manufacturing process

3) Softer “switches” that are set when the firmware image is created

4) On some generations there are hardware straps that might be controlled by a debug tool.
These straps affect consent but are often not the complete solution.

O ScanWorks®
Platform for Software Debug and Trace Platform for Embedded Instruments

23

Guide to Intel Debug and Trace

It is important to note that these mechanisms have changed significantly in very recent
generations. Due to Intel confidentiality issues, the reader should either engage with Intel
directly or their tool vendor of choice for assistance. In either case the correct agreement with

Intel must be in place to enable discussion.

Different classes of targets will treat Consent differently. Reference boards from Intel containing
early silicon will usually have some form of Consent enabled so that firmware images can be
debugged. For OEM early boards the OEM will need to work through some of these issues in

order to use a debugger.

Closed chassis debug may require a different set of enablement to facilitate debug.

The transition to DCI

Beginning with the processor family that was code named Skylake a new mechanism of
connectivity for debug was introduced. This technology is called “Direct Connect Interface”
(DCI). This technology provides for remote-hosted debugging using a standard connector
already found on products to be debugged. The first versions of this use a USB connector. In

some cases the protocols are also industry standard while in other cases they are not.
There are two basic configurations available today for DCI debug use. They are:

1) BSSB bridge -- This is an adaptor that bridges between a standard USB port on a
debugger host (DTS — Debug & Test System) and a target to be debugged. It may plug
into a USB3 port on the target which is equipped to support “DCI-OOB”.

a. These adaptors (Closed Chassis Adapter - CCA from Intel or Closed Chassis
Controller - CCC from ASSET InterTech) provide a robust debug connection that
on some generations of silicon covers almost all power management flows.

b. The target connections for popular forms of DCI-OOB often require special signal
requirements on the debug target (TS). This might be a problem for some product
configurations.

2) Debug Class (DbC) -- This is a direct cable connection from the host (DTS) to the target
(TS). The cable is actually specialized and depends on the exact situation. A very
important consideration is to ensure that there is not a conflict between devices that could
drive VBUS on the cable. Intel sells several cables designed for this purpose. Examples
include type A to type A and type A to type C. For the type C versions the configuration
pins must be strapped for the specific, non-standard use (this often will consist of

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

Guide to Intel Debug and Trace

3) configuring at least one port to be upward facing in a basically downward facing
connector).

a. DbC has the advantage of not needing any special “pod”. It is usually just a cable
from the DTS to the TS.

b. DbC has even more consent issues than tool topologies using an ITP connector.

c. DbC in all generations to date has some power state debug flows that it does not
support. For UEFI debug these will usually be covered more robustly using a
BSSB bridge (CCA or CCC) or an XDP-based tool.

DCI will continue to become more and more prevalent as a debug tool for Intel-based designs. It

will be covered in much more depth in a future edition of this document.

Conclusion

The use of appropriate debug tools can make a huge impact on both quality and schedule
effectiveness in the development of and the porting of UEFI-based firmware for use on Intel
processor-based products. Important features of these debug tools include robust source
handling, trace features, and modern debug transport compatibility. Source level debug for UEFI
requires not only strong handling of high-level language data elements and multiple program
segments, but also requires the ability to find and associate the source using UEFI-specific debug
hooks and procedures. There are many phases to a project to deploy UEFI on new design.
Different phases require different tool features. Debug tool choices should be an important

consideration in any UEFI project.

O ScanWorks®

Platform for Software Debug and Trace Platform for Embedded Instruments

	Purpose
	Introduction
	Possible Debug Use Cases and Features
	Debug topologies vs chip type
	Event Trace
	Introduction to Trace Hub and its relation to Intel PT
	How Trace Hub can shorten the time to find the really hard bugs.
	What it takes to use the Trace Hub
	STM via Trace Hub overcomes performance issues of Printf techniques

	Instruction Trace
	How Intel Processor Trace compresses the information
	Trace features used by ASSET InterTech’s SourcePoint tools
	The older Intel Trace methods:
	Use Models and Advantages for High Speed Trace
	How trace can be displayed in modern tools like SourcePoint
	Call Graph Display
	Using the Statistics View to Tune Execution Times
	Other Features of SourcePoint that Make Use of Trace

	Consent Considerations
	The transition to DCI
	Conclusion

