P R O D U C T

Overview

The terms little-endian and big-endian refer to the way in
which a word of data is stored into sequential bytes of
memory. The first byte of a sequence may store either as
the least significant byte of a word (little-endian) or as the
most significant byte of a word (big-endian). Typically, this
is a detail that is of no relevance to the software engineer.
In certain cases, however, the software engineer must take
the endianness of the hardware into account.

Note: The majority of this application note is accurate
only for ARM V4 and ARM V5 cores. In 2006, with the
introduction of ARMv6 (ARM11), facilities were added for
more flexibility in dealing with endianness issues. This
article is still very useful in understanding the implications
of endianness and the relationship between what the
core does and the peripheral circuitry. When working
with more recent cores such as the whole v7 family
(Cortex) it should be remembered that there are instruc-
tions and monitors that can work around some of these
issues in some circumstances. This is noted later. This
note does not address 64-bit cores (ARMv8 architec-
ture).

ARM® processors (v7 and earlier) use 32-bit words', and
if the software accesses all data as 32-bit words, the issue
of endianness is not relevant. However, if the software exe-
cutes instructions that operate on data 8 or 16 bits at a
time, and that data must be mapped at specific memory
addresses (such as with memory-mapped I/0), then the
issue of endianness will arise. The endianness of the sys-
tem as a whole is implementation dependent and is deter-
mined by the circuitry that connects the processor to its
peripheral components.

Programs that will execute directly from flash memory
must be stored into flash in the correct endian format so
that the code will be fetched correctly by the processor.
For this reason, the Target Flash Programming feature of
SourcePoint provides the user with the option to reverse
the endianness of the flash code before programming it
into a flash device.

What Is Endianness?
Endianness refers to how bytes and 16-bit half-words map
to 32-bit words in the system memory. Given that a 32-hit

P R O F I L E

endlanness and AnRye®
Proses “Jf for 82-n]t

word contains 4 bytes or 2 half-words, two possibilities
exist for the ordering of bytes and half-words within the
word. Suppose that a program must deal with a hexa-
decimal number of 0xBBCCDDEE. Figure 1 illustrates
how that number appears in a register:

Bits 31-20 | Bits19-16 | Bits 15-08 | Bits 07-00

BB CC DD EE

Figure 1: Register Layout

If the memory location where this value is stored is dis-
played in 32-bit word format, the number will appear
exactly as it appears in the register. When that number
is accessed as bytes or half-words, the order of the sub-
fields depends on the endian configuration of the sys-
tem. If a program stores the above value at location
0x100 as a word and then fetches the data as individual
bytes, two possible orders exist.

In the case of a little-endian system, the data bytes will
have the order depicted by Figure 2. Note that the right-
most byte of the word is the first byte in the memory
location at 0x100. This is why this format is called little-
endian; the least significant byte of the word occupies
the lowest byte address within the word in memory.

Address | 0x100 | 0x101 0x102 | 0x103

Data OxEE 0xDD 0xCC 0xBB

Figure 2: Little Endian Byte Order

If the program executes in a big-endian system, the
word in Figure 1 has the following byte order in memo-

ry:

Address | 0x100 | 0x101 0x102 | 0x103

Data 0xBB 0xCC 0xDD OxEE

Figure 3: Big Endian Byte Order

The least significant byte of the word is stored in the
high order byte address. The most significant byte of the
word occupies the low order byte address, which is why
this format is called big-endian. Operations with 16-bit
half-words have similar consequences.

AsSET

P R O D U C T
snilia

When dealing with half-words, the memory address must
be a multiple of two. Thus the value in Figure 1 will occupy
two half-word addresses: 0x100 and 0x102. Figure 4 shows
the layout for both endian configurations.

Address 0x100 0x102
Little Endian Data OxDDEE 0xBBCC
Big Endian Data 0xBBCC OxDDEE

Figure 4. Half Word Endian Orders

nMmass anil ARYI® Pio

Note: Within the half-word, the bytes maintain the same
order as they have in the word format. In little-endian mode,
the least significant half-word resides at the low-order
address (0x100) and the most significant half-word resides
at the high-order address (0x102). For the big-endian
case the layout is reversed.

Usually the issue of endianness is transparent to both pro-
grammers and users. However, the issue becomes relevant
when data must cross between endian formats, such as
may be the case for networks or distributed systems that
use different platforms. The next section discusses how
endianness relates to ARM processors.

Ramifications of Endianness and ARM Processors

The ARM Architectural Reference Manual states that ARM
processors are bi-endian, meaning they can operate in
gither little-endian or big-endian modes. The ARM proces-
sor (v4 and v5) does not have any instructions or features
that affect endianness. The endianness of the system as a
whole is determined by the circuitry that connects the
processor to its peripheral devices. In ARM v6 and beyond
(all Cortex cores) the “setend” instruction was added to the
ARM and Thumb instruction sets. It allows for dynamic
changing of the CPSR E bit. Facilities were added to monitor
the interaction of accesses/alignment and the E bit. For a
description of the instructions, states, and monitors please
refer to the current ARM Architecture Reference Manual.

In those ARM cores that contain a System Control
coprocessor (coprocessor 15), Control Register 1 contains
a bit that can be used to reverse the endian configuration of
the system. The overall design of the system may require
that this bit be set for proper operation. Check the user’s
manual for the board to determine the proper setting for
this bit.

Since this bit is cleared at reset, the software engineer still
must ensure that any code that executes either directly from
flash or immediately after reset is formatted for the correct
endian configuration, and the reset handler code must set

P R O F | L E
QNI it Q)_h
CBSSOIS f0f 32011

this bit if required.

For those ARM cores, prior to v6, that do not include
coprocessor 15, the software engineer has no control
over the endian configuration of the system.

ARM specifications state that data values accessed in
word format are invariant with respect to endianness. If
a program stores a 32-bit value at a given memory
address, then switches the endian configuration of the
processor and reads back the 32-bit value at that same
address, it will get the correct result. However, if data
are read or written in smaller chunks (8 or 16 bits), this
will no longer hold true. See "An Endian Experiment’
below for some examples of what happens if the endian
configuration is changed for 8- or 16-bit data.

Endian Issues When Programming Flash Devices
Today’s flash memory devices are typically 8 or 16 bits
wide. Some systems may implement a 32-bit-wide
flash memory interface, but typically this actually con-
sists of two interleaved 16-bit devices. Programming
operations on these devices involve 8- or 16-bit data
write operations at specific addresses within each
device. For this reason, the software engineer must
know and understand the endian configuration of the
hardware in order to successfully program the flash
device(s). This information typically is documented in
the hardware reference manual for the board.

There are two main factors that must be considered to
correctly program a flash device:

* A flash programming operation is initiated by plac-
ing the flash device into a special mode. This is typically
accomplished by writing an 8- or 16-bit value to a par-
ticular address within the device. Where this address is
mapped in the processor memory space will depend on
the endian configuration of the system.

* Code which will be executed directly from an 8- or
16-bit flash device must be stored in a way that instruc-
tions will be properly recognized when they are fetched
by the processor. This may be affected by the endian
configuration of the system. Compilers typically have a
switch that can be used to control the endianness of the
code image that will be programmed into the flash
device.

If the Target Flash Programming feature of SourcePoint

is used to program the flash device, the user may select
the “Swap Endian” option to reverse the endianness of

the code image.
ASSET

P R O D U C T P R O F I L E

cnilianmass ani ARVI® Prooassors ior 32-0it

endian mode.
Target Configuration []
emon ap | Program Fseh | Operating Sy | Trget i Note that the byte order within each word does not change
Flsh device) e when the endian configuration is changed after data are
E;“ E:::i:up“‘”' :} Very written. However, the order of bytes within each word is
omonion = affected by what endian mode is in effect when the data are
— = written.
Start adthess: | 21AC000F +| [oefine. |
Pl & >//Load data in little endian mode
Targt intsization >control.b =0
S — g s>load C:\ArmProjects\RomFiles\IncByteFilled.hin at 0
>//Display data in word format
>ord4 0 len 10
00000000 03020100 07060504 0BOA0908 OFOEODOC
00000010 13121110 17161514 1B1A1918 1F1E1D1C

00000020 23222120 27262524 2B2A2928 2F2E2D2C
00000030 33323130 37363534 3B3A3938 3F3E3D3C

[ok J[Coneel |[Hep |

Figure 5: SourcePoint Program Flash tab on the Target
Configuration dialog box >//Display data in half word format
>ord2 0 len 20
When selecting a device type from the 'Device type’ pull- 00000000 0100 0302 0504 0706 0908 0BOA ODOC OFOE
down menu (Figure 5), the user must specify the endian 00000010 1110 1312 1514 1716 1918 1B1A 1DI1C 1FIE
configuration of the target. Currently, this menu 00000020 2120 2322 2524 2726 2928 2B2A 2D2C 2F2E

provides the following choices: 00000030 3130 3332 3534 3736 3938 3B3A 3D3C 3F3E

o Intel 28 Series >ord1 0 len 40

o Intel 28 Series — Big Endian >//Display data in byte format

. AMD 29 Series 00000000 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OF OF
. AMD 29 Series — Big Endian 00000010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
° SST 39 Series _ 00000020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
° SST 39 Series - Big Endian 00000030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

If the endian configuration of the target does not match /syiteh to big endian mode
what the user has selected (e.g., big endian or not) the s¢ontrol.b=1
flash programming dialog will report that it was unable
to locate or identify the flash device. >//Display data in word format
>ord4 0 len 10
Also note that in many cases the user must provide @ ggoooo00 03020100 07060504 ~ 0BOAO908 OFOEODOC
pre-flash initialization script to initialize the hardware 00000010 13124110 17161514 1B1A1918 1F1E1DIC
into a state where a flash programming operation can be 00000020 23222120 27962504 OBOAD928 OFOEODAC

performed successfully. 00000030 33323130 37363534 3B3A3938 3F3E3D3C

An Endian Experiment . ;
. . Display data in half word format
This section shows the results generated by a iﬁ’mz’ﬁ IZn 20

SourcePoint command file that writes an incrementing
data pattern to target memory starting at address zero. 00000000 0302 0100 0706 0504 OBOA 0908 OFOE 0DOC
The data are written to memory as 32-bit words, with the 00000010 1312 1110 1716 1514 1B1A 1918 1FIE 1D1C
target in little endian mode. The data are then displayed 00000020 2322 2120 2726 2524 2B2A 2928 2F2E 2D2C
in word, half word, and byte formats. The system is then 00000030 3332 3130 3736 3534 3B3A 3938 3F3E 3D3C
switched to big endian mode and the data are displayed
again. The entire experiment is then repeated with the
target initially in big endian mode and switching to little

ASSET

P R O D U C T P R O F I L E

cpilianmass ani ARVI® Prooassois ior 32-0it

>//Display data in byte format

>ord1 0 len 40
00000000 03 02 01 00 07 06 05 04 0B OA 09 08 OF OE 0D 0C
00000010 13 12 11 10 17 16 15 14 1B 1A 19 18 1F 1E 1D 1C
00000020 23 22 21 20 27 26 25 24 2B 2A 29 28 2F 2E 2D 2C
00000030 33 32 31 30 37 36 35 34 3B 3A 39 38 3F 3E 3D 3C

>//Display data in byte format

>ord1 0 len 40
00000000 0302 01 00 07 06 05 04 0B O0AO09 08 OF OE OD 0C
00000010 1312 11 10 17 16 15 14 1B 1A19 18 1F 1E 1D 1C
00000020 2322 21 20 27 26 25 24 2B 2A29 28 2F 2E 2D 2C

Summary

>//Load data in big endian mode
>load C:\ArmProjects\RomFiles\IncByteFilled.bin at 0
>//Display data in word format

In many cases the endian configuration of a system is not
relevant to the software engineer. However, in systems
that contain memory-mapped peripheral devices (such as

>ord4 0 len 10
00000000 00010203 04050607 08090A0B OCODOEOF
00000010 10111213 14151617 18191A1B 1C1D1E1F
00000020 20212223 24252627 28292A2B 2C2D2E2F
00000030 30313233 34353637 38393A3B 3C3D3E3F

flash memory devices), endianness must be considered
whenever the software must access data in bytes or half-
words. See the user’s manual for your board to determine
the correct endian configuration.

The Target Flash Programming feature of SourcePoint
allows the user to select the proper endian configuration
of the target system before initiating a flash programming
operation.

>//Display data in half word format

>ord2 0 len 20
00000000 0001 0203 0405 0607 0809 O0AOB 0COD OEOF
00000010 1011 1213 1415 1617 1819 1A1B 1C1D 1E1F
00000020 2021 2223 2425 2627 2829 2A2B 2C2D 2E2F
00000030 3031 3233 3435 3637 3839 3A3B 3C3D 3E3F

An initialization macro may be required to initialize the
board into a state where it is ready for flash programming.
This initialization macro may also need to set the endian
control bit in the System Control Register (see the user’'s

>//Display data in byte format manual for your board).

>ord1 0 len 40
00000000 00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF
00000010 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00000020 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
00000030 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

>//Switch to little endian mode
>control.h =0
>//Display data in word format
>ord4 0 len 10

00000000 00010203 04050607 08090A0B 0OCODOEOF
00000010 10111213 14151617 18191A1B 1C1D1ETF
00000020 20212223 24252627 28292A2B 2C2D2E2F
00000030 30313233 34353637 38393A3B 3C3D3E3F

>//Display data in half word format

>ord2 0 len 20
00000000 0203 0001 0607 0405 O0AOB 0809 OEOF 0COD
00000010 1213 1011 1617 1415 1A1B 1819 1E1F 1C1D
00000020 2223 2021 2627 2425 2A2B 2829 2E2F 2C2D
00000030 3233 3031 3637 3435 3A3B 3839 3E3F 3C3D

17791 Fitch Avenue, Irvine, CA 92614 Voice: 949-517-4150 outside the US Fax: 714-731-6344 E-mail: ai-info@asset-intertech.com Web: www.asset-intertech.com

SourcePoint is a trademark of ASSET InterTech. ARM, ARM9, ARM11, Cortex, CoreSight, and Thumb are trademarks or registered trademarks of ARM Ltd. OMAP is a trademark of Texas Instruments. Microsoft and
Windows are registered trademarks of Microsoft Corp. Green Hills is a registered trademark of Green Hills Software, Inc. Copyright © 2014 ASSET InterTech, Inc. 2014

