

FASTER FIRMWARE DEBUG

WITH INTEL® EMBEDDED

TRACE TOOLS

EBOOK

BY LARRY OSBORN

Faster Firmware Debug with Intel® Embedded Trace Tools

2

By Larry Osborn

Larry Osborn, Arium Product Manager, at ASSET

InterTech, has over 30 years of experience in product

management, hardware/software product design and

development, product delivery to the marketplace and

user support. Over the years, Larry has a proven track

record for identifying user needs and opportunities in

the marketplace, providing innovative solutions and

exceeding the expectations of users. Prior to ASSET, he

has held positions with Lockheed Martin, OCD

Systems, Windriver, Hewlett-Packard, Ford Aerospace

and Intel® Corporation. He holds a Bachelor’s Degree

in Computer Science from the University of Kansas and

various technical and marketing training certifications.

Faster Firmware Debug with Intel® Embedded Trace Tools

3

Table of Contents
Executive Summary .. 4

Trace Resources and Hardware-Assisted Debug Tools .. 5

How Debug Tools Apply Intel’s On-Chip Trace Resources .. 6

Trace as a Diagnostic Tool ... 7

Examples of Trace Capabilities .. 9

Conclusions ... 13

Get a Demonstration ... 13

Table of Figures
Figure 1: Trace uncovering a bug. ... 8

Figure 2: Trace discovers a corrupted stack frame. ... 9

Figure 3: Tracing a fault in a device driver.. 12

© 2013 ASSET InterTech, Inc.

ASSET and ScanWorks are registered trademarks while the ScanWorks logo is a trademark of ASSET InterTech, Inc. All other

trade and service marks are the properties of their respective owners.

Faster Firmware Debug with Intel® Embedded Trace Tools

4

Executive Summary

Debugging software and firmware efficiently and on schedule has become increasingly more

difficult as system complexity has escalated and as the sheer volume of software and firmware in

multi-core, multiprocessing, high-speed systems has exploded. Advancements in computing and

communications technology have had dramatic effects on the range of the typical debug

investigation. Today, debugging the root causes of malfunctions and failures inevitably involves

investigation and experimentation well beyond the scope of such debug exercises just a few short

years ago. Methodically and quickly tracking the causes of bugs back through the interrelated

web of software, firmware and hardware has become a major challenge for product

manufacturers.

Fortunately, hardware-assisted debug tools are able to meet these challenges by taking advantage

of the trace resources embedded by Intel® in its processors. With these debug tools developers

can quickly track the suspected causes of a problem back to its real root cause. Depending on the

trace features embedded in a particular Intel processor, developers can trace code execution

problems within the code itself and beyond that code to the potential causes of a bug. In addition,

some tools platforms can extend root cause determination considerably farther beyond code

execution by applying non-intrusive debug, validation and test tools that can quickly rule out

possible causes in the underlying hardware or related software modules. With a powerful set of

related software and hardware debug tools at its disposal, development teams can delve more

deeply and more quickly into the nature of bugs and faults that can affect the operation and

performance of entire systems.

Faster Firmware Debug with Intel® Embedded Trace Tools

5

Trace Resources and Hardware-Assisted Debug Tools

All Intel processors have a hardware debug interface or port. Typically, the debug port is

implemented on a customer reference board (CRB) as the eXtended Debug Port (XDP). Through

the XDP, hardware-assisted debug tools are able to interface with the processor(s) to run and

stop the processor, single-step through software code, and examine and deposit values (peek-

and-poke) into memory and registers as part of the software/hardware debug process.

Hardware-assisted debuggers have certain advantages insofar as they are non-intrusive and they

do not depend on other software resources like a functioning operating system. With hardware-

assisted debug tools developers can debug code as it is executing. If the processor ‘hangs’ or

stops executing code, the debug tool can still maintain control of the processor and provide

visibility into system operations.

The various Intel processors offer several on-chip and platform debug resources which can be

very useful in code and event trace debugging applications. Some of these Intel-specific

resources are listed below. Additional explanation of the functionality and purposes of these

resources is contained throughout the rest of this eBook.

• Last Branch Record (LBR) is a facility to store a relatively limited amount of trace

information in on-chip resources. Technically, LBR is a flag in the DebugCtlMSR and

corresponding LastBranchToIP and LastBranchFromIP MSRs as well as

LastExceptionToIP and LastExceptionFromIP MSRs.

• Branch Trace Store (BTS) will store additional data to that which is gathered by LBR.

BTS uses the in-system memory resources of either cache-as-RAM or system DRAM to

store this additional trace data.

• Architecture Event Trace (AET) offers tracing functionality that is more selective than

LBR or BTS, as well as considerably more trace data. The data gathered through AET is

funneled through the processor’s XDP port and stored externally from the debug target in

a connected In-Target Probe device.

Faster Firmware Debug with Intel® Embedded Trace Tools

6

How Debug Tools Apply Intel’s On-Chip Trace Resources

Intel’s on-chip trace resources provide the functionality to view executing code and processor

events. This visibility can prove essential in a complex environment where millions of

instructions are executing and many hardware events are happening every second. With Intel’s

trace resources, engineers can look back in time to determine exactly how the system behaved

and what happened to it. This ability to capture past events and code sequences provides keen

insight into system behavior. Additionally, software bugs encountered during trace can often be

captured for further analysis.

Intel’s embedded LBR trace instrument can capture code execution from the point of reset. Since

any discontinuities while code is executing are stored in Machine Specific Register (MSR), some

hardware-assisted debug tool can reconstruct the executed code by reading the ‘To’ and ‘From’

addresses, accessing memory between the specific locations and disassembling the code. The

debug tool usually displays this disassembly process in a trace window in its graphical user

interface (GUI). While the trace process can start at reset and does not impede any real-time

performance, the size of the trace display is very shallow and typically can only contain hundreds

of instructions. This may help to analyze the code that executed before a System Management

Interrupt (SMI) or other exception if the debugger has set a breakpoint when the interrupt

occurred. Many applications require that a greater amount of code and data are gathered for

effective debug. BTS can accommodate these applications by capturing many more ‘To’ and

‘From’ events and storing the data through a cache-as-RAM (CAR) method or by storing the

data in system DRAM. The debugger can derive the executed code and display it by reading

either of these two memory stores and decompressing the BTS events. (Note that this is very

similar to the LBR algorithm described above.) The debugger’s trace window usually displays

assembly and high-level languages like C/C++. Typically, BTS employs CAR as an extended

data storage facility if system DRAM is not available.

Even more trace data, which amounts to additional code execution time, can be stored when

system DRAM is available. The extent of time and, therefore, instructions and events that are

captured is limited by the amount of memory available on the target system being debugged.

With enough memory, debuggers have been able to capture and analyze an entire Linux boot.

Although BTS does adversely affect system performance, CAR is much faster than storing data

Faster Firmware Debug with Intel® Embedded Trace Tools

7

in system DRAM. Both storage methods generate significant overhead. Tests have shown that

BTS overhead can be anywhere from 20% to 100%, depending on the access time of RAM and

the number of branches captured in the code stream.

Intel’s EFI Developer Kit II (EDK II) supports hardware-assisted debuggers performing BTS

trace using either the CAR or system DRAM methods. This support sets up a portion of CAR as

a BTS trace storage area as soon as CAR is available. When system DRAM is available to the

debugger, BTS events are recorded automatically in DRAM without user intervention. This

support provides UEFI code trace visibility seamlessly shortly after the target has been reset.

Another Intel embedded trace instrument is Architectural Event Trace (AET). This resource

gives developers even greater visibility into code execution. Not only can AET capture execution

history, but it can also capture events such as interrupts or I/O accesses. AET events are not

stored in memory on the target, but rather in a device connected to the target by an ITP. This

gives the user of the debugger the ability to analyze the trace data even when the target is not

available as the result of a reset or power cycle failure, for example. If all events are captured,

AET will have an effect on system performance by several orders of magnitude greater than the

effect BTS produces. Fortunately, the user of the debugging tool can selectively pick and choose

which events to capture through AET and thereby reduce overhead and increase the code

execution time captured. In addition, debuggers can collect both BTS and AET data. BTS data

can be placed in RAM while AET events are stored off-target via an ITP connection. This

maximizes the advantages of both the speed of BTS and the comprehensiveness of the events

captured by AET. An ITP debugger can then correlate both the BTS and AET streams using

time-stamp information in the data.

AET is currently only available on client and server processors and is not available on Atom.

Also, AET requires special ITP hardware which can collect and store the event data as it comes

across the XDP bus.

Trace as a Diagnostic Tool

By applying the typical features of a hardware-assisted debugger most software bugs can be

diagnosed in a fairly straightforward manner. These types of debuggers will set up a variety of

breakpoint types, display register values and examine the entire memory space, all while

Faster Firmware Debug with Intel® Embedded Trace Tools

8

correlating full symbolic information with the underlying source code. In addition, hardware-

assisted debuggers can use the stack frame to trace backwards through the code to see the

execution history and calling arguments from parent functions. However, this information only

pertains to the currently executing thread (Figure 1). Unfortunately, not all software bugs can be

diagnosed this easily. Diagnosing bugs usually follows the 80/20 rule. That is, the person doing

the debugging will spend 80% of his or her time on 20% of the bugs. The hard-to-diagnose bugs

typically happen in one context, but are detected in another. Usually, there is an indeterminate

amount of time between occurrence of the bug and the effects it has on system operation or

performance. For example, an interrupt routine might corrupt memory that just happens to be in

the stack area of an unrelated thread. The thread may do a bounds check on an array index

(Figure 2) only to have the value of that index corrupted before it is referenced. Determining

where the corruption occurs with traditional debug techniques would be nearly impossible

because the corruption has nothing to do with the current context of the code. The actual cause of

the bug could have happened millions of instructions earlier in some totally unrelated piece of

code. These are the types of bugs where trace can provide the most benefit.

Figure 1: Trace uncovering a bug.

Faster Firmware Debug with Intel® Embedded Trace Tools

9

In some instances, trace debug capabilities may be the only way to debug a problem. For

example, an interrupt routine might suddenly and inexplicably execute in the middle of a

function (Figure 2). Regardless of the type of embedded trace instrument deployed by the tool

(LBR, BTS or AET), the debugger can easily correlate the code execution history against source

code.

Figure 2: Trace discovers a corrupted stack frame.

Examples of Trace Capabilities

The following are several examples of specific problem areas which demonstrate how trace

functions can quickly diagnose root causes.

• Interrupt Behavior

A developer is working on a driver for an Ethernet device and wants to understand the nature and

timing of the interrupts. From the device’s data book and based on the CPU’s clock rate and the

data rate of the interface, he is able to calculate the interrupt frequency on both the receive (rx)

and transmit (tx). With this information he can formulate the design requirements and parameters

for the device driver. Once the driver is complete, he must begin testing and fixing bugs that

arise. The problem, though, is the non-deterministic nature of the interrupt patterns. The

Faster Firmware Debug with Intel® Embedded Trace Tools

10

interrupts encountered by the Ethernet device will depend on the behavior of devices on the other

end of the transmission line. In addition, other interrupts will be encountered in the system, such

as USB, timers, disk accesses and other sorts of interrupts. The developer may believe he has a

debugged working device driver, only to find a major bug once the system has been released to

the field.

Trace is a very useful tool in analyzing these types of issues, primarily because it is empirical. It

proves (or disproves) any timing assumptions that were made based on the information contained

in the device’s data book. In addition, trace will identify any anomalies in chip behavior. A

typical debug process using trace tools might happen this way. First, BTS could be used to make

certain measurements. For example, the exact number of instructions in an ISR routine might be

needed. In addition, the interval between the transmission of a data packet and when the

transmit-complete interrupt is received could also be measured. Next, the interrupt behavior and

patterns of the system in a variety of use cases such as simultaneous USB and Ethernet activity

might be analyzed. In this last case, though, BTS would probably not be the tool of choice. BTS

functions well for short periods of time, but the number of interrupt occurrences it captures

would probably be inadequate. AET would be a better choice since it can be set to selectively

record only the interrupt events. This would avoid filling up the memory storage area with

unneeded and superfluous branch history. Depending on the amount of memory available in the

ITP-connected device, an interrupt history from a few seconds to several minutes could be

captured. This is not to imply that this type of trace capture would necessarily identify bugs in

the device driver, but it would certainly provide a more comprehensive picture of the system’s

behavior than is available through other methods. At the very least, this type of trace analysis

would either confirm or refute the expected behavior.

• Linux System Debugging

Trace capabilities can also be applied quite effectively to debugging embedded Linux. On a

workstation, the debug tools would typically run on the same host that is being debugged, but

this is not the case with embedded Linux. The debug agent (or server) would typically run on the

target system being debugged, while the debugger’s user interface (UI) would run on a host

workstation which is connected to the embedded target over Ethernet, through a JTAG port or in

some other manner. This configuration is often referred to as cross debugging. Historically,

Faster Firmware Debug with Intel® Embedded Trace Tools

11

debugging embedded Linux has involved a two-step approach. One set of tools would debug the

user space while another would debug the Linux kernel. GDB (GNU Debugger) is the dominant

user space debugging tool. It contains a server (gdbserver) that runs on the target and a host

program (gdbclient) that functions as the user interface. GDB works well for process-level or

thread-level debugging as long as the operating system is functioning properly and the Ethernet

connection is reliable. The built-in Linux kernel debugger (KDB) and the Linux source level

debugger (KGDB) are common tools for kernel debugging, but they can be problematic in a

cross-connected environment. More significantly though, they rely on other software to perform

correctly. For KDB and KGDB to function effectively, a stable kernel and Ethernet or serial

connection are needed. This can be troublesome since a stable kernel and properly working

system would not require debugging in the first place. Something must be malfunctioning or

debugging would be taking place. Hardware-assisted tools that don’t rely on any software

running on the target can provide access to the LBR/BTS/AET embedded trace instruments and

the data that is needed to identify the most difficult bugs.

At this point, a closer analysis of a bug involving a Linux device driver that corrupts memory

would be helpful. In this example, the device driver is called “chat” and it exchanges data

between 2 Linux processes. While testing the driver, the Linux kernel crashes and the following

error message is displayed on the serial console: “BUG: unable to handle kernel NULL pointer

dereference”.

After searching through the Linux source code, the error string is found at line 400 in the module

“fault.c” (Figure 3). The debugging engineer sets a breakpoint at that line and runs the test again.

The firmware executes to the break point, but the cause of the bug is not found because the root

cause is actually in a different context. Unfortunately, because of the context switch, the

debugger cannot track backwards through the call stack. This is where BTS trace capabilities can

provide significant value. Since the premise for this analysis has been that the problem is related

to the “chat” driver, a trace debugger will be able to search backwards through the BTS data for

the text “chat” and find the last code location where the driver was invoked. Figure 3 shows the

breakpoint in the fault module in the top pane of the debugger’s GUI. This is where the CPU has

stopped. The middle pane displays trace data with assembly instructions and interspersed “c”

code. This pane shows that the last reference to “chat” was 921 branches and approximately

Faster Firmware Debug with Intel® Embedded Trace Tools

12

20,000 instructions prior to the current program instruction counter. The bottom pane contains

the “c” source code correlated against the trace data. This window tracks directly with the cursor

location in the trace data. The bottom pane shows the area of the device driver that last executed

before the exception occurred. Note that in the buffer overrun condition at line 153 in the chat

driver, the developer mistakenly used one equal sign (“=”) instead of two (“==”). This resulted in

a null pointer being assigned to a location that was used as the destination address in “memset”.

Effectively, this wiped out memory starting at location zero and caused the exception in the

kernel.

Figure 3: Tracing a fault in a device driver.

Faster Firmware Debug with Intel® Embedded Trace Tools

Conclusions

Using Intel’s embedded trace resources, LBR, BTS, and AET, in conjunction with hardware-

assisted debugging tools can be quite effective. In addition, automated deployment by hardware-

assisted debuggers of CAR and system DRAM data storage methods with BTS trace resources is

currently supported by Intel’s EFI Developer Kit II (EDK II).

Some of the advantages and disadvantages of each embedded trace instrument are as follows:

• LBR has no overhead, but is very shallow (4 – 16 branch locations, depending on the

CPU). Trace data is available immediately following reset.

• BTS is much deeper, but it has an impact on CPU performance and requires on-board

RAM. Trace data is available as soon as CAR is initialized.

• AET requires special ITP hardware and is not available on all CPU architectures. It has

the advantage of storing trace data off of the target board.

Engineers involved with BIOS/UEFI, device driver, boot loader and OS porting projects can

benefit from hardware-assisted debug tools. Debugging intermittent failures and system hangs,

as well as early firmware development are use cases that can take advantage of a debug interface

like Intel’s XDP.

Get a Demonstration

Advanced trace features are a

powerful tool for engineers who

want to find bugs fast and

quickly develop high-quality

code. To learn more about

hardware-assisted debug tools

and arrange a demonstration. Register Here!

http://www.asset-intertech.com/Products/Software-Debug-and-Trace/Software-Debug-and-Trace-Demo-Request
http://www.asset-intertech.com/Products/Software-Debug-and-Trace/Software-Debug-and-Trace-Demo-Request
http://www.asset-intertech.com/Products/Software-Debug-and-Trace/Software-Debug-and-Trace-Demo-Request�

	Executive Summary
	Trace Resources and Hardware-Assisted Debug Tools
	How Debug Tools Apply Intel’s On-Chip Trace Resources
	Trace as a Diagnostic Tool
	Examples of Trace Capabilities
	Conclusions
	Get a Demonstration

